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ABSTRACT: It is generally accepted that the shear strength of Reinforced Concrete 

(RC) deep beams depends on the mechanical and geometrical parameters of the beam. 

The accurate estimation of shear strength is a substantial problem in engineering design. 

However, the prediction of shear strength in this type of beams is not very accurate. One 

of the relatively accurate methods for estimating shear strength of beams is Artificial 

Intelligence (AI) methods. Adaptive Neuro-Fuzzy Inference System (ANFIS) was 

presented as an AI method. In this study, the efficiency of ANFIS incorporating meta-

heuristic algorithms for predicting shear strength of RC beams was investigated. Meta-

heuristic algorithms were used to determine the optimum parameters of ANFIS for 

providing the efficient models of the prediction of the RC beam shear strength. To 

evaluate the accuracy of the proposed method, its results were compared with those of 

other methods. For this purpose, the parameters of concrete compressive strength, cross-

section width, effective depth, beam length, shear span-to-depth beam ratio (a/d), as well 

as percentage of longitudinal and transverse reinforcement were selected as input data, 

and the shear strength of reinforced concrete deep beam as the output data. Here, K-fold 

validation method with k = 10 was used to train and test the algorithms. The results 

showed that the proposed model with second root mean square error of 25.968 and 

correlation coefficient of 0.914 is more accurate than other methods. Therefore, neural 

fuzzy inference system with meta-heuristic algorithms can be adopted as an efficient tool 

in the prediction of the shear strength of deep beams. 

 

Keywords: Meta-Heuristic Algorithms, Neuro-Fuzzy Inference System, Reinforced 

Concrete Deep Beam, Shear Strength. 

  
 

1. Introduction 

 

Deep beams are widely used in civil 

engineering including tall buildings, tanks, 
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rectangular silos, floor diaphragms, shear 

walls, slabs and offshore structures 

(Gandomi et al., 2013; Prayogo et al., 

2020). Due to complicated behavior of 
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these beams, there is no consensus on the 

definition of the deep beams to which is 

approved by all researchers. A criterion for 

the definition of deep beams is the ratio of 

its span length (L) to its depth (D) which is 

less than 5. However, this criterion is less 

than 2.5, 5 and 4 in European, Canadian and 

American standards, respectively. Due to 

the complexity of the shear mechanism of 

deep concrete beams and the various 

parameters affecting it, it is difficult to 

develop a general model for accurate 

estimation of shear strength, and therefore 

the exact shear strength of these beams 

cannot be calculated using a closed-form 

solution. For pervious decades, few studies 

have examined the shear strength and 

analyzed the behavior of reinforced 

concrete deep beams. Many studies have 

also attempted to predict the shear capacity 

of reinforced concrete (RC) deep beams 

using various experimental relationships 

and analytical models (Liu and Mihaylov, 

2016). Improving prediction performance is 

very important in the design of RC deep 

beams. Therefore, an efficient model is 

required to accurately predict the shear 

capacity prediction for different types of RC 

beams. In recent years, Artificial 

Intelligence (AI) methods have been used 

for this purpose. The use of AI methods has 

been attracted as extensive research in many 

fields of civil engineering (Moosazadeh et 

al., 2019; Taghi Dastorani et al., 2018; 

Baghban et al. 2020; Chitgar and Berenjian 

2021). AI methods have been successfully 

used in complex problems, so that these 

methods can provide a powerful prediction 

method. The use of AI methods has shown 

that a complex nonlinear relationship could 

be established between the shear capacity of 

RC deep beams and all the effective 

parameters. Therefore, the use of AI 

methods has been proposed as efficient 

methods in the field of civil engineering. 

Artificial Neural Network (ANN) as an AI 

method is extensively proposed in order to 

model complex relationships between input 

and output data or to find a pattern for data. 

Although, ANNs are used in many 

problems and applications, their 

development can be time consuming. 

Adaptive fuzzy-neural inference (ANFIS) 

as an AI method combines the prominent 

features of a Fuzzy Inference System (FIS) 

with ANNs. In this type of method, the 

fuzzy rules of the samples are determined 

through ANN (Toghroli et al., 2014). This 

system has also shown good efficiency in 

recent years in comparison with older 

methods such as ANNs for classifying and 

estimating functions.  

In recent years, the prediction of the 

shear strength of RC beams using the AI 

methods has attracted much attention of 

researchers. Nguyen et al. (2021) presented 

a model for the prediction of the shear 

strength of RC deep beams based on ANN 

and using four training algorithms. This 

study showed that ANN is a suitable 

method for predicting the shear strength of 

RC deep beams (Nguyen et al., 2021). In the 

study of Suguna et al. (2018), high-strength 

concrete beams were modeled based on 

ANN. Yield load, deflection at yield load, 

service load, deflection at service load, final 

load, deflection at final load, and flexibility 

were the target parameters and were 

predicted by ANN (Suguna et al., 2018). 

The capability of AI techniques for the 

prediction of the behavior of an innovative 

type of C-shaped shear connectors, called 

Tilted Angle Connectors was investigated 

by Shariati et al. (2021). Armaghani and 

Asteris (2021) studied the application of AI 

techniques for the prediction of the 

compressive strength of cement-based 

mortar materials with or without 

Metakaolin (Armaghani and Asteris, 2021). 

Keshavarz and Torkian (2018) also studied 

the application of ANN and ANFIS models 

in the prediction of the compressive 

strength of concrete. The results showed 

that ANN and ANFIS methods are 

successful models for predicting 

compressive strength of concrete. The 

results also showed that ANFIS has higher 

accuracy in predicting the compressive 

strength of concrete than that of ANN 

(Keshavarz and Torkian, 2018). Dao et al. 

https://ceij.ut.ac.ir/?_action=article&au=672181&_au=Atefeh++Gholamzadeh+Chitgar
https://ceij.ut.ac.ir/?_action=article&au=325642&_au=Javad++Berenjian
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(2019) used ANN and ANFIS models to 

predict the compressive strength of 

Geopolymer concrete. The results of the 

study showed that ANN and ANFIS models 

have great potential for predicting the 

compressive strength of Geopolymer 

concrete (Dao et al., 2019). Naderpour and 

Mirrashid (2020) studied and predicted 

shear strength of RC beams using ANFIS. 

The results showed that the neural fuzzy 

network system, especially the ANFIS 

method, is highly capable of predicting 

shear strength of RC beams (Naderpour and 

Mirrashid, 2020). Some studies were used 

AI methods with meta-algorithms for the 

prediction of shear strength of RC beams. 

Khatibinia and Mohammadizadeh (2017) 

presented ANFIS with GA and PSO for 

determining the bonding of FRP polymer 

fibers and masonry elements. The results 

showed that the use of ANFIS model with 

PSO and GA can be significantly improving 

prediction accuracy (Khatibinia and 

Mohammadizadeh, 2017). Also, the study 

of Pham et al. (2018) can be mentioned as 

one of the most comprehensive researches 

for the use of AI methods and machine 

learning in the field of civil engineering. In 

this research, the shear capacity of soft soil 

was predicted using machine learning 

algorithms such as PSO-ANFIS (PANFIS), 

GA-ANFIS (GANFIS), Support Vector 

Regression (SVR) and ANN. The results of 

this study showed that the PANFIS has the 

highest predictability (Pham et al., 2018).  

