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ABSTRACT: Determining the ultimate bearing capacity (UBC) is vital for design of shallow 
foundations. Recently, soft computing methods (i.e. artificial neural networks and support 
vector machines) have been used for this purpose. In this paper, Random Forest (RF) is 
utilized as a tree-based ensemble classifier for predicting the UBC of shallow foundations on 
cohesionless soils. The inputs of model are width of footing (B), depth of footing (D), footing 
geometry (L/B), unit weight of sand (γ) and internal friction angle (ϕ). A set of 112 load tests 
data were used to calibrate and test the developed RF-based model. The used data set consists 
of 47 full-scale observations and 65 small-scale laboratory footing load tests. To demonstrate 
the efficiency of proposed RF-based model, the results are compared with some popular 
classical formulas that are most commonly used for determining the UBC. The results show 
the efficiency and capabilities of the proposed RF-based model as a practical tool in 
evaluating the UBC of shallow foundations in a fast and accurate way. 
 
Keywords: Artificial Intelligence, Decision Tree, Random Forest (RF), Shallow 
Foundations, Ultimate Bearing Capacity. 

 
 
INTRODUCTION 

 
Since the Ultimate Bearing Capacity (UBC) 
of shallow foundations plays a crucial role in 
design of many structures of small to medium 
size, it has always been interesting for 
geotechnical engineers. A Shallow 
foundation is a load carrying structure with 
depth-to-width ratio less than or equal to four. 
Terzaghi (1943) was the first researcher to 
propose a theory for estimating the UBC of 
shallow foundations. After Terzaghi, many 

researchers such as Meyerhof (1963), Hansen 
(1970) and Vesic (1974) have offered 
theories to estimate the UBC.  

Models are mostly validated using the 
model-scale footing test. Several studies have 
focused on how to reduce the scale effects in 
extrapolation the experimental results to full-
scale footings (e.g. De Beer, 1965; 
Yamaguchi et al., 1977). Tatsuoka, et al. 
(1991) focused on how the UBC is affected 
by particle size in model-scale footing tests. 
Results of large-scale footing tests on dense 
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sand indicate that the shearing strains are 
considerably varies along the slip line. 
Therefore, the bearing capacity formulas 
where using the maximum value of friction 
angle, 𝜙𝜙 𝑚𝑚𝑚𝑚𝑚𝑚 , are generally overestimate the 
bearing capacities of prototype (Padmini et 
al., 2008). Therefore, the actual model-scale 
footing test results produced different values 
than theoretical equations and special 
consideration should be used when applying 
model-scale footing test results to the 
behavior of full-scale foundations. For this 
reason, an alternative method is required to 
ensure better estimates of actual bearing 
capacity. 

Intelligent systems are usually used to 
model complex relationships between inputs 
and outputs or find patterns in available data. 
Artificial intelligence (AI) based methods are 
able to capture the inherent nonlinearity and 
complex interaction between the involved 
variables of the problem of UBC. These 
methods can be trained to learn the 
relationship between the mechanical 
properties of soil and foundation geometry 
with the foundation bearing capacity, 
requiring no prior knowledge of the form of 
the relationship. Recently, to tackle the 
problem of UBC of shallow foundations, 
different types of AI-based methods have 
been employed by different researchers. 
Artificial Neural Network (ANN); Fuzzy 
Inference System (FIS), Adaptive Neuro 
Fuzzy Inference System (ANFIS), Ant 
Colony Optimization (ACO), Genetic 
Programming (GP), Weighted Genetic 
Programming (WGP), Soft-Computing 
Polynomials (SCP), Support Vector Machine 
(SVM) and Relevance Vector Machine 
(RVM) have been successfully adopted for 
the estimating the UBC of shallow 
foundations on soil (Kalinli et al., 2011; 
Padmini et al., 2008; Samui, 2012; 
Shahnazari and Tutunchian 2012; Tsai et al., 
2013). These studies all agreed that soft 
computing approaches are more accurate 

compared to analytical formulas. However, 
these methods are not very transparent and 
also the modeling process is complicated. 
Most AI-based models are black box models 
where the relationship between input and 
output parameters are not accessible to the 
users and the models usually require an 
extensive trial-and-error procedure for setting 
the model parameters (Hassanlourad et al., 
2014).  

