ACI. (2011). Building code requirements for structural concrete (ACI 318-11), American Concrete Institute.
Armaghani, D.J. and Asteris, P.G. (2021). "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Computing and Applications, 33(9), 4501-4532, https://doi.org/10.1007s00521-020-05244-4.
Baghban, A.,
Karamodin, A., and
Haji Kazemi, H. (2020). "Fault-tolerant damage control of nonlinear structures using artificial intelligence",
Civil Engineering Infrastructures Journal, 53(2), 395-406,
https://doi.org/10.22059/CEIJ.2020.287804.1609.
Bezdek, J.C. (1981). Pattern recognition with fuzzy objective function algorithms, Plenum Press, New York, https://doi.org/10.1007/978-1-4757-0450-1.
CSA. (1994). Building code, design of concrete structures: Structures (Design)-A National Standard of Canada (CAN-A23. 3-94), Clause 11.1. 2, Canadian Standards Association, Toronto.
Gholamzadeh
Chitgar, A. and
Berenjian, J. (2021), "Performance evaluation of RBF networks with various variables to forecast the properties of SCCs",
Civil Engineering Infrastructures Journal, 54(1), 59-73,
https://doi.org/10.22059/CEIJ.2020.288257.1611.
Chou, J.S., Chiu, C.K., Farfoura, M. and Al-Taharwa, I. (2011). "Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques", Journal of Computing in Civil Engineering, 25(3), 242-253, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000088.
Dao, D.V., Ly, H.B., Trinh, S.H., Le, T.T. and Pham, B.T. (2019). "Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete",
Materials, 12(6), 983,
https://doi.org/10.3390/ma12060983.
Deb, K. (2011). "Multi-objective optimisation using evolutionary algorithms: an introduction", In: Wang, L., Ng, A., Deb, K. (eds), Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing, pp. 3-34, Springer: London.
Jang, J.S. (1993). "ANFIS: adaptive-network-based fuzzy inference system",
IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685,
https://doi.org/10.1109/21.256541.
Jang, J.S.R., Sun, C.T. and Mizulani, E. (1996).
Neuro–fuzzy and soft computing: a computational approach to learning and machine intelligence, Prentice-Hall,
https://doi.org/10.1109/tac.1997.633847.
Kaveh, A., Hamze-Ziabari, S.M. and Bakhshpoori, T. (2017). "M5’algorithm for shear strength prediction of hsc slender beams without web reinforcement",
International Journal of Modeling and Optimization, 7(1), 48-53,
https://doi.org/10.24200/sci.2017.4509.
Keshavarz, Z. and Torkian, H. (2018). "Application of ANN and ANFIS models in determining compressive strength of concrete", Journal of Soft Computing in Civil Engineering, 2(1), 62-70, https://doi.org/10.22115/SCCE.2018.51114.
Khatibinia, M. and Mohammadizadeh, M.R. (2017). "Intelligent fuzzy inference system approach for modeling of debonding strength in FRP retrofitted masonry elements",
Structural Engineering and Mechanics, 6(2), 283-293,
https://doi.org/10.12989/sem.2017.61.2.283.
Khoshbin, F., Bonakdari, H., Ashraf Talesh, S.H., Ebtehaj, I., Zaji, A.H. and Azimi, H. (2016). "Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs",
Engineering Optimization, 48(6), 933-948,
https://doi.org/10.1080/0305215x.2015.1071807.
Kong, F.K., Robins, P.J. and Cole, D.F. (1970). "Web reinforcement effects on deep beams",
Journal Proceedings, 67(12), 1010-1018,
https://doi.org/10.14359/7336.
Lin, J.C.W., Yang, L., Fournier-Viger, P., Hong, T.P. and Voznak, M. (2017). "A binary PSO approach to mine high-utility itemsets", Soft Computing, 21(17), 5103-5121, https://doi.org/10.1007/s00500-016-2106-1.
Moosazadeh, S., Namazi, E., Aghababaei, H., Marto, A., Mohamad, H. and Hajihassani, M. (2019). "Prediction of building damage induced by tunnelling through an optimized artificial neural network", Engineering with Computers, 35(2), 579-591, https://doi.org/10.1007/s00366-018-0615-5.
Naderpour, H. and Mirrashid, M. (2020). "Shear strength prediction of RC beams using adaptive neuro-fuzzy inference system", Scientia Iranica, 27(2), 657-670, https://doi.org/10.24200/sci.2018.50308.1624.
