Al Adwan, J., Alzubi, Y., Alkhdour, A. and Alqawasmeh, H. (2023). “Predicting compressive strength of concrete using histogram-based gradient boosting approach for rapid design of mixtures”, Civil Engineering Infrastructures Journal, 56(1), 159-172, https://doi.org/10.22059/CEIJ.2022.337777.1811.
Alyousef, R., Rehman, M.F., Khan, M., Fawad, M., Khan, A.U., Hassan, A.M. and Ghamry, N.A. (2023). “Machine learning-driven predictive models for compressive strength of steel fiber reinforced concrete subjected to high temperatures”, Case Studies in Construction Materials, 19, e02418, https://doi.org/10.1016/j.cscm.2023.e02418.
Astarabadi, S.S.M. and Ebadzadeh, M.M. (2019). “Genetic programming performance prediction and its application for symbolic regression problems”, Information Sciences, 502, 418-433, https://doi.org/10.1016/j.ins.2019.06.040.
Babaie, T., Karimizandi, R. and Lucas, C. (2008). “Learning based brain emotional intelligence as a new aspect for development of an alarm system”,
Soft Computing, 12, 857-873,
https://doi.org/10.1007/s00500-007-0258-8.
Bae, K.O., Nguyen, T.T., Park, J., Park, J.S. and Baek, U.B. (2023). “Temperature dependency of hydrogen-related impact energy degradation of type 304 austenitic stainless steel”,
Journal of Mechanical Science and Technology, 37(6), 2891-2901,
https://doi.org/10.1007/s12206-023-0515-5.
Biswas, R., Samui, P. and Rai, B. (2019). “Determination of compressive strength using relevance vector machine and ENN”,
Asian Journal of Civil Engineering, 20(8), 1109-1118,
https://doi.org/10.1007/s42107-019-00171-9.
Bonakdari, H., Ebtehaj, I., Samui, P. and Gharabaghi, B. (2019). “Lake water-level fluctuations forecasting using minimax probability machine regression, relevance vector machine, Gaussian process regression, and extreme learning machine”,
Water Resources Management, 33(11), 3965-3984,
https://doi.org/10.1007/s11269-019-02346-0.
Cevik, A. and Sonebi, M. (2008). “Modelling the performance of self-compacting SIFCON of cement slurries using genetic programming technique”,
Computers Concrete, 5(5), 475-490,
https://doi.org/10.12989/cac.2008.5.5.475.
Dastorani, M.T., Mahjoobi, J., Talebi, A. and Fakhar, F. (2018). “Application of machine learning approaches in rainfall-runoff modeling (Case Study: Zayandeh_Rood basin in Iran)”,
Civil Engineering Infrastructures Journal, 51(2), 293-310,
https://doi.org/10.7508/CEIJ.2018.02.004.
Deng, Z., Chen, J., Zhang, T., Cao, L. and Wang, S. (2018). “Generalized hidden-mapping minimax probability machine for the training and reliability learning of several classical intelligent models”,
Information Sciences, 436, 302-319,
https://doi.org/10.1016/j.ins.2018.01.034.
Dubey, Y., Sharma, P. and Singh, M.P. (2023). “Optimization using genetic algorithm of GMAW parameters for Charpy impact test of 080M40 steel”,
International Journal on Interactive Design and Manufacturing (IJIDeM), 1-11,
https://doi.org/10.1007/s12008-023-01371-z.
Hoang, N.D. and Tran, D.V. (2023). “Machine learning-based estimation of concrete compressive strength: a multi-model and multi-dataset study”,
Civil Engineering Infrastructures Journal,
https://doi.org/10.1007/s12008-023-01371-z (Online).
Kar, S.S., Athawale, A.A., Bhushan, M. and Roy, L.B. (2023). “Dynamic soil-structure interaction of multi-story buildings using the finite element method and minimax probability machine regression”,
Engineering, Technology & Applied Science Research, 13(4), 11170-11176,
https://doi.org/10.48084/etasr.5870.
Kecman, V. (2001). Learning and soft computing: support vector machines, neural networks, and fuzzy logic models, MIT press.
