Document Type : Research Papers
Authors
BHRC
Abstract
Keywords
ACI 544.2R-89. (1989). Measurement of properties of fiber reinforced concrete, American Concrete Institute.
ASTM A820/A820M. (2016). Standard specification for steel fibers for fiber-reinforced concrete, ASTM International, West Conshohocken, PA.
ASTM C150/C150M. (2019). Standard specification for Portland cement, ASTM International, West Conshohocken, PA.
ASTM C192/C192M. (2019). Standard practice for making and curing concrete test specimens in the laboratory, ASTM International, West Conshohocken, PA.
ASTM C469/C469M. (2014). Standard test method for static modulus of elasticity and Poisson's ratio of concrete in compression, ASTM International, West Conshohocken, PA.
ASTM C496/C496M. (2017). Standard test method for splitting tensile strength of cylindrical concrete specimens, ASTM International, West Conshohocken, PA.
ASTM C779/C779M. (2019). Standard test method for abrasion resistance of horizontal concrete surfaces, ASTM International, West Conshohocken, PA.
ASTM C78/C78M. (2018). Standard test method for flexural strength of concrete (using simple beam with third-point loading), ASTM International, West Conshohocken, PA.
Atis, C.D., Karahan, O., Ari, K., Sola, Ö.C. and Bilim, C. (2009). “Relation between strength properties (flexural and compressive) and abrasion resistance of fiber (steel and polypropylene) reinforced fly ash concrete”, Journal of Materials in Civil Engineering, 21, 402-408.
BS EN 12390-8. (2019). Testing hardened concrete. Depth of penetration of water under pressure, BS Standards.
Fwa, T.F. and Paramasivam, P. (1990). “Thin steel fiber cement mortar overlay for concrete pavement”, Cement and Concrete Composites, 12, 175-184.
Harrington, D. and Fick, G. (2014). “Guide to concrete overlays sustainable solutions for resurfacing and rehabilitating existing pavements”, 3rd Edition, ACPA Publication.
Isla, F. Luccioni, B. Ruano, G. Torrijos, M.C. Morea, F. Giaccio, G. and Zerbino, R. (2015). “Mechanical response of fiber reinforced concrete overlays over asphalt concrete substrate: Experimental results and numerical simulation”, Construction and Building Materials, 93, 1022-1033.
Jafarifar, N., Pilakoutas, K. and Bennett, T. (2016). “The effect of shrinkage cracks on the load bearing capacity of steel-fiber-reinforced roller-compacted-concrete pavements”, Materials and Structures, 49, 23-29.
LaHucik, J. Dahal, S. Roesler, J. and Amirkhanian, A.N. (2017). “Mechanical properties of roller-compacted concrete with macro-fibers”, Construction and Building Materials, 135, 440-446.
Madhkhan, M., Azizkhani, R. and Torki Harchegani, M.E. (2012). “Effects of pozzolans together with steel and polypropylene fibers on mechanical properties of RCC pavements”, Construction and Building Materials, 26(1), 102-112.
Neves, R.D. and Fernandes de Almeida, J.C.O. (2005). “Compressive behaviour of steel fiber reinforced concrete”, Structural Concrete, 6(1), 1-8.
Ramezani, A.R. and Esfahani, M.R. (2018). “Evaluation of hybrid fiber reinforced concrete exposed to severe environmental conditions”, Civil Engineering Infrastructures Journal, 51(1), 119-130.
Shadafza, E. and Saleh Jalali, R. (2016). “The elastic modulus of steel fiber reinforced concrete (SFRC) with random distribution of aggregate and fiber”, Civil Engineering Infrastructures Journal, 49(1), 21-32.
Song, P.S., Hwang, S. and Sheu, B.C. (2004). “Statistical evaluation for impact resistance of steel-fiber-reinforced concretes”, Magazine of Concrete Research, 56(8), 437-442.
Sukontasukkul, P., Chaisakulkiet, U., Jamsawang, P., Horpibulsuk, S., Jaturapitakkul, C. and Chindaprasirt, P. (2019). “Case investigation on application of steel fibers in roller compacted concrete pavement in Thailand”, Journal of Case Studies in Construction Materials, 11, e00271.
Tavakoli, H.R., Fallahtabar Shiadeh, M. and Parvin, M. (2016), “Mechanical behavior of self-cnthetics and steel fibers”, Civil Engineering Infrastructures Journal, 49(2), 197-213.
Zhang, M.H., Li L. and Paramasivam, P. (2004). “Flexural toughness and impact resistance of steel-fiber-reinforced lightweight concrete”, Magazine of Concrete Research, 56(5), 251-262.