In this paper a novel AI-based method is 
proposed for prediction of UBC of shallow 
foundations on cohesionless soils using 
Random Forests (RF). RF is an 
straightforward ensemble learning technique 
developed by Breiman (2001) where utilizes 
a combination of a large set of decision trees 
(DTs) for approximation of complex 
nonlinear systems. In the last decade, there 
has been a growing trend in the use of 
decision tree algorithms such as C4.5 
decision tree and Classification and 
Regression Tree (CART) for the modeling 
and approximation of complex nonlinear 
systems (Ardakani and Kohestani, 2015; 
Barzegari et al., 2015) 

RFs have been frequently used in both 
regression and classifier form (Kohestani et 
al., 2015; Kohestani et al., 2016). However, 
in this study for the first time the RF is 
utilized for predicting the UBC of shallow 
foundations on cohesionless soils. To 
demonstrate the efficiency of proposed RF-
based model, the results are compared with 
some popular classical formulas that are most 
commonly used for determining the UBC.   
 
Decision Trees and Random Forest 

Decision trees (DTs) are widely used 
effective technique for solving both 
regression problems where the output is a 
continuous value and classification problems 
here the output is a nominal value. To provide 
a briefer and easier-to-understand 
explanation of how DTs work, we provide a 
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description of the classification version of the 
tree. 

Classification tree is a binary tree where 
each node except for leaves consists of 
decision rules that determine which branch to 
go through next. The leaves of the tree 
contain a specific class. When estimating the 
class of an input vector, the tree is traversed 
from its root to the leaves. 

The decision rules in individual nodes can 
be seen as functions. These functions are 
often referred to as split functions or weak 
learners (Bańczyk et al., 2011). They are 
defined as 
 
𝑓𝑓(𝑥𝑥, 𝜃𝜃):𝜒𝜒 × 𝜏𝜏 → 0, 1 (1) 

 
where 𝑥𝑥 is a given vector from the input set 𝜒𝜒 
and 𝜃𝜃  are the parameters of a test function 
from the set 𝜏𝜏 . This function performs 
mapping to the false and true values in order 
to determine which branch of the tree should 
be selected for continuation. 

There is a large number of split functions 
that can be used (Criminisi et al., 2012). 
Mores split functions are frequently used, 
such as the general oriented hyperplane, 
conic learner and other both linear and non-
linear functions (Criminisi et al., 2011).  

Finding the best parameters for split 
function is an optimization problem in which 
we seek to find the parameters that minimize 
the classification error. This optimization is 
an essential task for building a DT. Error is 
proportional to the probability of selecting a 
particular class during random selection from 
the set of vectors that were assigned to the 
same group based on the split function. 

In order to describe the quality of split 
using a specific split function the information 
gain where uses the concept of entropy from 

information theory is utilized in this study. 
Information gain is given by 

 

𝐺𝐺(𝑆𝑆) = −�𝑝𝑝(𝑐𝑐𝑖𝑖)
𝑁𝑁𝑁𝑁

𝑖𝑖=0

𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝(𝑐𝑐𝑖𝑖)� (2) 

 
where 𝑝𝑝(𝑐𝑐𝑖𝑖) is the probability of selecting a 
vector of class 𝑖𝑖 from the vector set 𝑆𝑆 and 𝑁𝑁𝑁𝑁 
is the number of classes. The optimization 
goal is to maximize the improvement 
obtained by the split based on the following 
formula: 
 

𝐼𝐼 = 𝐺𝐺(𝑆𝑆) − �
|𝑆𝑆𝑖𝑖|
𝑆𝑆

𝑖𝑖⊂{𝐿𝐿,𝑅𝑅}

𝐺𝐺(𝑆𝑆) (3) 

 
In a similar way, we can define the entropy 

for continuous output values. To construct a 
decision tree, it is necessary to define the 
conditions that determine the tree's growth 
termination point. This condition can be, for 
example, the fact that after the last split there 
are only vectors belonging to a single class in 
the current branch. This condition is not 
flawless, because it can lead to a phenomenon 
known as overfitting, a situation in which the 
tree loses its ability to generalize. A better 
condition may be, for example, a limit for the 
information gain that was obtained with the 
last split. The final class of a leaf is then 
determined by the maximum likelihood of 
selecting the class from the set of vectors 
belonging to that branch. At the same time we 
are able to read from the leaf the probability 
that the class was determined correctly 
(Breiman, 1996). An example of a DT, 
namely the CART in its classification mode, 
is pictured in Figure 1.  
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Fig. 1. An example of a decision tree for classification, a) binary decision tree, b) feature space partitioning 

 
DTs algorithms are quite transparent and 

also do not need optimization of model and 
internal parameters. However, DTs are rather 
sensitive to small perturbations in the 
learning set. It has been demonstrated that 
this problem can be mitigated by applying 
bagging (Bootstrap aggregating) (Breiman, 
1996). Random Forest (RF), as a relatively 
new pattern recognition method, is a 
combination of the random subspace method 
proposed by Ho (1998) and bagging. In this 
method based on a particular kind of learning 
strategy “ensemble learning” generate many 
predictors and average their results. RF can 
be applied for three purposes: classification, 

regression and unsupervised learning (Liaw 
and Wiener, 2002).  

