
 

 

Civil Engineering Infrastructures Journal xx,xx 

DOI: 10.22059/ceij.2024.369661.1996 

 

 

 

Thermal Performance Prediction for Alkali-Activated Concrete Using 

GGBFS, NaOH, and Sodium Silicate 

 

Pramod Kumar1, Sanjay Sharma2, P. Siva Kumar1, M. S. Yuvraj1, D. V. Purushotham1, 

Saurabh Kumar3, Kapil Kumar Vashistha3, Amit Kumar3* and Abhilash Gogineni2 

1Assistant Professor, Department of Civil Engineering, Mohan Babu University (SVEC), 

Tirupati, Andhra Pradesh, India- 517102 

2Research Scholar, Department of Civil Engineering, National Institute of Technology, 

Jamshedpur, Jharkhand-831013 

3Assistant Professor, Department of Civil Engineering, IIMT University, Meerut, Uttar 

Pradesh, India-250001 

*Corresponding Author: amitsanajsr93@gmail.com 

 

Received: 15/12/2023      
Revised: 28/08/2024       
Accepted: 01/09/2024 

 

 

 

Abstract: In fire safety, understanding the behaviour of concrete exposed to high temperatures 

is essential. This study experimentally explored the mechanical properties of Alkali-Activated 

Concrete (AAC) and utilized Recurrent Neural Network (RNN)-based Long Short-Term 

Memory (LSTM) techniques to predict the mechanical properties of alkali-activated concrete 

(AAC) at elevated temperatures. The LSTM models accurately predicted compressive, 
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flexural, and split tensile strengths, with coefficients of determination (R²) exceeding 0.9 for 

training and testing datasets. Specifically, R² values were 0.9838 and 0.9134 for compressive 

strength, 0.9965 and 0.9861 for flexural strength, and 0.9743 and 0.9852 for split tensile 

strength in training and testing, respectively. The models also yielded low root mean square 

error (RMSE) and mean absolute error (MAE) values, further underscoring their predictive 

reliability. Error analysis across all mechanical properties affirmed the LSTM models' 

robustness in capturing AAC's complex behaviour under thermal stress. These results suggest 

that LSTM networks are highly effective tools for predicting material properties crucial for 

structural fire safety and sustainable construction, offering a promising approach for improving 

the resilience and safety of AAC structures in extreme conditions. 

Keywords: Alkali-activated concrete; high temperature; LSTM; Mechanical properties; 

Prediction of strengths. 

1. Introduction 

In 2014, Thailand's cement production 

industry significantly released carbon 

dioxide (CO2) and other greenhouse gases 

into the atmosphere. The country's cement 

production emissions amounted to 36.92 tons 

per year, accounting for approximately 15% 

of Thailand's total CO2 emissions. It is well 

known that greenhouse gas emissions tend to 

increase in proportion to the output of 

cement manufacturing (Zakka et al., 2021). 

Cement production involves a highly energy-

intensive process that requires raising the 

temperatures of the raw materials to around 

1400°C (Dueramae et al., 2020; Gogineni et 

al., 2024; Mishra et al., 2024). This energy 

input contributes to the overall carbon 

footprint of the cement industry. As a result, 

researchers have been exploring alternative 

approaches to reduce the environmental 

impact of cement production (Patel & Shah, 

2018). One focus area has been replacing 

Ordinary Portland Cement (OPC) with 

supplementary cementing materials. 

Numerous pozzolanic materials have been 

studied as potential replacements for OPC, 

including fly ash, bottom ash, palm oil fuel 

ash, rice husk ash, and bagasse ash. Fly ash 

has emerged as a promising candidate for 

widespread cement replacement in concrete 

due to its beneficial properties as a 

pozzolanic material (Namarak et al., 2018). 

Alkaline cement, also known as 

geopolymers, has gained significant 

attention recently as an alternative to 

Portland cement-based concrete (Duxson et 

al., 2007). Due to their distinctive qualities, 

which include rapid growth of high 

mechanical strength and outstanding 

durability, this is possible. Unlike Portland 

cement, which exhibits low thermal 

conductivity and is non-combustible, 

sustained exposure to fire can lead to severe 

spalling, structural damage, or even collapse, 

posing risks to human life and resulting in 

high economic costs (Mostafaei et al., 2022). 

