Hyperelastic Models for PET Woven Geotextiles in Civil Engineering: Framework and Insights

Document Type : Research Papers

Authors

1 Assistant Professor, Built Environmental Research Lab, Faculty of Civil Engineering, University of Science and Technology, Houari Boumediene, Algeria.

2 Associate Professor, Department of Civil Engineering, University Ferhat Abbas, Setif, Algeria.

3 Professor, Built Environmental Research Lab, Faculty of Civil Engineering, University of Science and Technology, Houari Boumediene, Algeria.

Abstract

The material properties of geotextiles play a significant role in shaping the long-term behavior of reinforced soils, potentially leading to issues like instability and excessive deformation. To address these challenges, thorough research into geotextile materials rheological properties and nonlinear behavior is essential. This study specifically focuses on the investigation of six commonly employed isotropic hyper elastic models (Neo-Hooke, Mooney-Rivlin, Ogden, Yeoh, Arruda-Boyce and Van der Waals) for describing the behavior of PET woven geotextiles in civil engineering applications. These models are fine-tuned through uniaxial tension tests conducted in warp and weft directions. Upon analyzing the experimental data, it becomes evident that the Yeoh and Neo-Hooke models exhibit exceptional accuracy in predicting geotextile behavior. The primary objective of this study is to advance our comprehension of how geotextiles react to varying loads, achieved through a combination of testing and finite element simulations. The robust correlation between experimental and simulation results significantly contributes to developing dependable hyper elastic material models tailored for geotextiles. This research framework holds considerable potential value for manufacturers and engineers as it equips them with practical tools to address concerns associated with soil-structure interaction in their projects.