In the learning stage, a lot of predictors are 
generating by selecting a random set of 
variables and a random sample from the total 
dataset and then the results are averaged for 
each tree. RF is very user-friendly in the sense 
that it has only two parameters: 𝑛𝑛𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟, the 
number of trees in the forest and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, the 
number of variables in the random subset at 
each node, and is usually not very sensitive to 
their values (Liaw and Wiener, 2002).  

In this study the regression RF is utilized 
to determine the amount of UBC. The 
algorithm is briefly summarized as follows 
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(for more detailed information readers are 
refer to Breiman (2001)). 

(1) Given a standard training set 𝑋𝑋 of size 
𝑛𝑛, bagging generates 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 new training sets 
𝑋𝑋𝑖𝑖 , each of size 𝑛𝑛′ , by sampling from 𝑋𝑋 
uniformly and with replacement. If 𝑛𝑛′ = 𝑛𝑛 , 
then for large n the set 𝑋𝑋𝑖𝑖 is expected to have 
the fraction �1 − 1 𝑒𝑒� � ≈ 63.2%  of the 
unique examples of 𝑋𝑋 , the rest being 
duplicates. This kind of sample is known as a 
bootstrap sample. The elements not included 
in 𝑋𝑋𝑖𝑖 are referred to as out-of-bag data (OOB) 
for that bootstrap sample.  

 (2) For each bootstrap sample 𝑋𝑋𝑖𝑖  an 
unpruned regression tree is grown. The tree 
growing algorithm used in RF is CART. At 
each node, rather than choosing the best split 
among all variables as done in classic 
regression trees, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  variables are 
randomly selected and the best split is chosen 
among them.  

(3) New data (out-of-bag elements) are 
predicted by averaging the predictions of the 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 trees, as explained below. 

Out-of-bag elements are used to estimate 
an error rate, called the out-of-bag (OOB) 

estimate of the error rate ( 𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 ), as 
follows: 

i. At each bootstrap iteration, the out-of-
bag elements are predicted by the tree grown 
using the bootstrap samples 𝑋𝑋𝑖𝑖. 
ii. For the 𝑖𝑖th element (𝑦𝑦𝑖𝑖) of the training 

dataset 𝑋𝑋 , all the trees are considered in 
which the 𝑖𝑖 th element is out-of-bag. On 
average, each element of 𝑋𝑋 is out-of-bag in 
one-third of 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 iterations. On the basis of 
the random trees an aggregated prediction 
𝑔𝑔𝑂𝑂𝑂𝑂𝑂𝑂  is developed. The out-of-bag estimate 
of the error rate is computed as 𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 =
(1 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛⁄ )∑ [𝑦𝑦𝑖𝑖 − 𝑔𝑔𝑂𝑂𝑂𝑂𝑂𝑂(𝑋𝑋𝑖𝑖)]2𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖=1 . 
The 𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 help prevent overfitting and 

can also be used to choose an optimal value 
of 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, by selecting 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 that minimize 𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂. Therefore, we 
first chose the optimal values of 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 which minimize 𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 and then we 
proceeded to develop the Random Forest 
model. Figure 2 presents a general 
architecture of RF, where 𝑖𝑖 is the number of 
trees in RF and (𝑞𝑞𝑢𝑢)1 , (𝑞𝑞𝑢𝑢)2  and (𝑞𝑞𝑢𝑢)𝑖𝑖  are 
output trees.  