The behavior of Portland cement-based 

concrete under fire conditions can be 

attributed to the role played by Portland 

cement paste. When subjected to 

temperatures of around 95oC, the primary 

binder in Portland cement, known as C–S–H 

gel, undergoes dehydration and significant 

shrinkage (Pratap and Kumar, 2023). 

Simultaneously, tiny explosions occur within 

the material. At higher temperatures, such as 

450oC, portlandite decomposes; 750oC 

calcium carbonate decomposes. Rehydration 

of the cement upon contact with water leads 

to its disintegration (Neville, 1995). 



 

 

In contrast, alkaline cement or geopolymers 

are based on a new family of aluminosilicate 

binders. These materials, such as metakaolin 

or fly ash, undergo hydration in alkalis, 

forming a three-dimensional alkaline 

aluminosilicate hydrate known as N–A–S–H 

gel. This gel differs from the C–S–H gel 

formed during Portland cement hydration 

(Garcia et al., 2011). Additionally, secondary 

reaction products in alkaline cement include 

various zeolites, such as hydroxy-sodalite, 

Na-chabazite, and zeolite P. The specific 

zeolites that form depend on the alkaline 

activator and curing conditions (Kovalchuk 

et al., 2007; Criado et al., 2010). One of the 

most significant advantages of alkaline 

cement is its ability to develop high 

mechanical strength within a short period, 

even at moderate temperatures below 100oC 

(Fernandez & Palomo, 2006). This rapid 

strength development is beneficial in 

construction projects where early strength 

gain is desired. Moreover, alkaline cements 

exhibit excellent durability (Chithambaram 

et al., 2019; Singh et al., 2023; Mostafaei et 

al., 2023), making them suitable for 

applications that require long-lasting and 

resilient materials. The key defining 

properties of alkaline cement are its rapid 

strength development and durability 

(Abhishek et al., 2022; Reddy & 

Harihanandh, 2023). Rapidly achieving high 

mechanical strength enables more rapid 

construction and shorter project schedules. 

The durability of alkaline cement ensures 

that structures built with these materials can 

withstand environmental factors and ageing 

processes, leading to longer service life and 

reduced maintenance costs. AAC has gained 

attention as a sustainable and eco-friendly 

alternative to traditional cement-based 

concrete. AAC offers several advantages, 

including lower power consumption and 

reduced greenhouse gas emissions while 

maintaining excellent mechanical and 

durability properties. AAC is a concrete type 

formed through polymerization or alkali 

activation. This process involves using 

alkaline activators to react with silica (Si), 

alumina (Al), and calcium (Ca) rich 

precursors, resulting in the formation of 

amorphous or semi-crystalline three-

dimensional alumino-silicates known as 

geopolymer or AAC. Previous studies have 

shown that AAC systems have the potential 

to significantly reduce CO2 emissions and 

energy demand compared to ordinary 

Portland cement (Mostafaei et al., 2023; 

Gogineni et al., 2024a). It is estimated that 

AAC can achieve more than a 50% reduction 

in CO2 emissions and a 50-65% decrease in 

energy demand (Shah et al., 2020; Alrefaei & 

Dai, 2018). In addition to its excellent 

working properties and environmental 

benefits, AAC stands out because it 

predominantly utilizes industrial waste 

materials as its source material. This 

approach reduces the reliance on non-

renewable raw materials and promotes the 

beneficial utilization of industrial waste. 

Industrial wastes such as fly ash and slag are 

commonly used in AAC production due to 

their cost-effectiveness (Duxson et al., 

2007), widespread availability (Xu et al., 

2014), and sustainability. Fly ash, a by-

product of coal combustion is rich in silica 

and alumina (Paswan et al., 2024). It 

contributes to the final AAC product's 

stability, strength, and durability. However, 

fly ash exhibits low reactivity at room 

temperature. 

On the other hand, slag, a by-product of 

metal smelting, is rich in calcium and 

alumina. It offers higher strength but may 

have drawbacks such as longer setting time, 

poor workability, and sometimes lower 

durability and stability (Shah et al., 2020; 

Sharma et al., 2024). To optimize the 

properties of AAC, a combination of fly ash 

and slag, or a mixture of these materials with 

similar substances, is often employed. This 

combination creates a stable final product 

with high strength and durability 

characteristics. Developing an AAC with 

similar strength properties to conventional 

AAC has simplified its application in in-situ 

scenarios. This advancement allows for the 

use of solid alkali, making it more 

convenient for on-site construction. 