According to past studies, the 

importance of shear strength of RC deep 

beams in the design of structures is 

necessary. Therefore, the purpose of this 

study is to predict the shear strength of 

reinforced concrete beams using ANFIS 

with meta-heuristic algorithms. The 

prediction methods are proposed based on a 

hybrid of ANFIS with GA, PSO, Ant 

Colony Optimization (ACO) method and 

Differential Evolution (DE) algorithm. 

Furthermore, for comparing the prediction 

accuracy of the shear strength of RC deep 

beams based on ANFIS with the 

metaheuristic algorithms, the results 

obtained from these models were compared 

with shear strength calculated from ACI and 

CSA regulations as well as those of ANNs 

(ACI, 2011; CSA, 1994). 

 

2. Shear Strength of RC Deep Beams 

 

Numerous methods have been used to 

design of RC deep beams. The American 

Concrete Institute Standard code-318 (ACI, 

2011) is based on a model called the truss 

model, in which the concrete contribution is 

presented based on experimental results. 

Based on ACI, the shear strength of RC 

deep beams is calculated as: 

 

𝑉𝑐 = 𝑣𝑐𝑏𝑤𝑑 = (3.5 − 2.5
𝑀𝑢
𝑉𝑢𝑑

)

× (1.9√𝑓𝑐
′

+ 2.5𝜌𝑤
𝑉𝑢𝑑

𝑀𝑢
)𝑏𝑤𝑑 

(1) 

  

where 𝑓𝑐
′: is the 28-day compressive 

strength of the 30 × 15 cylindrical concrete 

sample, and 𝜌𝑤: is the ratio of the 

longitudinal bars which is defined as 

follows: 

 

𝜌𝑤 = 𝐴𝑆/𝑏𝑤𝑑 (2) 

 

where 𝑉𝑢 and 𝑀𝑢: are shear force and 

bending moment at the critical point, 

respectively. bw and d: are width and 

effective depth of the beam, respectively. 

For beams reinforced in transverse 

direction, the nominal shear strength of the 

deep beam Vn shall include the shear 

strength obtained from Vc concrete share 

and the shear strength obtained from Vs bars 

share: 
 

𝑉𝑛 = 𝑉𝑐 + 𝑉𝑠 (3) 

 

where 𝑉𝑠: is expressed as follows: 

 

𝑉𝑠 = [
𝐴𝑣
12𝑠

(1 +
𝐿𝑛
𝑑
) +

𝐴𝑣ℎ
12𝑠2

(11

−
𝐿𝑛
𝑑
)]𝑓𝑦𝑑 

(4) 
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where Av: is the area of shear bars, fy: is the 

yield stress of the stirrups, s: is the distance 

of center to center of the stirrups, and 𝜌𝑣: is 

the ratio of the shear bars. In CSA 

(Canadian, 1994), the total shear strength of 

RC deep beam consists of two shear 

strengths obtained from the share strength 

of concrete and the shear strengths of bars. 

In CSA, the concrete shear share 𝑉𝑐, 
depends on the amount of transverse 

reinforcement and d of beam and defined as:  

 

𝑉𝑐 =
𝑉𝑐
𝑏𝑤𝑑

= 0.2√𝑓𝑐
′for𝐴𝑣

≥
0.006√𝑓𝑐

′𝑏𝑤𝑠

𝑓𝑦𝑣
or𝑑

≤ 300mm 

𝑉𝑐 =
𝑉𝑐
𝑏𝑤𝑑

=
260

1000 + 𝑑
√𝑓𝑐

′for𝐴𝑣

<
0.006√𝑓𝑐

′𝑏𝑤𝑠

𝑓𝑦𝑣
or𝑑

> 300mm 

(5) 

 

The shear strength of bars is similar to 

the equation provided for Vs in the ACI 

Regulations. Some researchers used the 

design method based on the Strut-and-

Tiefor for RC deep beams. In the Strut-and-

Tie method, it was assumed that 

compressive forces was are tolerated by 

concrete struts, while tensile forces were 

tolerated by steel bars (Pal and Deswal, 

2011).  

 

3. Experimental Database 

 

In the present study, 106 laboratory data 

were used to predict the shear strength of 

RC deep beams using ANFIS method with 

meta-heuristic algorithms. Data sets of RC 

deep beams include 19 data obtained from 

experiments on high strength RC beams 

impelimented by Tan et al. (1995), 52 data 

obtained from the results of study-related 

tests by Smith and Vantsiotis (1982), 35 

laboratory data obtained from the study of 

Kong et al. (1970). Hence, all the 

experimental database and the brief details 

database are presented in Tables 1 and 2, 

respectively.  

 
Table 1. Experimental database of RC deep beam 

a

d
 

L

d
 

w

d

b
 '

( )
c

f MPa 
h

 
v

 V ( kN ) 

0.27 2.15 4.2091 58.80 0 0.0048 675 

0.27 3.23 4.2091 51.60 0 0.0048 630 

0.27 4.3 4.2091 53.90 0 0.0048 640 

0.27 5.38 4.2091 57.30 0 0.0048 630 

0.54 2.15 4.2091 56.00 0 0.0048 468 

0.54 3.23 4.2091 47.00 0 0.0048 445 

0.54 4.3 4.2091 53.90 0 0.0048 500 

0.54 5.38 4.2091 53.00 0 0.0048 480 

0.81 2.15 4.2091 51.02 0 0.0048 403 

0.81 3.23 4.2091 44.00 0 0.0048 400 

1.08 2.15 4.2091 48.20 0 0.0048 270 

1.08 3.23 4.2091 44.10 0 0.0048 280 

1.08 4.3 4.2091 46.80 0 0.0048 290 

1.08 5.38 4.2091 48.00 0 0.0048 290 

1.62 3.23 4.2091 50.80 0 0.0048 220 

1.62 4.3 4.2091 44.50 0 0.0048 190 

1.62 5.38 4.2091 45.30 0 0.0048 173 

2.16 4.3 4.2091 41.10 0 0.0048 150 

2.16 5.38 4.2091 42.08 0 0.0048 107 

1 2.67 2.9902 20.50 0 0 140 

1 2.67 2.9902 20.90 0 0 136 

1 2.67 2.9902 18.70 0.0023 0.0028 161 

1 2.67 2.9902 18.00 0.004 0.0028 149 

1 2.67 2.9902 16.10 0.0068 0.0028 141 
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1 2.67 2.9902 20.60 0.0068 0.0028 171 