 
 

 
Fig. 2. A general architecture of a random forest for 𝑞𝑞𝑢𝑢 prediction 
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Theoretical Background of Ultimate 
Bearing Capacity 

Terzaghi (1943) considered a general 
shear failure and suggested the first semi-
empirical equation for UBC. Another 
investigation was carried out in 1963 by 
Meyerhof. Considering the shear resistance 
of the assumed failure surface, Meyerhof 
(1963) suggested the following equation for 
centric loading without foundation 
inclination: 

 

𝑞𝑞𝑢𝑢 = 𝛾𝛾𝐷𝐷𝐷𝐷𝑞𝑞𝐹𝐹𝑞𝑞𝑞𝑞𝐹𝐹𝑞𝑞𝑞𝑞 +
1
2
𝛾𝛾𝐵𝐵𝐵𝐵𝛾𝛾𝐹𝐹𝛾𝛾𝛾𝛾𝐹𝐹𝛾𝛾𝛾𝛾 (4) 

 
where 𝑞𝑞𝑢𝑢 is UBC of shallow foundations on 
granular soil (kPa), 𝛾𝛾 is soil density (kN/m3), 
𝐷𝐷 is depth of the foundation (m), 𝐵𝐵 is width 
of the foundation (m), 𝑁𝑁𝑞𝑞 =
𝑒𝑒𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑡𝑡𝑡𝑡𝑡𝑡2 �45 + 𝜙𝜙

2
� , 𝜙𝜙 is angle of internal 

friction (degree), 𝑁𝑁𝛾𝛾 = �𝑁𝑁𝑞𝑞 − 1�𝑡𝑡𝑡𝑡𝑡𝑡(1.4𝜙𝜙), 

𝐹𝐹𝑞𝑞𝑞𝑞 = 𝐹𝐹𝛾𝛾𝛾𝛾 = 



1 + 0.2𝐾𝐾𝑝𝑝
𝐵𝐵
𝐿𝐿

     ,   𝜙𝜙 > 10
1                       ,   𝜙𝜙 = 0

 

𝐹𝐹𝑞𝑞𝑞𝑞 = 𝐹𝐹𝛾𝛾𝛾𝛾 =




1 + 0.1�𝐾𝐾𝑝𝑝
𝐷𝐷
𝐵𝐵

    ,𝜙𝜙 > 10

1                           ,𝜙𝜙 = 0
 

Ever since Meyerhof proposed his 
equation for UBC, it has been tested and 
modified by other investigators (Hansen, 
1970; Vesic, 1974) that are most commonly 
used for determining the UBC. 
 
Development of RF Model 
 
Model Inputs and Output 

In order to obtain accurate prediction of 
shallow foundation bearing capacity, an 
understanding of the factors affecting shallow 
foundation behavior is required. Foundation 
geometry and mechanical properties of soil 
are well-established, key parameters in the 
calculation of UBC of shallow foundation in 

many of the published methods. A reliability 
analysis indicated that the key factors were 
the width of the foundation (B), depth of the 
foundation (D), length of the foundation (L), 
unit weight of soil (𝛾𝛾), internal friction angle 
(𝜙𝜙) (Foye et al., 2006). Therefore, the input 
variables used in this study for model 
construction are the B, D, L, 𝛾𝛾  and 𝜙𝜙 . The 
UBC of the foundation (𝑞𝑞𝑢𝑢 ) is the output 
variable of the model. 
 
The Data Used for Model Development  

A database of previous experimental 
results was built for training and testing the 
model. (Kalinli et al., 2011; Padmini et al., 
2008). The collected database which is 
summarized in Table 1 consists of 112 
samples of rectangular, square and strip 
footings of different sizes with centric 
loading on cohesion less beds of various 
densities. Among them, only 47 are from load 
tests on large-scale footings and the rest the 
reported from scaled model experiments. For 
more details on the test measurements readers 
are referred to (Kalinli et al., 2011). 

In pattern recognition procedures (e.g. 
ANN or SVM) the model construction is 
generally based on adaptive learning over a 
number of cases. The performance of the 
trained model is then evaluated using an 
independent testing data set (Koohestani et 
al., 2016). Since the 𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 is an unbiased 
estimate of the generalization error, testing 
the predictive ability of the RF model on an 
external data set is no needed (Breiman, 
2001). However, we preferred to use an 
independent dataset to perform an external 
validation of the predictive capabilities of the 
RF model. Therefore, in this study, from the 
112 foundation experiments, 95 were used for 
to train the model and the remaining 17 tests 
were used to test the model capability for data 
generalization randomly.  
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Table 1. The data used for developing the RF model (Kalinli et al, 2011; Padmini et al., 2008) 
𝑩𝑩 

(𝐦𝐦) 
𝑫𝑫 

(𝐦𝐦) 𝑳𝑳/𝑩𝑩 𝜸𝜸 
(𝐤𝐤𝐤𝐤 𝐦𝐦𝟑𝟑⁄ ) 

𝝓𝝓 
(°) 