However, achieving the desired fresh 



 

 

properties, satisfactory strength 

characteristics, and the proclaimed 

environmental benefits of AAC can be a 

complex process due to the nature and 

diversity of available source materials. 

Designing an AAC mix requires carefully 

selecting input materials and their 

proportions, which typically involves 

extensive experimentation. This process 

demands significant amounts of material, 

time, and labour. Soft computing techniques 

and machine learning models have become 

imperative to overcome these challenges and 

streamline the AAC design process. By 

employing machine learning models 

(Gogineni et al., 2023b; Pratap et al., 2023), 

researchers can swiftly and efficiently 

predict the working properties of AAC. 

These computational tools can analyse large 

amounts of data, identify patterns, and 

generate predictive models that assist in 

selecting the optimal mix proportions for 

AAC production. This approach saves time, 

reduces material waste, and enhances the 

overall efficiency of AAC development, 

enabling faster adoption of this eco-friendly 

construction material. Since the early 2000s, 

neural networks (Zurada, 1992) have 

emerged as powerful and widely used tools 

for creating predictive models in concrete 

technology. Machine learning (ML) models 

(Gogineni et al., 2023a; Kumar et al., 2024) 

revolutionize how predictions and decisions 

are made by leveraging mathematical models 

derived from sample data, eliminating the 

need for explicit programming. This 

paradigm shift allows for the developing of 

sophisticated models capable of predicting 

diverse outcomes. Concrete strength 

prediction is a prime example of how ML 

techniques, including neural networks, 

support vector regression (SVR), and tree-

based models, have been employed to 

enhance accuracy and efficiency. In a study 

by Huynh et al. (2020), the application of 

artificial intelligence extended to predicting 

the compressive strength of fly ash-based 

geopolymer concrete. The researchers 

explored various ML models (Kumar et al., 

2023; Gogineni et al., 2024c), including 

artificial neural networks (ANN) (Kumar & 

Pratap, 2023), deep neural networks (DNN), 

and deep residual networks (ResNet) (Lieu et 

al., 2021; Lee et al., 2022; Gogineni and 

Chintalacheruvu, 2024a). These models, 

particularly DNN and ResNet, demonstrated 

their prowess in capturing complex patterns 

within the data, thereby improving the 

accuracy of concrete strength predictions.  

Another noteworthy approach involves the 

utilization of the Extreme Learning Machine 

(ELM) and ANN (Kim et al. (2002)) for 

predicting the compressive strength of 

concrete containing fly ash and silica fume. 

The comparison of these models provides 

insights into their respective strengths and 

weaknesses, aiding researchers and 

practitioners in selecting the most suitable 

model for specific applications. Bai et al. 

(2003) utilized ANNs to predict the 

workability of concrete by incorporating 

various alumino-silicate by-product 

materials like metakaolin and fly ash. 

Recognizing the strong correlation between 

mix-design factors and the strength 

parameters of concrete composites, Yang et 

al. (2003) and Jithendra et al. (2020) utilized 

ANNs to analyze these correlations. The 

neural network later found applications in a 

variety of concrete composites, including 

self-compacting concrete (Kumar et al., 

2024; Gogineni and Chintalacheruvu, 

2024b), high-strength concrete (Khosravani 

et al., 2019), fiber-reinforced concrete (Liu & 

Zhang, 2020), and Geopolymer concrete 

(Nagajothi & Elavenil, 2020). According to 

the literature, neural network has been 

proven to be a highly effective technique for 

forecasting various concrete composite 

characteristics and other material 

investigations (Nagaraj et al., 2021; Kumar 

et al., 2024, Gogineni et al., 2024b). 

The AAC has superior durability and 

environmental benefits to traditional 

Portland cement concrete. However, 

accurately predicting its mechanical 

properties, such as compressive strength, 

flexural strength, and split tensile strength, 

particularly at elevated temperatures, 

remains challenging. Traditional methods 



 

 

often fail to provide precise predictions due 

to the complex behavior of AAC under 

varying conditions. The present study 

addresses this challenge by predicting AAC 

properties at ambient and elevated 

temperatures using advanced soft computing 

techniques, specifically Long Short-Term 

Memory (LSTM) networks. LSTM, an 

advanced variant of fundamental algorithms 

like Artificial Neural Networks (ANN) and 

Recurrent Neural Networks (RNN), is 

designed to handle time-series data and 

capture long-term dependencies effectively. 

