Akbari, R. and Lotfi, V. (2022). “Nonlinear dynamic analysis of concrete gravity dams utilizing a simplified continuum damage model and different damping algorithms”,
Asian Journal of Civil Engineering, 24(2), 453-468,
https://doi.org/10.1007/s42107-022-00511-2.
Alegre, A. and Oliveira, S. (2020). “Non-linear seismic analysis of arch dams considering joint movements and a concrete damage model”, Dam World 2020, Lisbon, Portugal.
Alegre, A., Oliveira, S., Mendes, P., Proença, J., Carvalho, E. and Matsinhe, B. (2022). “Numerical models for seismicanalysis of arch dams”, Congreso de Métodos Numéricos En Ingeniería, 1-20.
Ardakanian, R., Ghaemian, M. and Mirzabozorg, H. (2006). “Nonlinear behavior of mass concrete in 3-D problems using damage mechanics approach”, European Earthquake Engineering, 20(2), 65-89.
Cabral, N.R., Invaldi, M.A., D’Ambra, R.B. and Iturrioz, I. (2019). “An alternative bilinear peridynamic model to simulate the damage process in quasi-brittle materials”,
Engineering Fracture Mechanics, 216(1), 106494, DOI:
10.1016/j.engfracmech.2019.106494.
Cervera, M., Oliver, J. and Faria, R. (1995). “Seismic evaluation of concrete dams via continuum damage models”
Earthquake Engineering & Structural Dynamics, 24(9), 1225-1245,
https://doi.org/10.1002/eqe.4290240905.
Cervera, M., Oliver, J. and Manzoli, O., (1996). “A rate‐dependent isotropic damage model for the seismic analysis of concrete dams”,
Earthquake Engineering & Structural Dynamics, 25(9), 987–1010, 25, 987-1010,
https://doi.org/10.1002/(SICI)1096-9845(199609)25:9<987::AID-EQE599>3.0.CO;2-X.
Cervera, M. and Tesei, C. (2017). “An energy-equivalent d+/d− damage model with enhanced microcrack closure-reopening capabilities for cohesive-frictional materials”,
Materials, 10(4), 433.
https://doi.org/10.3390/ma10040433.
Cervera, M., Tesei, C. and Ventura, G. (2017). “Cracking of quasi-brittle structures under monotonic and cyclic loadings: A d+/d− damage model with stiffness recovery in shear”,
International Journal of Solids and Structures, 135(1), 148-171,
https://doi.org/10.1016/j.ijsolstr.2017.11.017.
Daneshyar, A. and Ghaemian, M. (2019). “Seismic analysis of arch dams using anisotropic damage-plastic model for concrete with coupled adhesive-frictional joints response”,
Soil Dynamics and Earthquake Engineering 125(1), 105735,
https://doi.org/10.1016/J.SOILDYN.2019.105735.
Farahani, A.V. (2005). Advances in fatigue, fracture and damage assessment of materials, Vol. 6, WIT Press.
Hall, J.F. (1988). “The dynamic and earthquake behaviour of concrete dams: review of experimental behaviour and observational evidence”,
Soil Dynamics and Earthquake Engineering 7(2), 58-121, issue??
https://doi.org/10.1016/S0267-7261(88)80001-0.
Jenabidehkordi, A. (2019). “Computational methods for fracture in rock: A review and recent advances”, Frontiers of Structural and Civil Engineering, 13(2), 273-287.
Komasi, M. and Beiranvand, B. (2021). “Seepage and stability analysis of the Eyvashan Earth Dam under drawdown conditions”,
Civil Engineering Infrastructures Journal, 54(2), 205-223,
https://doi.org/10.22059/ceij.2020.293429.1634.
Lubliner, J., Oliver, J., Oller, S. and Oñate, E., (1989). “A plastic-damage model for concrete”,
International Journal of Solids and Structures, 25(3), 299-326,
https://doi.org/10.1016/0020-7683(89)90050-4.
Mirzabozorg, H. and Ghaemian, M. (2005). “Non-linear behavior of mass concrete in three-dimensional problems using a smeared crack approach”,
Earthq Eng Struct Dyn, 34(3), 247-269,
https://doi.org/10.1002/eqe.423.
Mirzabozorg, H., Ghaemian, M. and Kianoush, M.R. (2004). “Damage mechanics approach in seismic analysis of concrete gravity dams including dam-reservoir interaction”, European Earthquake Engineering, 18(3), 17-24.
Mirzabozorg, H., Khaloo, A.R., Ghaemian, M. and Jalalzadeh, B. (2007). “Non-uniform cracking in smeared crack approach for seismic analysis of concrete dams in 3D space”, International Journal of Earthquake Engineering and Engineering Seismology (EEE), 2(1), 48-57.
Nguyen, N.H.T., Bui, H.H., Kodikara, J., Arooran, S. and Darve, F. (2019). “A discrete element modelling approach for fatigue damage growth in cemented materials”,
International Journal of Plasticity, 112(1), 68-88,
https://doi.org/https://doi.org/10.1016/j.ijplas.2018.08.007.
Oliver, J., (1989). “A consistent characteristic length for smeared cracking models”,
International Journal for Numerical Methods in Engineering, 28(2), 461-474,
https://doi.org/10.1002/nme.1620280214.
Oliver, J., Cervera, M., Oller, S. and Lubliner, J. (1990). “Isotropic damage models and smeared crack analysis of concrete”, Proceedings of SCI-C Computer Aided Analysis and Design of Concrete Structures, Pineridge Press, pp. 945-957.
Omidi, O. and Lotfi, V. (2017a). “Seismic plastic–damage analysis of mass concrete blocks in arch dams including contraction and peripheral joints”,
Soil Dynamics and Earthquake Engineering, 95(1), 118-137,
https://doi.org/10.1016/j.soildyn.2017.01.026.
Park, T., Ahmed, B. and Voyiadjis, G.Z., (2021). “A review of continuum damage and plasticity in concrete, Part I: Theoretical framework”,
International Journal of Damage Mechanics, 31(6), 901-954,
https://doi.org/10.1177/10567895211068174.
Qin, X., Guo, J., Gu, C., Chen, X. and Xu, B., (2021). “A discrete-continuum coupled numerical method for fracturing behavior in concrete dams considering material heterogeneity”,
Construction and Building Materials, 305(1), 124741,
https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.124741.
Rayleigh, J.W.S. and Lindsay, R.B., (1945). The theory of sound, Dover Publications.
Rots, J.G., Blaauwendraad, J., (1989). “Crack models for concrete, discrete or smeared? Fixed, multi-directional or rotating?”, HERON, 34(1), 1-56.
Voyiadjis, G.Z., Ahmed, B. and Park, T. (2021). “A review of continuum damage and plasticity in concrete, Part II: Numerical framework”,
International Journal of Damage Mechanics, 31(5), 762-794,
https://doi.org/10.1177/10567895211063227.
Xu, L., Jing, S., Liu, J. and Huang, Y. (2017). “Cracking behavior of a concrete arch dam with weak upper abutment”,
Mathematical Problems in Engineering, 2017, 6541975,
https://doi.org/10.1155/2017/6541975.