𝒒𝒒𝒖𝒖 
(𝐤𝐤𝐤𝐤𝐤𝐤) 

𝑩𝑩 
(𝐦𝐦) 

𝑫𝑫 
(𝐦𝐦) 𝑳𝑳/𝑩𝑩 𝜸𝜸 

(𝐤𝐤𝐤𝐤 𝐦𝐦𝟑𝟑⁄ ) 
𝝓𝝓 

(°) 
𝒒𝒒𝒖𝒖 

(𝐤𝐤𝐤𝐤𝐤𝐤) 
0.6 0.3 2 9.85 34.9 270 0.0585 0.058 5.95 17.1 42.5 211 
0.6 0 2 10.2 37.7 200 0.094 0.047 6 15.7 34 74.7 
0.6 0.3 2 10.2 37.7 570 0.094 0.094 6 15.7 34 91.5 
0.6 0 2 10.85 44.8 860 0.094 0.047 6 16.1 37 104.8 
0.6 0.3 2 10.85 44.8 1760 0.094 0.094 6 16.1 37 127.5 
0.5 0 1 10.2 37.7 154 0.094 0.047 6 16.5 39.5 155.8 
0.5 0 1 10.2 37.7 165 0.094 0.094 6 16.5 39.5 185.6 
0.5 0 2 10.2 37.7 203 0.094 0.047 6 16.8 41.5 206.8 
0.5 0 2 10.2 37.7 195 0.094 0.094 6 16.8 41.5 244.6 
0.5 0 3 10.2 37.7 214 0.094 0.047 6 17.1 42.5 235.6 

0.52 0 3.85 10.2 37.7 186 0.094 0.094 6 17.1 42.5 279.6 
0.5 0.3 1 10.2 37.7 681 0.152 0.075 5.95 15.7 34 98.2 
0.5 0.3 2 10.2 37.7 542 0.152 0.15 5.95 15.7 34 122.3 
0.5 0.3 2 10.2 37.7 530 0.152 0.075 5.95 16.1 37 143.3 
0.5 0.3 3 10.2 37.7 402 0.152 0.15 5.95 16.1 37 176.4 

0.52 0.3 3.85 10.2 37.7 413 0.152 0.075 5.95 16.5 39.5 211.2 
0.5 0 1 11.7 37 111 0.152 0.15 5.95 16.5 39.5 254.5 
0.5 0 1 11.7 37 132 0.152 0.075 5.95 16.8 41.5 285.3 
0.5 0 2 11.7 37 143 0.152 0.15 5.95 16.8 41.5 342.5 
0.5 0.013 1 11.7 37 137 0.152 0.075 5.95 17.1 42.5 335.3 
0.5 0.029 4 11.7 37 109 0.152 0.15 5.95 17.1 42.5 400.6 
0.5 0.127 4 11.7 37 187 0.094 0.047 1 15.7 34 67.7 
0.5 0.3 1 11.7 37 406 0.094 0.094 1 15.7 34 90.5 
0.5 0.3 1 11.7 37 446 0.094 0.047 1 16.1 37 98.8 
0.5 0.3 4 11.7 37 322 0.094 0.094 1 16.1 37 131.5 
0.5 0.5 2 11.7 37 565 0.094 0.047 1 16.5 39.5 147.8 
0.5 0.5 4 11.7 37 425 0.094 0.094 1 16.5 39.5 191.6 
0.5 0 1 12.41 44 782 0.094 0.047 1 16.8 41.5 196.8 
0.5 0 4 12.41 44 797 0.094 0.094 1 16.8 41.5 253.6 
0.5 0.3 1 12.41 44 1940 0.094 0.047 1 17.1 42.5 228.8 
0.5 0.3 1 12.41 44 2266 0.094 0.094 1 17.1 42.5 295.6 
0.5 0.5 2 12.41 44 2847 0.152 0.075 1 15.7 34 91.2 
0.5 0.5 4 12.41 44 2033 0.152 0.15 1 15.7 34 124.4 
0.5 0.49 4 12.27 42 1492 0.152 0.075 1 16.1 37 135.2 
0.5 0 1 11.77 37 123 0.152 0.15 1 16.1 37 182.4 
0.5 0 2 11.77 37 134 0.152 0.075 1 16.5 39.5 201.2 
0.5 0.3 1 11.77 37 370 0.152 0.15 1 16.5 39.5 264.5 
0.5 0.5 2 11.77 37 464 0.152 0.075 1 16.8 41.5 276.3 
0.5 0 4 12 40 461 0.152 0.15 1 16.8 41.5 361.5 
0.5 0.5 4 12 40 1140 0.152 0.075 1 17.1 42.5 325.3 
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𝑩𝑩 
(𝐦𝐦) 