The present seeks to offer an efficient and 

accurate method for predicting the 

mechanical properties of AAC, addressing a 

significant gap in the existing literature 

where limited studies have focused on such 

predictions. 

2. Materials and Methodology 

2.1. Dataset for LSTM 

The data utilized for the present study was 

obtained from the experimental programs 

performed in the laboratories. The 

experimental program utilizes the GGBFS, 

different alkali-activator proportions (i.e., 

NaOH and sodium silicate with 5%, 6%, and 

7%), fine aggregates (FA), and coarse 

aggregates (CA), shown in Fig. 1. The AAC 

was produced by mixing the GGBFS and 

aggregates with NaOH and sodium silicate 

solution.  

Before utilizing the materials, the physical 

property test is important. The physical 

properties of GGBFS, FA, and CA are listed 

in Table 1. The specific mix design of the 

geopolymer, as detailed in Table 2, is central 

to the present study. It outlines the precise 

proportions and components used to create 

the geopolymer mixture. This includes the 

type and quantity of raw materials, such as 

GGBFS, CA, FA, and activators like sodium 

hydroxide and sodium silicate. 

 

Fig. 1. Materials used in the study 

Table 1. Physical characteristics of GGBFS, FA, and CA 

Physical properties GGBFS FA CA 

Density (kN/m3) ----------- 13.74 15.24 

Specific gravity 2.86 2.50 2.75 



 

 

Fineness  ----------- 2.85 6.03 

Specific surface (cm2/g) 4235 ----------- ----------- 

Water absorptions (%) ----------- 1.22 0.43 

Bulking (%) ----------- 4 ----------- 

Grading ----------- II-zone ----------- 

Table 2. Mix design used for the experimental study 

GGBFS (kg/m3) FA (kg/m3) CA (kg/m3) Alkali soln. 

(%) 

w/c ratio 

356 1121.4 694.2 5,6, 7 0.42, 0.45, 0.48 

The casting of samples was done for 

compressive strength (Cubes), split tensile 

test (Cylinders), and flexural strength 

(Prisms) (Fig. 2a). The curing of samples was 

carried out in curing tanks. The testing 

program was performed after a maturity 

period of 28 days. The tests were performed 

at ambient temperature (27oC) and elevated 

temperature of 100oC, 200oC, 300oC, 400oC, 

500oC, 600oC, 700oC, and 800oC. The 

samples were exposed to elevated 

temperatures using the muffle furnace (Figs. 

2b and 2c).  

The compressive (Fig. 3a), flexural (Fig. 3b), 

and split tensile strength (Fig. 3c) test was 

performed to collect the data for the present 

study. The test setup for the experimental 

programs is shown in Fig. 3.

 

Fig. 2. Photographs of Experimental programs (a) casted samples (b) Muffle furnace (c) 

Samples in muffle furnace 



 

 

 

Fig. 3. Test programs setups (a) Compressive strength test (b) Flexural strength test (c) Split 

tensile test 

2.2. 

2.3.Methodology 

LSTM is a type of recurrent neural network 

(RNN) designed to address the challenges 

posed by vanishing and exploding gradients 

in traditional RNNs. The vanishing gradient 

problem arises when training RNNs on long 

sequences, causing the gradients to become 

extremely small and hindering the learning 

of long-term dependencies. LSTM 

introduces a specialized memory cell to 

capture and retain information over extended 

periods, mitigating these gradient-related 

issues. LSTM's fundamental innovation lies 

in its architecture, featuring a memory cell 

with three gates: an input gate, a forget gate, 

and an output gate. These gates regulate the 

flow of information into, out of, and within 

the memory cell, allowing the network to 

remember or forget information selectively. 

This mechanism enables LSTMs to maintain 

context over extended sequences, making 

them particularly adept at learning and 

exploiting long-term dependencies in data 

(Fig. 4). The ability of LSTMs to memorize 

information for prolonged durations 

positions them as powerful tools for 

processing sequential data, such as time 

series. Time series data often exhibits 

dependencies across multiple time steps, and 

LSTM's capacity to capture and remember 

these dependencies makes them well-suited 

for tasks like time series analysis. By 

retaining crucial information over extended 

periods, LSTMs excel in recognizing 

patterns, trends, and relationships within 

sequential data, contributing to more 

accurate modeling and prediction. 