1 2.67 2.9902 21.10 0.0091 0.0028 184 

1 2.67 2.9902 21.70 0.0023 0.0063 175 

1 2.67 2.9902 19.80 0.0045 0.0063 171 

1 2.67 2.9902 20.30 0.0068 0.0063 172 

1 2.67 2.9902 19.10 0.0091 0.0063 162 

1 2.67 2.9902 18.10 0.0023 0.0125 161 

1 2.67 2.9902 19.20 0.0045 0.0125 173 

1 2.67 2.9902 20.80 0.0068 0.0125 179 

1 2.67 2.9902 19.90 0.0091 0.0125 168 

1.21 3.08 2.9902 21.70 0 0 149 

1.21 3.08 2.9902 22.10 0.0023 0.0024 148 

1.21 3.08 2.9902 20.10 0.0045 0.0024 144 

1.21 3.08 2.9902 20.80 0.0068 0.0024 141 

1.21 3.08 2.9902 19.50 0.0091 0.0024 154 

1.21 3.08 2.9902 19.20 0.0023 0.0042 129 

1.21 3.08 2.9902 19.00 0.0045 0.0042 131 

1.21 3.08 2.9902 17.50 0.0068 0.0042 126 

1.21 3.08 2.9902 19.80 0.0091 0.0042 145 

1.21 3.08 2.9902 16.20 0.0023 0.0063 131 

1.21 3.08 2.9902 20.40 0.0023 0.0077 159 

1.21 3.08 2.9902 19.00 0.0045 0.0077 159 

1.21 3.08 2.9902 19.20 0.068 0.0077 155 

1.21 3.08 2.9902 20.70 0.0091 0.0077 160 

1.21 3.08 2.9902 17.10 0.0023 0.0125 154 

1.5 3.67 2.9902 20.70 0 0 116 

1.5 3.67 2.9902 19.20 0.0023 0.0018 119 

1.5 3.67 2.9902 21.90 0.045 0.0018 124 

1.5 3.67 2.9902 22.70 0.0068 0.0018 131 

1.5 3.67 2.9902 21.80 0.0091 0.0018 123 

1.5 3.67 2.9902 19.90 0.0023 0.0031 124 

1.5 3.67 2.9902 19.20 0.0045 0.0031 104 

1.5 3.67 2.9902 19.30 0.0045 0.0031 116 

1.5 3.67 2.9902 20.40 0.0068 0.0031 125 

1.5 3.67 2.9902 20.80 0.0091 0.0031 124 

1.5 3.67 2.9902 21.00 0.0023 0.0056 141 

1.5 3.67 2.9902 16.60 0.0045 0.0056 125 

1.5 3.67 2.9902 18.30 0.0068 0.0056 128 

1.5 3.67 2.9902 19.00 0.0091 0.0056 137 

1.5 3.67 2.9902 19.60 0.0023 0.0077 147 

1.5 3.67 2.9902 18.60 0.0045 0.0063 129 

1.5 3.67 2.9902 19.20 0.0045 0.0077 153 

1.5 3.67 2.9902 18.50 0.0068 0.0077 153 

1.5 3.67 2.9902 21.20 0.0091 0.0077 160 

2.08 4.83 2.9902 19.50 0 0 74 

2.08 4.83 2.9902 16.10 0.0023 0.0042 88 

0.35 1.05 9.5263 21.50 0 0.00245 239 

0.43 1.28 7.8553 24.60 0 0.00245 224 

0.54 1.62 6.1842 21.20 0 0.00245 190 

0.74 2.22 4.5132 21.20 0 0.00245 168 

1.18 3.53 2.8421 21.70 0 0.00245 90 

0.35 1.05 9.5263 19.20 0 0.0086 249 

0.43 1.28 7.8553 18.60 0 0.0086 224 

0.54 1.62 6.1842 19.90 0 0.0086 216 

0.74 2.22 4.5132 22.80 0 0.0086 140 

1.18 3.53 2.8421 20.10 0 0.0086 100 

0.35 1.05 9.5263 22.60 0.0245 0 276 

0.54 1.62 6.1842 19.20 0.0245 0 208 

0.74 2.22 4.5132 21.90 0.0245 0 159 

1.18 3.53 2.8421 22.60 0.0245 0 87 
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0.35 1.05 9.5263 22.00 0.0086 0 242 

0.43 1.28 7.8553 21.00 0.0086 0 201 

0.54 1.62 6.1842 20.10 0.0086 0 181 

0.74 2.22 4.5132 22.00 0.0086 0 110 

1.18 3.53 2.8421 22.60 0.0086 0 96 

0.35 1.05 9.5263 18.60 0.0061 0.0061 240 

0.43 1.28 7.8553 19.20 0.0061 0.0061 208 

0.54 1.62 6.1842 20.10 0.0061 0.0061 173 

0.74 2.22 4.5132 21.90 0.0061 0.0061 127 

1.18 3.53 2.8421 22.60 0.0061 0.0061 78 

0.35 1.05 9.5263 26.10 0.005 0 308 

0.43 1.28 7.8553 25.10 0.0061 0 266 

0.54 1.62 6.1842 26.10 0.0077 0 25 

0.74 2.22 4.5132 26.10 0.0102 0 173 

1.18 3.53 2.8421 25.10 0.0153 0 99 

0.5 1.05 10.0263 25.10 0 0 253 

0.35 1.05 10.0263 26.10 0.0017 0 300 

0.35 1.05 10.0263 26.10 0.0034 0 260 

0.35 1.05 10.0263 21.30 0.0068 0 264 

0.35 1.05 10.0263 21.30 0.0085 0 297 

 
Table 2. Brief of the experimental database of RC deep beams studied in the present study 

Parameter Minimum Medium Maximum S.D 

Width of the beam (b), (mm)  76 94.84 110 13.547 

Effective depth (d), (mm) 216 401.57 762 108.465 

The span-to-depth ratio (a/d) 0.27 1.006 2.16 0.468 

Compressive stress of concrete ( )cf  , (MPa) 16.20 25.80 58.80 15.93 

Longitudinal reinforcement ratio ( )h  0.00 0.0058 0.068 0.91 

Shear Rebar Ratio ( )v  0.00 0.004 0.0125 0.32 

Ultimate shear strength (V), (kN) 25 201.48 675 2.15 

 

Thus, the shear strength was considered 

as the output data. The 28-day compressive 

strength of 15 × 30 US cylinder specimen, 

cross-section width, effective depth, beam 

length, shear span-to-depth beam ratio, as 

well as the percentage of longitudinal and 

transverse reinforcement were adopted as 

the input data. The geometric dimensions 

and how the beam is loaded are shown in 

Figure 1.  
 

 
Fig. 1. Geometric dimensions of a reinforced 

concrete deep beam 

 

4. Concept of ANFIS Model 
 

A Fuzzy Inference System (FIS) was 

proposed as a nonlinear mapping approach 

from the input space to the output space 

(Jang, 1993; Jang et al., 1996). ANFIS uses 

a Sugeno type fuzzy system in a 5-layer 

network for two x and y inputs and one f 

output. ANFIS can optimize the 

performance of the fuzzy model by 

adjusting a parameter in the membership 

performance. This model combines the 

learning capabilities of a neural network 

with fuzzy logic inference to enhance 

predictability. This system has been so far 

used in a wide range of engineering fields 

and has shown considerable accuracy in 

estimating and predicting various 

engineering phenomena.  