𝑫𝑫 
(𝐦𝐦) 𝑳𝑳/𝑩𝑩 𝜸𝜸 

(𝐤𝐤𝐤𝐤 𝐦𝐦𝟑𝟑⁄ ) 
𝝓𝝓 

(°) 
𝒒𝒒𝒖𝒖 

(𝐤𝐤𝐤𝐤𝐤𝐤) 
𝑩𝑩 

(𝐦𝐦) 
𝑫𝑫 

(𝐦𝐦) 𝑳𝑳/𝑩𝑩 𝜸𝜸 
(𝐤𝐤𝐤𝐤 𝐦𝐦𝟑𝟑⁄ ) 

𝝓𝝓 
(°) 

𝒒𝒒𝒖𝒖 
(𝐤𝐤𝐤𝐤𝐤𝐤) 

1 0.2 3 11.97 39 710 0.152 0.15 1 17.1 42.5 423.6 
1 0 3 11.93 40 630 0.08 0 1 17.2 42.8 133 

0.991 0.711 1 15.8 32 1773.7 0.15 0 1 17.2 42.8 246 
3.004 0.762 1 15.8 32 1019.4 0.05 0 1 17.2 42.8 109 
2.489 0.762 1 15.8 32 1158 0.08 0 1 17.1 42.8 130 
1.492 0.762 1 15.8 32 1540 0.1 0 1 17.1 42.8 152 
3.016 0.889 1 15.8 32 1161.2 0.15 0 1 17.1 42.8 214 
0.0585 0.029 5.95 15.7 34 58.5 0.2 0 1 17.1 42.8 266 
0.0585 0.058 5.95 15.7 34 70.91 0.25 0 1 17.1 42.8 333 
0.0585 0.029 5.95 16.1 37 82.5 0.3 0 1 17.1 42.8 404 
0.0585 0.058 5.95 16.1 37 98.93 0.03 0 1 15.89 42 52 
0.0585 0.029 5.95 16.5 39.5 121.5 0.04 0 1 15.89 42 92 
0.0585 0.058 5.95 16.5 39.5 142.9 0.05 0 1 15.89 42 95 
0.0585 0.029 5.95 16.8 41.5 157.5 0.06 0 1 13.2 32 14 
0.0585 0.058 5.95 16.8 41.5 184.9 0.06 0 1 14.8 42 72 
0.0585 0.029 5.95 17.1 42.5 180.5 0.06 0 1 15.4 42 106 

 
It is worth noting that the ANN literature 

suggests that the training and test data subsets  
need to exhibit similar mean value, standard 
deviation as well as range (Shahin et al., 
2004). The statistical characteristics of the 
test and train subsets are given in Table 2. 

 
Criteria of Evaluation 

The performance of the models in 
predicting can be evaluated using some well-
known statistical measures namely 
coefficient of correlation (CC), coefficient of 
determination (R2), root mean square error 
(RMSE), mean average error (MAE) and 
mean bias error (MBE) are used. These 
statistical measures are defined as: 

𝐶𝐶𝐶𝐶 =
∑ [(𝑠𝑠𝑖𝑖 − 𝑠̅𝑠𝑖𝑖)(𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖̅𝑖)]𝑛𝑛
𝑖𝑖=1

�∑ (𝑠𝑠𝑖𝑖 − 𝑠̅𝑠𝑖𝑖)2(𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖̅𝑖)2𝑛𝑛
𝑖𝑖=1

 (11) 

𝑅𝑅2 = 1 −
∑ (𝑠𝑠𝑖𝑖 − 𝑐𝑐𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖̅𝑖)2𝑛𝑛
𝑖𝑖=1

 (12) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
∑ (𝑠𝑠𝑖𝑖 − 𝑐𝑐𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
�
0.5

 (13) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑠𝑠𝑖𝑖 − 𝑐𝑐𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (14) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ 𝑠𝑠𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (15) 

 
where 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 denote the predicted and the 
measured values, respectively, n is the 
number of measurements and 𝑥̅𝑥 and 𝑦𝑦� are the 
mean of 𝑥𝑥 and 𝑦𝑦. 