Keywords

Main Subjects


Arruda, E.M. and Boyce, M.C. (1993). "On the dynamic electromechanical loading of dielectric elastomer membranes",  Journal of the Mechanics and Physics of Solids, 41(2), 389-412,
https://doi.org/10.1016/0022-5096(93)90013-6.
Barbero, E.J. (2023). Finite element analysis of composite materials using Abaqus ®, CRC Press, Boca Raton, FL, USA, https://doi.org/10.1201/9781003425296.
Brinson, H.F. and Brinson, L.C. (2008). Polymer engineering science and viscoelasticity, An introduction, 99-157, Springer, New York, NY, https://doi.org/10.1007/978-0-387-74740-8.
Carreau, P.J., DeKee, D.C. and Chhabra, R.P. (2021). Rheology of polymeric systems: Principles and applications, Carl Hanser Verlag GmbH Co. KG, Munich, Germany. https://doi.org/10.3139/9783446457121.
Chevalier, L., Marco, Y. and Regnier, G. (2001).  "Modification des propriétés durant le soufflage des bouteilles plastiques en PET", Mécanique and Industries, 2(3), 229-248, https://doi.org/10.1051/meca:2001135.
Chevalier, L., Luo, Y.M., Monteiro, E. and Menary, G.H. (2012). "On visco-elastic modelling of polyethylene terephthalate behavior during multiaxial elongations slightly over the glass transition temperature",  Mechanics of Materials, 52, 103-116,  https://doi.org/10.1016/j.mechmat.2012.05.003
Ding, L., Xiao, C. and Cui, F. (2023).  "Analytical model for predicting time-dependent lateral deformation of geosynthetics-reinforced soil walls with modular block facing", Journal of Rock Mechanics and Geotechnical Engineering, 16(2), 711-725, https://doi.org/10.1016/j.jrmge.2023.04.021.
Gavin, H.P. (2019). "The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems", Department of Civil and Environmental Engineering, Duke University, 19. 
Guo, Z., Fei, J. and Jie, Y. (2022). "An equivalent-additional-stress-based material point method for the deformation of reinforced soil slopes under supergravity", Computers and Geotechnics, 142, 104536,  https://doi.org/10.1016/j.compgeo.2021.104536.
Hackett, R.M. (2016).  Hyperelasticity primer, Cham, Springer International Publishing.
Heymans, N. (2004). "Fractional calculus description of non-linear viscoelastic behavior of polymers", Nonlinear Dynamics, 38, 221-231,  https://doi.org/10.1007/s11071-004-3757-5.
Hieu, D.M., Thong, N.T., Le, L.T.M., Nga, P.T.H., Thanh, N.C. and Trung, H.H. (2023). "Study on tensile strength of high-density polyethylene/polyethylene terephthalate blend", Advances in Machinery, Materials Science and Engineering Application, IX (pp. 27-32), IOS Press, https://doi.org/10.3233/ATDE230437
ISO, E.N. 10319. (2008) Geosynthetics-wide-width tensile test, International Organization for Standardization, Geneva, Switzerland.
Jeon, H., an, B., Kim, H., Kim, Y., Cui, G. and Jang, Y. (2008). "Stress relaxation behaviors of nonwoven geotextile composites", Proceedings of the 4th Asian Regional Conference on Geosynthetics, (pp. 20-24), June 17-20, Shanghai, China,   https://doi.org/10.1007/978-3-540-69313-05.
Kang, M.J., Kim, B.S., Hwang, S. and Yoo, H.H. (2018). "Experimentally derived viscoelastic properties of human skin and muscle in vitro",  Medical Engineering and Physics, 61, 25-31, https://doi.org/10.1016/j.medengphy.2018.08.001.
Kenja, K., Madireddy, S., Vemaganti, K. (2020). "Calibration of hyperelastic constitutive models: the role of boundary conditions, search algorithms, and experimental variability", Biomechanics and Modeling in Mechanobiology, 19(5), 1935-1952,  https://doi.org/10.1007/s10237-020-01318-3.
Łagan, S.D. and Liber-Kneć, A. (2017). "Experimental testing and constitutive modeling of the mechanical properties of the swine skin tissue", Acta of Bioengineering and Biomechanics, 19(2), 93-102, https://doi.org/10.5277/ABB-00755-2016-02.
Li, Y., Tang, S., Kroger, M., and Liu, W.K. (2016). "Molecular simulation guided constitutive modeling on finite strain viscoelasticity of elastomers",  Journal of the Mechanics and Physics of Solids, 88, 204-226,  https://doi.org/10.1016/j.jmps.2015.12.007.
Lim, J., Hong, J., Chen, W.W. and Weerasooriya, T. (2011). "Mechanical response of pig skin under dynamic tensile loading", International Journal of Impact Engineering, 38(2-3), 130-135,  https://doi.org/10.1016/j.ijimpeng.2010.09.003.
Luo, R.K. (2019). "A general hyper-elastic time model for numerical prediction on rubber relaxation and experimental validation under different environments", Polymer Engineering and Science, 59(10), 2159-2168,  https://doi.org/10.1002/pen.25218.
Mansouri, M.R. and Darijani, H. (2014). "Constitutive modeling of isotropic hyper-elastic materials in an exponential framework using a self-contained approach", International Journal of Solids and Structures, 51(25-26), 4316-4326,  https://doi.org/10.1016/j.ijsolstr.2014.08.018.
Mihai, L.A. and Goriely, A. (2017). "How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2207), 20170607, https://doi.org/10.1098/rspa.2017.0607.
Mokhireva, K.A. and Svistkov, A.L. (2020). "A new approach to describe the elastic behavior of filled rubber-like materials under complex uniaxial loading",  International Journal of Solids and Structures, 202, 816-821, https://doi.org/10.1016/j.ijsolstr.2020.07.005.
Mooney, M. (1940). "A theory of large elastic deformation",  Journal of Applied Physics, 11(9), 582-592, https://doi.org/10.1063/1.1712836.
Narayanan, P., Pramanik, R. and Arockiarajan, A. (2023). "A hyperelastic viscoplastic damage model for large deformation mechanics of rate-dependent soft materials", European Journal of Mechanics-A/Solids, 98, 104874, https://doi.org/10.1016/j.euromechsol.2022.104874.
Peng, F.L., Li, F.L., Tan, Y. and Kongkitkul, W. (2010). "Effects of loading rate on visco-plastic properties of polymer geosynthetics and its constitutive modeling", Polymer Engineering and Science, 50(3), 550-560, https://doi.org/10.1002/pen.21548.
Powell, P.C. and Housz, A.I. (2023). Engineering with polymers, CRC Press, Boca Raton, FL, USA.
Rivlin, R. (1948). “Large elastic deformations of isotropic materials, I, Fundamental concepts”, Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 240(822), 459-490, https://doi.org/10.1098/rsta.1948.0002.
Saberi, E., Najar, S.S., Abdellahi, S.B. and Soltanzadeh, Z. (2017). "A hyper-elastic approach for finite element modelling puncture resistance of needle punched nonwoven geotextiles",  Fibers and Polymers, 18, 1623-1628,   https://doi.org/10.1680/gein.14.00023.
Sawicki, A. and Kazimierowicz-Frankowska, K. (1998). "Creep behavior of geosynthetics", Geotextiles and Geomembranes, 16(6), 365-382,      https://doi.org/10.1016/S0266-1144(98)00020-X.
Shahzad, M., Kamran, A., Siddiqui, M.Z. and Farhan, M. (2015). "Mechanical characterization and FE modeling of a hyperelastic material", Materials Research, 18, 918-924,  https://doi.org/10.1590/1516-1439.320414.
Treloar, L. (1943). "The elasticity of a network of long-chain molecules-ii", Transactions of the Faraday Society,  39, 241-246.
Treloar, L.G. (1975). The physics of rubber elasticity, OUP Oxford.
Treloar, L. and Riding, G. (1979). "A non-Gaussian theory for rubber in biaxial strain: mechanical properties",  Proceedings of the Royal Society of London, A, Mathematical and Physical Sciences, 369(1737), 261-280,   https://doi.org/10.1098/rspa.1979.0163.
Van Lancker, B., De Corte, W. and Belis, J. (2020). "Calibration of hyperelastic material models for structural silicone and hybrid polymer adhesives for the application of bonded glass", Construction and Building Materials, 254, 119204, https://doi.org/10.1016/j.conbuildmat.2020.119204.
Wang, J.Q., Xu, L.J., Lin, Z.N. and Tang, Y. (2020). "Study on creep characteristics of geogrids considering sand-geosynthetics interaction under different loading levels",  Journal  of  Engineered Fibers and Fabrics,  15, 1558925020958520,  https://doi.org/10-117715589250209585.
Ward, I.M. and Sweeney, J. (2012). Mechanical properties of solid polymers,  John Wiley and Sons, Hoboken, NJ, USA.
Wu, H., Yao, C., Li, C., Miao, M., Zhong, Y., Lu, Y. and Liu, T. (2020). "Review of application and innovation of geotextiles in geotechnical engineering", Materials, 13(7), 1774, https://doi.org/10.3390/ma13071774.
Yun, S., Jung, J., Jun, S., Jeong, J., Moon, Y.H. and Kim, J.H. (2021). "Constitutive and fracture modeling of biaxially oriented polyethylene terephthalate film and its application to polymer-coated sheet metal forming",  Journal of Manufacturing Science and Engineering, 143(6), 061005, https://doi.org/10.1115/1.4049190.
Zohra, B.F., Fouad, B.A. and Mohamed, C. (2022). "Soil-structure interaction interfaces: Literature review", Arabian Journal of Geosciences, 15(12), 1-16,   https://doi.org/10.1007/s12517-022-10336-7.