For simplicity a typical ANFIS shown in 

Figure 2 consists of two fuzzy if–then rules 

based on Takagi and Sugeno’s type (Jang et 

al., 1996): 
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𝑅𝑢𝑙𝑒1:If𝑥is𝐴1and𝑦is𝐵1,then𝑓1
= 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

𝑅𝑢𝑙𝑒2:If𝑥𝑖𝑠𝐴2and𝑦𝑖𝑠𝐵2,then𝑓2
= 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

(5) 

 

where A1, A2, B1, and B2: stand for the labels 

of the representation of Membership 

Functions (MFs) for x and y inputs. 

Moreover, pi, qi, and ri (i = 1, 2): refer to the 

variables of the output MFs (consequent 

variables). 

As seen in Figure 2, an overall structure 

of ANFIS has 2 constant square nodes and 

adaptive circle nodes whose variables 

would be altered over the training 

procedure. A hybrid learning algorithm of 

ANFIS would be applied via the MFs 

parameters of input variables and linear 

parameters of the output variables. Gradient 

Descent (GD) strategies would be used to 

optimize the above parameters. The 

resulting output of the defined network with 

1 output and 2 inputs with regard to these 

parameters may be computed in this way: 

 
 

𝑓 =∑�̄�𝑖𝑓𝑖 =

𝑖

∑ 𝑤𝑖𝑓𝑖
2
𝑖=1

∑ 𝑤𝑖
2
𝑖=1

,for𝑖 = 1,2 (7) 

𝑤𝑖 = 𝜇𝐴𝑖(𝑥) × 𝜇𝐵𝑖(𝑥)for𝑖 = 1,2 (8) 

 

where 𝑤𝑖: represents the firing strength of 

the rule i. 𝜇𝐴𝑖(𝑥) and 𝜇𝐵𝑖(𝑥): refer to the 

membership degrees of x and y in Ai and Bi. 

In ANFIS, membership function can be 

expressed by a number of the shape 

functions consisting of trapezoidal, 

triangular, generalized bell shaped and 

Gaussian functions. Sihag et al. (2017) 

shown that Gaussian membership function-

based ANFIS had better performance than 

the other membership function. Hence, 

Gaussian membership function is used in 

this study. Gaussian functions are defined 

as: 
 

𝜇𝐴𝑖(𝑥) =
1

1 + (
𝑥 − 𝑐𝑖
𝑎𝑖

)2
 (9) 

𝜇𝐵𝑖(𝑦) =
1

1 + (
𝑦 − 𝑑𝑖
𝑒𝑖

)2
 

(10) 

 

where {ai, ci} and {di, ei}: represent the 

premise variable set applied for adjusting 

the MF shape.  

 

5. Meta-Heuristic Algorithms  

 

5.1. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) 

algorithm has been designed on the basis of 

the inspiration provided by the social 

behaviors of animals, including insects 

swarming, fish schooling, and birds 

flocking (Kennedy et al., 2001). Kennedy 

and Eberhart (2001) proposed PSO 

technique for simulating the elegant 

motions of the bird swarms as a part of a 

social and cognitive research. The 

technique contains some particles which are 

randomly selected in the search spaces of 

optimization problem. All particles of the 

swarm represent one of the probable 

solutions for the problem of optimization. 

The ith particle in the tth iteration has a 

relationship to a velocity vector (𝑉𝑖
𝑡) and a 

position vector (𝑋𝑖
𝑡): 

 

 
Fig. 2. The architecture of the ANFIS model 
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𝑋𝑖
𝑡 = {𝑥𝑖1

𝑡 , 𝑥𝑖2
𝑡 , . . . , 𝑥𝑖𝐷

𝑡 } 
𝑉𝑖
𝑡 = {𝑣𝑖1

𝑡 , 𝑣𝑖2
𝑡 , . . . , 𝑣𝑖𝐷

𝑡 } 
(11) 

 

where D: refers to the volume of the 

solution space. As stated by researchers, the 

particles flying across the solution space, 

and its position would be updated with 

regard to the respective speed, global best 

position (gbest), and the best position 

particle (pbest) where swarms have met 

since the first iteration as: 
 

𝑉𝑖
𝑡+1 = 𝜔𝑡𝑉𝑖

𝑡 + 𝑐1𝑟1(pbest𝑖
𝑡 − 𝑋𝑖

𝑡)

+ 𝑐2𝑟2(gbest
𝑡 − 𝑋𝑖

𝑡) 
(12) 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1 (13) 

 

where 𝑟1 and 𝑟2: represent the uniform 

random sequences produced from intervals 

[0, 1]. 𝐶1 and 𝐶2: refer to the socio-cognitive 

scaling variables. 𝜔: is the inertia weight 

that controls the influence of the previous 

velocity. Some researchers suggested that 

socio-cognitive scaling variables of c1 and 

c2 must be chosen as c1 = c2 = 2 for allowing 

the product c1r1 or c2r2 to be possessed a 

mean of 1. PSO is sensitivity to ω variable 

that possibly declines with the numbers of 

the iterations as follows (Shi et al., 2011): 
 

max min

max

max

t
t

 
 

−
= −  (14) 

 

where 𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛: represent the 

highest and least values of ω. tmax: refers to 

the limit numbers of optimization iteration. 

Table 3 represents the values of controlling 

parameters of PSO which is used in this 

study. The values of the parameters are 

selected based on a trial and error process. 
 

Table 3. The value of controlling parameters for 

PSO algorithm 
Value Parameter 

40 Number of population 

1000 Maximum number of iterations 

1 Ideal weight 

0.99 Ideal slope to weight ratio 

1 Private learning coefficient 

2 Public learning coefficient 

 

 

5.2. ACO for Continuous Domains 

(ACOR) 

First, Ant Colony Optimization (ACO) 

was proposed for solving the discrete 

problems of optimization (Socha and 

Dorigo, 2008). This algorithm has been 

proposed based on the inspiration via 

investigating the behaviours of the real ants 

for their food source. For finding an optimal 

solution for problem with continuous 

domains, ACO for continuous domains 

(ACOR) is implemented based on the basis 

of  two stages (Socha and Dorigo, 2008). At 

the first stage, a number of k artificial ants 

make solutions for problem via taking 

samples of a Probability Density Function 

(PDF) that is extracted from the pheromone 

data. At the second stage, the solutions 

would be applied for modifying the 

pheromone so that the construction 

probability of high-quality solutions would 

be enhanced. In the ACOR procedure, the 

number of the solutions memorized in the 

archive P are adjusted at M; that is, 𝑋𝑗 =

{𝑥1
𝑗
, 𝑥2
𝑗
, . . . , 𝑥𝑑

𝑗
}𝑇 , 𝑗 = 1, . . . , 𝑀. The solutions 

are consistently sorted with regard to their 

value of the objective function; that is: 
 

𝑓(𝑋1) ≤ 𝑓(𝑋2) ≤. . . ≤ 𝑓(𝑋𝑀) (15) 