 
 

Table 2. Statistics of input factors in RF 

Parameters 
Training  Testing 

Minimum Maximum Mean StdDeva  Minimum Maximum Mean StdDev 
𝐵𝐵 (m) 0.03 3.016 0.375 0.518  0.08 1 0.298 0.25 
𝐷𝐷 (m) 0 0.889 0.145 0.202  0 0.5 0.132 0.151 
𝐿𝐿/𝐵𝐵 1 6 2.704 2.092  1 6 3.459 2.197 
𝛾𝛾 (kN m3⁄ ) 9.85 17.2 14.395 2.624  11.7 17.2 14.901 2.373 
𝜙𝜙 (°) 32 44.8 38.978 3.43  34 42.8 39.053 3.245 
𝑞𝑞𝑢𝑢 (kPa) 14 2847 415.909 527.895  91.5 1492 326.441 346.412 
a StdDev refers to the Standard Deviation. 
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Optimizing the Random Forest Parameters  
In this study WEKA (Waikato 

Environment for Knowledge Analysis) is 
utilized as a popular machine learning 
workbench for implementing the RF 
algorithm. WEKA is developed in java and 
introduced by Waikato University, New 
Zealand (Witten and Frank, 2005). In order to 
determine the optimal value of RF model 
parameters, 𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟  and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , a trial error 
procedure was employed. The default 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
value is 500. Increasing the number of trees 
would lead to converge the error rate to a 
specific limit. Therefore, over-fitting will not 
occur in large RFs (Breiman, 2001). The 
default 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  value is [𝑙𝑙𝑙𝑙𝑙𝑙2(𝑁𝑁) + 1]  (𝑁𝑁  is 
the total number of variables). It is suggested 
to start with default 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and then decrease 
and increase 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 until the minimum error 
for the OOB data set is obtained. The 
stopping criterion (minimum error for the 
OOB data set) is met for 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 520  and 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 4 as shown in (Figure 3).  

 
RESULTS  
 
The statistic measures together with the 
performance of the trained RF for testing and 
training data sets are given in Table 3 and 
Figure 4, respectively. Sensitivity analysis is 
used to find out the relative importance of 
independent parameters. For this purpose, 
parameters were excluded (one by one) from 
the inputs and the models were developed. 
The error measures are shown in Table 4. 
This table shows that the UBC is mostly 
affected by 𝐷𝐷  and the next important 
parameters used in this sensitivity analysis 
are 𝜙𝜙, 𝐿𝐿/𝐵𝐵, 𝐵𝐵, and 𝛾𝛾, respectively.  

To evaluate the efficiency of the trained 
RF model, the results are compared with 
some popular classical methods suggested in 
literature (Meyerhof, 1963; Vesic, 1974; 
Hansen, 1970) for determining the UBC. The 
comparison was done for the all dataset. 
Table 5 shows the values of performance 
indices for the traditional methods and 
developed model in this paper. The error 
indicators reveal that the result of the RF 
model has much higher values of CC and 
lower errors (RMSE and MAE) in 
comparison with the theoretical equations. 
Also, the equation proposed by Meyerhof 
shows the best performance among the 
theoretical formulas. The best fit line of 
estimated versus measured UBC and the 
corresponding coefficient of determination 
(𝑅𝑅2) are illustrated in Figure 5. This figure 
shows that outputs of the utilized theoretical 
formulas are more scattered than RF-based 
forecasts. According to the statistical results 
obtained (Table 5) and scatter plots depicted, 
these findings corroborate and demonstrate 
the superior performance of the RF model 
compared to the theoretical equations used in 
this study. The performance of the proposed 
RF model was also compared with the results 
of the basic Adaptive Neuro Fuzzy Inference 
System (ANFIS), ANN and Fuzzy Inference 
system (FIS), Support Vector Machine 
(SVM), Relevance Vector Machine (RVM), 
ant colony optimization (ACO) and genetic 
programming (GP) which is taken from 
literature. The performance statistics of all 
models are presented in Table 6. A 
comparison between Tables 5 and 6 confirm 
that soft computing approaches are more 
accurate compared to analytical formulas.  