Nguyen, T.A., Ly, H.B., Mai, H.V.T., and Tran, V.Q. (2021). "On the training algorithms for artificial neural network in predicting the shear strength of deep beams",
Complexity, 3(1), 1-18,
https://doi.org/10.1155/2021/5548988.
Prayogo, D., Cheng, M.Y., Wu, Y.W. and Tran, D.H. (2020). "Combining machine learning models via adaptive ensemble weighting for prediction of shear capacity of reinforced-concrete deep beams",
Engineering with Computers, 36(3), 1135-1153,
https://doi.org/10.1007/s00366-019-00753-w.
Savrun, M.M. and İnci, M. (2021). "Adaptive neuro-fuzzy inference system combined with genetic algorithm to improve power extraction capability in fuel cell applications",
Journal of Cleaner Production, 299(25 May), 126944,
https://doi.org/10.1016/j.jclepro.2021.126944.
Shariati, M., Mafipour, M. S., Mehrabi, P., Shariati, A., Toghroli, A., Trung, N.T. and Salih, M.N.A. (2021). "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques",
Engineering with Computers, 37(3), 2089-2109,
https://doi.org/10.1007/s00366-019-00930-x.
Shi, Y., Liu, H., Gao, L. and Zhang, G. (2011). "Cellular particle swarm optimization",
Information Sciences, 181(20), 4460-4493,
https://doi.org/10.1016/j.ins.2010.05.025.
Sihag, P., Tiwari, N.K. and Ranjan, S. (2019). "Prediction of unsaturated hydraulic conductivity using adaptive neuro-fuzzy inference system (ANFIS)",
ISH Journal of Hydraulic Engineering, 25(2), 132-142,
https://doi.org/10.1080/09715010.2017.1381861.
Smith, K.N. and Vantsiotis, A.S. (1982). "Shear strength of deep beams", Journal Proceedings, 79(3), 201-213, https://doi.org/10.14359/10899.
Socha, K. and Dorigo, M. (2008). "Ant colony optimization for continuous domains", European Journal of Operational Research, 185(3), 1155-1173, https://doi.org/10.1016/j.ejor.2006.06.046.
Storn, R. and Price, K. (1997). "Differential evolution, A simple and efficient heuristic for global optimization over continuous spaces",
Journal of Global Optimization, 11(4), 341-359,
https://doi.org/10.1023/a:1008202821328.
Subbaraj, P., Rengaraj, R. and Salivahanan, S. (2011). "Enhancement of self-adaptive real-coded genetic algorithm using Taguchi method for economic dispatch problem",
Applied Soft Computing, 11(1), 83-92,
https://doi.org/10.1016/j.asoc.2009.10.019.
Suguna, K., Raghunath, P.N., Karthick, J. and Uma Maheswari, R. (2018). "ANN based modeling for high strength concrete beams with surface mounted FRP laminates",
International Journal of Optimization in Civil Engineering, 8(3), 453-467,
http://ijoce.iust.ac.ir/article-1-355-en.htm.
Tan, K.H., Kong, F.K., Teng, S. and Guan, L. (1995). "High-strength concrete deep beams with effective span and shear span variations",
Structural Journal, 92(4), 395-405,
https://doi.org/10.14359/991.
Taghi Dastorani, M.,
Mahjoobi, J., Talebi, A. and
Fakhar, F. (2018). "Application of machine learning approaches in rainfall-runoff modeling (Case Study: Zayandeh_Rood Basin in Iran)",
Civil Engineering Infrastructures Journal, 51(2), 293-310,
https://doi.org/10.7508/CEIJ.2018.02.004.
Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014). "Prediction of shear capacity of channel shear connectors using the ANFIS model",
Steel and Composite Structures, 17(5), 623-639,
https://doi.org/10.12989/scs.2014.17.5.623.
Zhang, C. (2020). "Classification rule mining algorithm combining intuitionistic fuzzy rough sets and genetic algorithm",
International Journal of Fuzzy Systems, 22, 1694-1715,
https://doi.org/10.1007/s40815-020-00849-2.
Zhou, Q., Zhu, F., Yang, X., Wang, F., Chi, B. and Zhang, Z. (2017). "Shear capacity estimation of fully grouted reinforced concrete masonry walls using neural network and adaptive neuro-fuzzy inference system models",
Construction and Building Materials, 153, 937-947,
https://doi.org/10.1016/j.conbuildmat.2017.07.171.