 

For each variable 𝑥𝑖(𝑖 = 1, . . . , 𝑑), T: is 

used to derive the Gaussian kernel PDF as: 

 

𝐺𝑖(𝑥) =∑𝜁𝑗
1

𝜎𝑖
𝑗
√2𝜋

𝑀

𝑗=1

𝑒𝑥𝑝(

−
(𝑥 − 𝜇𝑖

𝑗
)2

2𝜎𝑖
𝑗2

),−∞

< 𝑥 < +∞ 

(16) 

 

Furthermore, this kernel is used for 

guiding the ants in the respective search 

procedure. The weight 𝜁𝑗: is computed 

based on: 

 

𝜁𝑗 ∝
1

𝛾𝑀√2𝜋
𝑒𝑥𝑝( −

(𝑗 − 1)2

2𝛾2𝑀2
), 𝑗

= 1, . . . , 𝑀 

(17) 

where 𝛾: is a parameter of the algorithm. 
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The small value of 𝛾 strongly causes the 

best solutions, and for its large value the 

probability becomes more uniform. The 

value of the ith variable in the jth solution is 

chosen as the mean, i.e. 𝜇𝑖
𝑗
= 𝑥𝑖

𝑗
. The 

standard deviation is obtained using the 

average distance of the other solutions from 

the jth solution which is multiplied by a 

parameter 𝜌: 
 

𝜎𝑖
𝑗
=

𝜌

𝑀 − 1
∑|𝑥𝑖

𝑚 − 𝑥𝑖
𝑗
|

𝑀

𝑚=1

 (18) 

 

The lower the value of ρ the higher the 

convergence speed of the algorithm. 

At each iteration of ACOR, each artificial 

ant performs d steps from i = 1 to d. By 

sampling the PDF Gi(x), the kth ant at step i 

is used for providing a partial solution of the 

optimization problem. By reaching the steps 

to the value d, a new solution, 𝑋𝑘 =

{𝑥1
𝑘, 𝑥2

𝑘 , . ⥂. . , 𝑥𝑑
𝑘}, is constructed. All k 

solutions are added to the archive T, and the 

same number of the worst solutions is 

removed from it. Table 4 represents the 

values of the parameters of the ACOR 

algorithm. The values of the parameters 

were selected based on a trial and error 

process. 

 
Table 4. The value of the parameters of the ACOR 

algorithm 
Value Parameter 

20 Number of population 

200 Maximum number of iterations 

0.5 Resonance coefficient 

1 Deviation distance ratio 

  

5.3. Real-Coded Ga with SBX Crossover 

According to Gen and Cheng (2000), 

Genetic Algorithms (GAs) commonly 

contain 5 elements (Gen and Cheng, 2000): 

• A genetic expression of the problem 

solutions; 

• An operator to establish an early 

population of the solutions; 

• A mechanism to evaluate the function 

rating solution with regard to its fitness; 

• A mechanism to select parent and 

genetic operators altering the genetic 

compositions of the children over the 

reproduction process; 

• The variables affecting GAs. 

Real-coded GA (RCGA) was proposed 

as one of the acceptable methods for 

optimization problems with continuous 

variables. Real number encoding has more 

acceptable performance compared to the 

binary or gray encoding for such problems. 

Conventionally, the tournament selection in 

RCGA is used as a selection operator. 

Moreover, polynomial mutation and 

Simulated Binary Crossover (SBX) are 

chosen as other operators of RCGA. 

In the SBX crossover operator, two 

children solutions is established from two 

parents (Subbaraj et al., 2011). Therefore, a 

random number, ui ∈ [0.1], is initially 

selected, and 𝛽𝑞𝑖: is computed as follows: 

 

𝛽𝑞𝑖 =

{
 
 

 
 (2𝑢𝑖)

1
𝜂𝑐+1𝑢𝑖 ≤ 0.5

(
1

2(1 − 𝑢𝑖)
)

1
𝜂𝑐+1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (19) 

 

where 𝜂𝑐: is the crossover index. Moreover, 

a spread factor 𝛽𝑞𝑖: is described as the 

absolute difference ratio in the offspring 

values to that of the parents. Afterwards, 

two children solutions are achieved as: 

 

𝑋𝑖
(1,𝑡+1) = 0.5 [(1 + 𝛽𝑞𝑖)𝑋𝑖

(1+𝑡)

+ (1 − 𝛽𝑞𝑖)𝑋𝑖
(2+𝑡)

] 

𝑋𝑖
(2,𝑡+1) = 0.5 [(1 − 𝛽𝑞𝑖)𝑋𝑖

(1+𝑡)

+ (1 + 𝛽𝑞𝑖)𝑋𝑖
(2+𝑡)

] 

(20) 

 

In the next stage of RCGA, new 

produced offspring experiences polynomial 

mutation operation. Moreover, instead of a 

normal distribution, the distribution of 

probability may be a polynomial function. 

This new offspring 𝑌𝑖
(1,𝑡+1)

 would be 

estimated as follow (Deb, 2011): 

 

𝑌𝑖
(1,𝑡+1) = 𝑋𝑖

(1,𝑡+1) + (𝑋𝑖
𝑈 − 𝑋𝑖

𝐿)𝛿𝑖 (21) 

 

where 𝑋𝑖
𝑈 and 𝑋𝑖

𝐿: represent the upper and 
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lower limit values. The parameter 𝛿𝑖: is 

achieved from the polynomial probability 

distribution. 

 

𝑃(𝛿) = 0.5(𝜂𝑚 + 1)(1 − |𝛿|)
𝜂𝑚 (22) 

 

Table 5 represents the values of the 

parameters of RCGA. The value of the 

parameters was selected based on a trial and 

error process. 

 
Table 5. Parameters related to GA algorithm 

Value Parameter 

100 Number of population 

500 Maximum number of iterations 

0.5 Mutation percentage 

0.7 Period percentage 

0.1 Mutation rate 

8 Selection pressure 

0.2 Gamma 

 

5.4. Differential Evolution Algorithm 

Differential Evolution (DE) algorithm 

has been proposed by Storn and Price 

(1997). DE is considered as one of the 

stochastic optimization algorithms, which 

applies vector difference for perturbing the 

vector populations (Storn and Price, 1997). 

At initial stages, DE begins with a 

population containing N n-dimensional 

vectors as: 

 

𝑋𝑖(𝑡) = {𝑥𝑖
1, 𝑥𝑖

2, . . . , 𝑥𝑖
𝑛}, 𝑖

= 1,2, . . . , 𝑁 
(23) 

 

In this method, the vectors is randomly 

chosen on the intervals a [𝑋𝐿𝑖, 𝑋𝑈𝑖], 𝑖 =

1,2, . . . , 𝑛. Furthermore, e vectors are 

updated via mutation, crossover, and 

selection operations during the DE 

procedure.  

Mutation operation: Based on the 

operation, three vectors Xr1(t), Xr2(t), and 

Xr3(t) are randomly selected for each certain 

Xi(t) vector at iteration t. However, r1, r2 

and r3 indicators should be different. 