 
Table 3. Results of the optimum model with respect to training and testing sets 

RF model CC RMSE (kPa) MAE (kPa) 
Training set 0.9932 65.33 32.12 
Testing set 0.9871 66.88 43.69 
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Fig. 3. 𝐸𝐸𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂 versus 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 for different 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (The arrow shows the optimal number of grown tree that produced 

the least out-of-bag estimate of the error rate) 
 

Table 4. Sensitivity analysis of the governing parameters 

Model Error Statistics 
CC RMSE (kPa) MAE (kPa) 

RF with all inputs 0.9932 65.3346 32.1229 
RF in the absence of 𝐵𝐵 0.9903 75.8430 39.6089 
RF in the absence of 𝐷𝐷 0.9221 203.8067 113.2604 

RF in the absence of 𝐿𝐿/𝐵𝐵 0.9885 82.1941 37.6184 
RF in the absence of 𝛾𝛾 0.9914 72.3844 34.1855 
RF in the absence of 𝜙𝜙 0.9870 90.4307 41.5431 

 
Table 5. Comparison between RF model with theoretical methods 

Method CC RMSE (kPa) MAE (kPa) 
RF model 0.9926 65.57 33.88 

Meyerhof (1963) 0.9389 178.96 96.12 
Vesic (1974) 0.9444 221.53 108.83 

Hansen (1970) 0.9408 277.81 140.80 
 

Table 6. Compression between RF model with other soft computing methods 

Model Training Testing 
R RMSE (kPa) MBE (kPa) R RMSE (kPa) MBE (kPa) 

RF 0.9932 65.33 2.58 0.9871 66.88 11.5 
ANNa 0.995 52.9 -1.78 0.992 77.2 -12.04 

ANFISa 0.9986 26.4 0 0.996 52.3 11.50 
FISa 0.990 71.1 0 0.9989 98 13.93 

SVMb 0.996 46.59 -0.88 0.993 50.04 2.60 
RVMb 0.998 28.19 1.93 0.996 29.93 5.73 
ACOc 0.9989 26.4 0 0.9990 29.2 9.78 
GPd 0.98 112 - 0.982 121 - 

a (Padmini et al., 2008) 
b (Samui, 2012) 
c (Kalinli et al., 2011) 
d (Shahnazari and Tutunchian, 2012) 
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Fig. 4. Measured versus predicted ultimate bearing capacity for RF model, a) training set and b) testing set (solid line 

indicate best fit) 
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Fig. 5. Measured versus predicted capacity for (solid line and dashed line indicate best fit and perfect fit lines, 

respectively): a) RF model; b) Meyerhof; c) Vesic; d) Hansen 
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DISCUSSION 
 
It is very worthy to be mentioned that there 
were not parameter tuning, data 
preprocessing or feature selection used for RF 
in the results reported here, illustrating that 
RF is a powerful tool for the regression 
problems. However, when applying ANN, 
there are needs of some data preprocessing 
with decorrelation and normalization to 
increase the convergence speed of network, 
or experts to determine a lot of parameters by 
applying their experiences and priori 
knowledge, which makes it difficult for the 
beginners to obtain ANN models with better 
performance when dealing with actual 
problems.  

RF has some attracted advantages: 1) it is 
robust against overfitting; 2) it is very user-
friendly that there are only two parameters 
needed to be considered, and RF is usually 
not very sensitive to their values; 3) it can 
offer the data internal structure measure, 
which suggests there is no need of extra 
feature selection procedure; 4) The internal 
OOB error rate of RF could be used for 
classification accuracy assessment when 
there are limited samples for independent 
accuracy assessments; 5) it is immune to 
irrelevant variables and outliers; 6) it is not 
sensitive to the differences of data units and 
magnitudes, which suggests it is not 
necessary to conduct data preprocessing, such 
as normalizing or centering and 7) it can cope 
with badly unbalanced data (Liaw and 
Wiener, 2002). It is worth noting that the RF 
is only applicable to the range of training 
data.  

 
CONCLUSIONS 
 
This study presents a new approach using the 
Random Forest (RF) for estimating the 
ultimate bearing capacity of shallow 
foundations based on the recorded 
experimental data. RF uses the “ensemble 

learning” strategy which generates many 
predictors and report the average of 
predictions. The model inputs consisted of 
footing geometry and soil parameters. The 
performance of the developed RF-based 
model was compared with the equations 
developed by Terzaghi (1943), Meyerhof 
(1963), Vesic (1974). The resulted statistical 
measures and provided scatter plots showed 
that the RF model is more reliable and has 
better performance than the traditional 
equations.  

Advantage of the RF model is that this 
statistical learning modeling framework does 
not require assumptions of normality of 
model variables and can deal with non-linear 
relationships. The RF is fast since splitting 
the data set into learning and validation 
subsets for estimating the error which is 
generally require in some other soft 
computing techniques (such as SVM and 
ANN) is not necessary in RF and only two 
parameters to be tuned experimentally. 
Taking into account these advantages, it is 
suggested to use RF model in other fields of 
geotechnical engineering. 
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