Meyerhof, G.G. (1963). "Some recent research on the bearing capacity of foundations", Canadian Geotechnical Journal, 1(1), 16-26.
Padmini, D., Ilamparuthi, K., and Sudheer, K. (2008). "Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models", Computers and Geotechnics, 35(1), 33-46.
Samui, P. (2012). "Application of statistical learning algorithms to ultimate bearing capacity of shallow foundation on cohesionless soil", International Journal for Numerical and Analytical Methods in Geomechanics, 36(1), 100-110.
Shahin, M.A., Maier, H.R. and Jaksa, M.B. (2004). "Data division for developing neural networks applied to geotechnical engineering", Journal of Computing in Civil Engineering, 18(2), 105-114.
Shahnazari, H. and Tutunchian, M.A. (2012). "Prediction of ultimate bearing capacity of shallow foundations on cohesionless soils: An evolutionary approach", KSCE Journal of Civil Engineering, 16(6), 950-957.
Tatsuoka, F., Okahara, M., Tanaka, T., Tani, K., Morimoto, T. and Siddiquee, M. (1991). "Progressive failure and particle size effect in bearing capacity of a footing on sand", Proceedings of Geotechnic Engrgineering Congress, ASCE Geotechnical Special Publication, 788-802.
Terzaghi, K. (1943). Theoretical soil mechanics, John Wiley & Sons, New York.
Tsai, H.-C., Tyan, Y.-Y., Wu, Y.-W. and Lin, Y.-H. (2013). "Determining ultimate bearing capacity of shallow foundations using a genetic programming system", Neural Computing and Applications, 23(7-8), 2073-2084.
Vesic, A.S. (1974). "Analysis of ultimate loads of shallow foundations", International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 11(11), A230, Pergamon.
Witten, I.H. and Frank, E. (2005). Data mining: Practical machine learning tools and techniques, Morgan Kaufmann.
Yamaguchi, H., Kimura, T. and Fujii, N. (1977). "On the scale effect of footings in dense sand", Proceedings of the 9th International Conference on Soil Mechanism and Foundation Engineering, 795-798.