Consequently, the weighted differences of 

two vectors are added to the 3rd vector for 

forming a mutant vector �̄�𝑖(𝑡) = {
�̄�𝑖
1, �̄�𝑖

2, . . . , �̄�𝑖
𝑛}: 

 

�̄�𝑖(𝑡) = 𝑋𝑟1(𝑡) + 𝐹(𝑋𝑟2(𝑡) − 𝑋𝑟3(𝑡)) (24) 

 

Crossover operation: In this stage, the 

trial vector 𝑼𝒊(𝒕) is designed through the 

components of the target vector, 𝑿𝒊(𝒕) and 

components of the mutant vector �̄�𝑖(𝑡) 
through a binomial crossover operation: 

 

𝑢𝑖
𝑗
(𝑡)

= {
�̄�𝑖
𝑗
(𝑡) 𝑖𝑓 𝑟 𝑎𝑛𝑑𝑗 ≤ 𝐶𝑟𝑜𝑟𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑖
𝑗
(𝑡)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(25) 

 

where jrand: represents a random integer in a 

range between 1 and n. randj: refer to the ith 

assessment of an equal random number 

generator and 𝐶𝑟 ∈ (0,1). The j = jrand 

condition makes sure that the trial vector 

Ui(t) gets not less than 1 component from its 

mutant vector �̄�𝑖(𝑡). 

Selection operation: By the comparison 

of the trial vector Ui(t) with the target vector 

Xi(t), the solution with the lowest objective 

function value is survived into the next 

generation: 

 
𝑋𝑖(𝑡 + 1)

= {
𝑈𝑖(𝑡) 𝑖𝑓 𝑓𝑖𝑡(𝑈𝑖(𝑡)) ≤ 𝑓𝑖𝑡(𝑋𝑖(𝑡))
𝑋𝑖(𝑡)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(26) 

 

It is noted that the DE method is 

implemented and continued using the 

mutation, crossover and selection 

operations until some criterion of the 

method stop is reached. In addition, the 

control parameters of the DE method 

contain the population size, N, the scaling 

factor, F, and the crossover constant, Cr. 

Table 6 represents the values of the 

parameters of the DE algorithm. The values 

of the parameters were selected based on a 

trial and error process. 
 

Table 6. The value of the parameters of the DE 

algorithm 
Value Parameter 

20 Number of population 

200 Maximum number of iterations 

0.2 Lowest scale coefficient 

0.8 Highest scale coefficient 

0.1 Crossover rate 

 



Civil Engineering Infrastructures Journal 2023, 56(1): 137-157 147 

 

6. The Proposed Intelligent ANFIS 

Technique 
 

As presented in previous section, the 

ANFIS technique uses the advantages of 

both fuzzy systems and neural networks. 

Nonetheless, training the ANFIS model are 

considered as one of the major challenges 

for the real problems. Moreover, the GD 

strategies are used as the training techniques 

of ANFIS, which are known as local search 

strategies, and their functions commonly 

are contingent on the variables initial 

values. As it is possible to consider the 

optimum design of fuzzy systems (FSs) in 

the framework of an optimization problem, 

numerous authors suggested meta-heuristic 

strategies, including Genetic Algorithms 

(Jang, 1993; Savrun and İnci, 2021; Zhang, 

2020) and PSO (Khoshbin et al., 2016; Lin 

et al., 2017) for designing optimum FSs. It 

is widely accepted that the accuracy and 

function of the ANFIS model is dependent 

on the premise variables and consequent 

variables that should be taught. For 

improving and increasing the ANFIS model 

accuracy in the present study, the PSO, 

ACOR, RCGA and DE methods were used 

for finding the premise variables {ai, bi, ci}. 

These parameters are adopted as the design 

variables of the optimization problem. In 

addition, the root mean squared error 

(RMSE) obtained based on actual output 

and desired outputs is considered as the 

objective function, which can be defined as 

follows. 
 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑝𝑖)2
𝑛
𝑖=1

𝑛
 (27) 

 

where y and 𝑝: stand for the measurement 

values and the predicted values. n: refers to 

the total numbers of the test data. Indeed, 

the errors variation in the suggested model 

may be calculated by RMSE, which would 

be too helpful in the case of undesirability 

of great errors.  

In a conventional fuzzy inference 

system, the number of fuzzy rules is 

assigned by the user’s experience. In 

ANFIS simulation, the number of MFs 

assigned to each input variable of problem 

is also selected by trial and error procedure. 

Therefore the Subtractive Algorithm (SA) 

(Chiu, 1997) is used for finding the 

optimum number of the fuzzy rules. The 

fuzzy inference system for the antecedents 

and consequents is also constructed by the 

fuzzy c-means (FCM) approach (Bezdek, 

1981). The flowchart of the proposed 

ANFIS incorporating meta-heuristic 

algorithms is depicted in Figure 3. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Flowchart of the proposed ANFIS method with optimization methods 

Generate Fuzzy Inference 

System (FIS) structure 

Utilize Fuzzy C-Means 

Train the ANFIS model  

Find premise parameters by 

optimization method Convergence? 

Training data 

Finding the optimal number 

of the clusters (nc) by SA 

End 

No 

Yes 
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7. Numerical Results 

 

In this study, a database containing 106 

samples of RC deep beams were used to 

develop ANFIS with meta-heuristic 

algorithms (i.e. PSO, GA, ACO and DE) for 

the prediction of the shear strength of RC 

deep beams. For producing the prediction 

model, it is required that database is 

randomly divided into two sets of training 

and testing data. Simple procedures were 

proposed for splitting the data into training 

and testing data. These methods do not 

express the performance of the model well. 

Because each of them is highly dependent 

on data which is selected for training and 

testing data. This dependence sometimes 

results in higher model accuracy, and the 

other times in lower accuracy. To solve this 

problem and obtain the high accuracy of the 

proposed model, k-fold validation method 

was used. In this validation method, the 

number of partitions is usually proportional 

to the number of data points. By selecting k 

data points, it must be ensured that the 

number of data points in the training subset 

and the validation subset can contain 

proportional variation and show the same 

distribution. In this study, 90% of the data 

is used as the proportion of the training 

subsets and 10% for the validation subsets, 

which can be obtained by performing the 

ten-digit validation method to ensure that all 

subsets have the same distribution.  

Using the cross-validation approach, the 

training data were randomly grouped into 

ten unique cross-subsets. In each iteration, 

one subset was used for the validation 

process and not another subset for the 

training process. Thus, each set of data is 

used at least once in both the training and 

validation phases. In the present study, the 

ten-fold cross-validation method (k = 10) 

was used, each set was trained ten times in 

the optimization process of parameters. 

Therefore, ten different values of the mean 

validation error for the objective function 

were obtained. Thus, the average of the 

results obtained from these ten subsets 

represents a useful method for predicting 

the overall performance of the ANFIS, 

ANFIS-GA, ANFIS-PSO, ANFIS-ACO 

and ANFIS-DE models. 