Khashman, A. (2008). “A modified backpropagation learning algorithm with added emotional coefficients”,
IEEE Transactions on Neural Networks, 19(11), 1896-1909,
https://doi.org/10.1109/TNN.2008.2002913.
Khashman, A. (2009). “Blood cell identification using emotional neural networks”, Journal of Information Science & Engineering, 25(6), 1737-1751.
Kohestani, V.R., Vosoghi, M., Hassanlourad, M. and Fallahnia, M. (2017). “Bearing capacity of shallow foundations on cohesionless soils: A random forest based approach”,
Civil Engineering Infrastructures Journal, 50(1), 35-49,
https://doi.org/10.7508/ceij.2017.01.003.
Koshiyama, A.S., Vellasco, M.M. and Tanscheit, R. (2015). “GPFIS-CLASS: A genetic fuzzy system based on Genetic Programming for classification problems”,
Applied Soft Computing, 37, 561-571,
https://doi.org/10.1016/j.asoc.2015.08.055.
Kovalev, M. (2021). “Ontology-based representation of an Artificial Neural Networks”,
International Conference on Open Semantic Technologies for Intelligent Systems, (pp. 132-151), Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-031-15882-7_8.
Koza, J.R. (1994). “Genetic programming as a means for programming computers by natural selection”,
Statistics and C mputing, 4, 87-112,
https://doi.org/10.1007/BF00175355.
Kumar, C., Vardhan, H. and Murthy, C.S. (2022). “Artificial neural network for prediction of rock properties using acoustic frequencies recorded during rock drilling operations”,
Modeling Earth Systems and Environment, 8(1), 141-161,
https://doi.org/10.1007/s40808-021-01103-w.
Kumar, M., Bardhan, A., Samui, P., Hu, J.W. and Kaloop, M.R. (2021). “Reliability analysis of pile foundation using soft computing techniques: A comparative study”,
Processes, 9(3), 486,
https://doi.org/10.3390/pr9030486.
Lanckriet, G., Ghaoui, L., Bhattacharyya, C. and Jordan, M. (2001). “Minimax probability machine”, Advances in Neural Information Processing Systems, 14.
Lin, C.C., He, R.X. and Liu, W.Y. (2018). “Considering multiple factors to forecast CO2 emissions: A hybrid multivariable grey forecasting and genetic programming approach”,
Energies, 11(12), 3432,
https://doi.org/10.3390/en11123432.
Nazari, A., Milani, A.A. and Zakeri, M. (2011). “Modeling ductile to brittle transition temperature of functionally graded steels by artificial neural networks”, Computational Materials Science, 50(7), 2028-2037.
Park, D. and Rilett, L.R. (1999). “Forecasting freeway link ravel times with a multi-layer feed forward neural network”,
Computer Aided Civil and Infrastructure Engineering, 14, 358-367,
https://doi.org/10.1111/0885-9507.00154.
Switzner, N.T., Anderson, J., Ahmed, L.A., Rosenfeld, M. and Veloo, P. (2023). “Algorithms to estimate the ductile to brittle transition temperature, upper shelf energy, and their uncertainties for steel using Charpy V-Notch shear area and absorbed energy data”,
Metals, 13(5), 877,
https://doi.org/10.3390/met13050877.
Taylor, K.E. (2001). “Summarizing multiple aspects of model performance in a single diagram”,
Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192,
https://doi.org/10.1029/2000JD900719.
Vouros, G.A. (2022). “Explainable deep reinforcement learning: state of the art and challenges”,
ACM Computing Surveys, 55(5), 1-39,
https://doi.org/10.1145/3527448.
Zhang, H., Zhou, J., Jahed Armaghani, D., Tahir, M.M., Pham, B.T. and Huynh, V.V. (2020). “A combination of feature selection and random forest techniques to solve a problem related to blast-induced ground vibration”,
Applied Sciences, 10(3), 869,
https://doi.org/10.3390/app10030869.
Ziggah, Y.Y., Issaka, Y. and Laari, P.B. (2022). “Evaluation of different artificial intelligent methods for predicting dam piezometric water level”,
Modeling Earth Systems and Environment, 8(2), 2715-2731,
https://doi.org/10.1007/s40808-021-01263-9.