It is noted that the values of the 

parameters presented in Tables 3 to 6 were 

selected based on a trial and error process. 

In fact, first, the different combinations of 

the values of the parameters were 

considered. Then, the optimization method 

was implemented for each combination. 

Thus, the combination with the minimum 

objective function is considered as the best 

combination of the values of the 

parameters. 

 

7.1. Scaling and Dividing Database 

For assessing the effectiveness and 

accuracy of the proposed ANFIS 

incorporating meta-heuristic algorithms, 

the values of the input variables were 

scaled. For this purpose, the values of the 

input variables were normalized between 

0.2 and 0.8 and before dividing database as 

follows. 

 

�̄�𝑖 = 𝑏1
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑖𝑛𝑚𝑎𝑥 + 𝑏2
 (28) 

 

where �̄�𝑖, xmax and xmin: are the normalized, 

maximum and minimum values of the input 

variables, respectively. In this study, b1 and 

b2: were assumed to be equal to 0.6 and 0.2 

based on the study of Khatibinia and 

Mohammadizadeh (2017), respectively. 

Then, the database was randomly divided 

into training and testing sets including 75 

and 32 samples, respectively. 

 

7.2. Results of the Proposed ANFIS 

Model 

To explore and evaluate the accuracy of 

the proposed ANFIS with meta-heuristic in 

estimating the shear strength of RC beams, 

different statistical criterions were utilized. 

The second Root Mean Square Error 

(RMSE) (Eq. (27)), coefficient of 

determination (R2) and Absolute Mean 

Error (MAE) were considered as the 

statistical criteria. These MAE and R2 are 

defined as (Kaveh et al., 2017): 
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𝑀𝐴𝐸 =
∑ [𝑝𝑖 − 𝑦𝑖]
𝑛
𝑖=1

𝑛
 (29) 

𝑅2 =
(∑ (𝑦𝑖 − 𝑦𝑎𝑣𝑒)

𝑛
𝑖=1 (𝑝𝑖 − 𝑝𝑎𝑣𝑒))

2

∑ (𝑦𝑖 − 𝑦𝑎𝑣𝑒)
2∑ (𝑝𝑖 − 𝑝𝑎𝑣𝑒)

2𝑛
𝑖=1

𝑛
𝑖=1

 

 (30) 

                                                                                                                               

where 𝑝𝑖: is the predicted value and yi: is 

the real value for n samples. 𝑦𝑎𝑣𝑒 and 𝑝𝑎𝑣𝑒: 

are the mean of the measurement and 

predicted values in the data samples. 

According to the statistical criteria, the 

statistical results ANFIS, ANFIS-GA, 

ANFIS-PSO, ANFIS-ACO and ANFIS-DE 

were presented in Table 7 for testing phase 

and were compared with those of ACI, 

CSA, ANN and GEP models.  

As can be seen from Table 7, the 

proposed ANFIS model with meta-heuristic 

methods predicts the shear strength 

parameter with much higher accuracy than 

other developed models. The predicted 

shear strength values obtained from ANFIS, 

ANFIS-GA, ANFIS-PSO, ANFIS-ACO 

and ANFIS-DE models are presented in 

Figures 4a to 4e, in terms of the shear 

strength obtained from the experimental 

results.  

 
Table 7. Comparison of the statistical results using different models for testing phase 

MAE (KN) R2 RMSE (KN) Reference Model 

113.54 0.870 140.62 (Gandomi et al., 2013) ACI 

91.34 0.820 114.70 (Gandomi et al., 2013) CSA 

30.28 0.950 42.27 (Gandomi et al., 2013) ANN 

40.99 0.930 51.57 (Gandomi et al., 2013) GEP 

40.284 0.849 38.252 Present study ANFIS 

23.931 0.944 31.357 Present study ANFIS-GA 

26.429 0.925 37.095 Present study ANFISA-ACO 

20.540 0.885 36.058 Present study ANFIS-PSO 

24.487 0.914 25.968 Present study ANFIS-DE 

 

  
(a) ANFIS (RMSE = 40.35 kN) (b) ANFIS-PSO (RMSE = 36.06kN) 

  

  
(c)  ANFIS-GA (RMSE = 31.35 kN) (d) ANFIS-ACO algorithm (RMSE = 37.095 kN) 
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(e) ANFIS-DE (RMSE = 25.96 kN) 

Fig. 4. Experimental shear strength results in terms of predicted shear strength 
 

The results show that the shear strength 

predicted by the proposed ANFIS with 

meta-heuristic algorithms is in good 

agreement with the shear strength obtained 

from the experimental results. In order to 

clarify an overall comparison, the statistical 

criteria used in testing phase were combined 

to create a normalized Reference Index (RI) 

as follows (Chou et al., 2011):  
 

𝑅𝐼 =
𝑅𝑀𝑆𝐸 +𝑀𝐴𝐸

2
 (31) 

 

where 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸: are the normalized 

RMSE and MAE, respectively.  

Table 8 shows the results based on RI for 

the proposed method, the original ANFIS, 

ANN, GEP, ACI and CSA techniques for 

comparison purposes. Based on the value RI 

obtained in the testing process, the proposed 

method outperforms the other techniques. It 

can also be observed from Table 8 that the 

ANFIS-DE model can be considered as an 

efficient technique with high accuracy in 

comparison with the other techniques. 

 

7.3. Influence of Parameters on the 

Ratio of Predicted to Experimental 

Shear Strength 
 

7.3.1. Beam Span Length to Effective 

Depth (L⁄d) 

The changes of the ratio of the 

experimental shear strength to the predicted 

shear strength (Vexp/Vpre) using ANFIS, 

ANFIS-GA, ANFIS-PSO, ANFIS-ACO 

and ANFIS-DE models in terms of different 

ratios of 𝐿 𝑑⁄  are shown in Figures 5a to 5e, 

respectively.  
 

Table 8. Performance measurement results of various prediction techniques 
RI MAE  RMSE  Reference Model 

0.00 0.00 0.00 (Gandomi et al., 2013) ACI 

0.15 0.23 0.24 (Gandomi et al., 2013) CSA 

0.58 0.86 0.90 (Gandomi et al., 2013) ANN 

0.52 0.78 0.78 (Gandomi et al., 2013) GEP 

0.56 0.89 0.79 Present study ANFIS 

0.64 0.95 0.96 Present study ANFIS-GA 

0.61 0.90 0.94 Present study ANFISA-ACO 

0.64 0.91 1.00 Present study ANFIS-PSO 

0.65 1.00 0.96 Present study ANFIS-DE 
 

  
(a) ANFIS (b) ANFIS-PSO 
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(c) ANFIS-GA (d) ANFIS-ACO 

  

 
(e) ANFIS-DE 

Fig. 5. The changes of the ratio of the experimental shear strength to the predicted shear strength in term of L⁄d 

parameter 
 

In other words, these figures show the 

accuracy of the proposed methods with 

respect to the geometrical properties of the 

examined beams. It can be seen from 

Figures 5c and 5e that the values of 

Vexp/Vpre for the ANFIS-GA and ANFIS-

DE models have higher accuracy than that 

of the other models. It can also be concluded 

that the regardless of the geometrical type 

of the deep beam, the prediction of shear 

strength in these two models shows the high 

accurate for the different types of deep 

beams with arbitrary geometry. While 

ANFIS-PSO, and ANFIS-ACO models 

only have high accuracy in predicting shear 

strength of the beam in a range of 2 <
𝐿 𝑑⁄ < 4. 

 

7.3.2. Shear Span to Effective Depth 

(a⁄d) 

The changes of Vexp/Vpre obtained from 

ANFIS, ANFIS-PSO, ANFIS-GA, ANFIS-

ACO and ANFIS-DE are shown in terms of 

different a/d ratios in Figures 6a to 6e, 

respectively. The results of these figures 

show that the values of Vexp/Vpre are more 

accurate in the ANFIS-GA and ANFIS-DE 

models and have less dispersion than those 

of the other examined models.  

 

  
(a) ANFIS (b) ANFIS-PSO 



152  Mohammadizadeh et al. 

 

  

(c) ANFIS-GA (d) ANFIS-ACO 

 

 
(e) ANFIS-DE 

Fig. 6. The changes in the ratio of experimental shear strength to predicted shear strength in terms of 𝑎 𝑑⁄  

parameter 

 

7.3.3. Compressive Strength of Concrete 

The changes of Vexp/Vpre in terms of the 

compressive strength values (28-day US 

Cylinder specimen) for different models of 

ANFIS, ANFIS-GA, ANFIS-PSO, ANFIS-

ACO and ANFIS-DE are presented in 

Figures 7a to 7e, respectively. The 

compressive strength of concrete is 

considered as an import parameter in the 

design of RC beams. As can be seen from 

Figure 7e, the prediction of shear strength 

with the ANFIS-DE method is less affected 

by the changes in the compressive strength 

of concrete and has higher accuracy than the 

other methods. Thus, the ANFIS-DE 

method shows high accuracy for a wide 

range of concrete compressive strengths. 

 

  
(a) ANFIS (b) ANFIS-PSO 

  

  
(c)  ANFIS-GA (d) ANFIS-ACO 
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(e) ANFIS-DE 

Fig. 7. The changes in the ratio of the experimental shear strength to the predicted shear strength in terms of 𝑓𝑐
′ 

 

7.3.4. Longitudinal Reinforcement 

Percentage in Deep Beams 

The changes of Vexp/Vpre for RC deep 

beams obtained from ANFIS, ANFIS-PSO, 

ANFIS-GA, ANFIS-ACO and ANFIS-DE 

models in term of the longitudinal 

reinforcement percentage are shown in 

Figures 8a to 8e, respectively. The results 

show that the values of Vexp/Vpre are closer 

to 1 in the ANFIS-GA and ANFIS-DE 

models. The higher accuracy is more 

pronounced in predicting the shear strength 

in term of longitudinal rebar percentage 

between 0.2 and 1%. These figures also 

show that ANFIS model has the highest 

data dispersion. Therefore, it can be seen 

from Figures 8c and 8e that for the 

prediction of the shear strength of deep 

beam, using ANFIS-GA, ANFIS-DE, 

ANFIS methods have more accurate. 

 

  
(a) ANFIS (b) ANFIS-PSO 

  

  
(c)  ANFIS-GA (d) ANFIS-ACO 

 

 
(e) ANFIS-DE 

Fig. 8. The changes in the ratio of experimental shear strength to predicted shear strength in terms of the 

longitudinal rebar 
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7.3.5. Shear Reinforcement Percentage 

in Deep Beams 

The changes of Vexp/Vpre obtained from 

ANFIS, ANFIS-PSO, ANFIS-GA, ANFIS-

ACO and ANFIS-DE models in term of the 

shear reinforcement percentage of RC deep 

beams are shown in Figures 9a to 9e, 

respectively. The results show that the 

values of Vexp/Vpre in ANFIS-GA and 

ANFIS-DE models are closer to 1 than the 

other models, and have high accurate. The 

higher accuracy is more evident in the 

prediction of the shear strength in term of 

shear reinforcement percentage in a range 

of 0.3 to 0.6 percent. Figure 9a also shows 

that the ANFIS model has the highest data 

dispersion. Therefore, in the prediction of 

the shear strength of deep beam in the 

presence of the shear reinforcement 

percentage, ANFIS-GA, ANFIS-DE and 

ANFIS methods can lead to higher 

accuracy. As a general conclusion, it can be 

expressed that ANFIS-GA and ANFIS-DE 

models give the best results for estimating 

the shear strength of RC deep beam with 

shear reinforcement ratio of 0.3 to 1.2%. 

 

 
 

(a) ANFIS (b) ANFIS-PSO 
  

  
(c)  ANFIS-GA (d) ANFIS-ACO 

 

 
(e) ANFIS-DE 

Fig. 9. The changes in the ratio of experimental shear strength to predicted shear strength in terms of the shear 

reinforcement percentage in deep beam 
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8. Conclusions 

 

This study developed an ANFIS with meta-

heuristic methods to predict the shear 

strength of RC deep beams. In the proposed 

approach, the meta-heuristic methods were 

employed to find the optimal parameters for 

membership functions and fuzzy rules in 

the ANFIS model which can generate a 

model for the shear strength of RC deep 

beams with high accuracy. The results 

reveals that the ANFIS method with meta-

heuristic algorithms, as a powerful 

computational tool, can be used to analyze 

the complex relationships between different 

parameters in predicting shear strength of 

RC deep beams. The proposed  ANFIS 

methods had better performance than the 

conventional ANFIS tuned based on the 

gradient  decent approach. This efficient 

performance was obtained based on the 

stronger ability of the global search of the 

meta-heuristic algorithms. The comparison 

of these methods and the Strut-and-Tie 

method as well as the ACI approaches 

shows that the accuracy of the proposed 

ANFIS models is high. Furthermore, the 

results demonstrate that the ANFIS with 

meta-heuristic algorithms can be used as an 

alternative method to predict the shear 

strength of RC deep beams in comparison 

of ANN, GEP and other empirical 

approaches. The parametric studies show 

that shear strength of deep beams increases 

with the increase of concrete strength, and 

decreases with the increase of shear span to 

effective depth ratio. The results also show 

that among the different meta-heuristic 

methods, the DE method has the higher 

accuracy than other methods.  

Although the computational cost of the 

proposed ANFIS method is higher than that 

for the conventional ANFIS. In future 

research, other optimization techniques 

may be developed to replace the GA, PSO, 

ACO and DE techniques used in this study 

for further comparison. It is also noted that 

the proposed ANFIS model considered in 

this study can certainly be used to 

accurately predict the shear strength of 

ordinary beams. However, due to the fact 

that the mechanism of ultimate fracture of 

ordinary beams is different from deep 

beams. Hence, for predicting the shear 

strength of ordinary beams, the database of 

the same beams should be used. 
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