 



 

 

Fig. 4. LSTM architecture 

In this study, data obtained from 

experimental programs plays a crucial role, 

strategically employed in a 70-30 ratio. For 

each type of test 57 data set has been used. 

This distribution serves a dual purpose in 

training and evaluating the machine learning 

model for predicting the mechanical 

properties of AAC under consideration. 70% 

of the collected data is dedicated to training 

the model, allowing it to learn and discern 

patterns inherent in the dataset. Through this 

training process, the model grasps the 

underlying relationships between various 

factors and the mechanical properties of 

AAC at elevated temperatures. 

The remaining 30% of the data is reserved 

for testing the model's efficiency and 

generalization capabilities. This evaluation 

ensures the model's reliability and 

applicability beyond the training dataset. In 

essence, the 70-30 data split strategy ensures 

a robust and validated machine learning 

model that can accurately predict the 

mechanical properties of AAC under 

elevated temperature conditions. 

Separating the dataset for evaluation is 

essential to objectively measure the model's 

predictive performance. Before employing 

the data in machine learning (ML), v. This 

step involves calculating various statistical 

measures such as the mean, standard 

deviation, minimum, and maximum values. 

By doing so, one can comprehensively 

understand the dataset's attributes. Analyzing 

these statistics helps identify trends, patterns, 

and outliers, crucial for making informed 

decisions during the model development 

phase. This preliminary analysis ensures that 

any anomalies or inconsistencies in the data 

are detected early, facilitating the creation of 

a more robust and accurate model. The 

findings from this statistical evaluation are 

then organized and presented in Table 3. 

 

 

 

 

 

 

 

 

Table 3. The statical analysis results of the parameters used in the analysis 

 

G
G

B
F

S
 

C
A

 

F
A

 

w
/c

 r
at

io
 

A
lk

al
i 

(%
) 

T
em

p
er

at
u
re

 

(o
C

) 

C
S

 

T
S

 

F
S

 

count 81 81 81 81 81 81 81 81 81 

mean 356 1121.4 694.2 0.45 6 403 21.75 2.23 2.34 

std 0 0.0 0.0 0.03 0.8 255.3 10.52 1.52 1.75 

min 356 1121.4 694.2 0.42 5 27 2.86 0.39 0.19 

25% 356 1121.4 694.2 0.42 5 200 11.02 0.98 0.8 

50% 356 1121.4 694.2 0.45 6 400 25.01 1.92 1.84 

75% 356 1121.4 694.2 0.48 7 600 29.72 2.83 3.74 

max 356 1121.4 694.2 0.48 7 800 40.37 6.11 6.48 

3. Results and Discussions 

The present study centers on forecasting the 

mechanical properties of AAC under 

elevated temperatures, employing LSTM 

networks for this purpose. This section 

focuses on creating and validating predictive 

LSTM models specifically designed to 



 

 

predict the concrete strength of AAC at 

elevated temperatures. 

3.1. Compressive Strength Prediction and 

Error Analysis 

The initial step involves developing a 

predictive model for the compressive 

strength (CS) of AAC using LSTM. The 

compressive strength predictive model 

undergoes two crucial phases: training and 

testing. During training, the LSTM model 

learns from a dataset containing information 

on AAC's mechanical properties under 

various temperature conditions. The reported 

R2 values of 0.9838 and 0.9114 during 

training and testing signify a strong 

correlation between the predicted and actual 

compressive strength values, indicating that 

the model successfully captures the 

underlying patterns and relationships in the 

training data (Figs. 5a and 5b). The 

Hyperparameters are used in the LSTM 

model for compressive strength prediction, 

typically employing 1 to 3 layers, each 

consisting of 50 to 300 units per layer. The 

sequence length, which defines the number 

of time steps or input features considered 

simultaneously, ranged between 10 to 50. A 

learning rate between 0.001 to 0.01 was 

selected to optimize the gradient descent 

algorithm during training, ensuring efficient 

convergence and model stability. Batch sizes 

varied from 16 to 64, influencing how many 

samples were processed before updating 

model weights, while dropout rates, set 

between 0.1 to 0.5, regulated the 

regularization of network connections to 

prevent overfitting. Activation functions 

such as tanh were chosen to introduce non-

linearity into the model, effectively capturing 

complex relationships within the AAC 

dataset. 

  

(a) (b) 

Fig. 5. Compressive strength prediction for (a) training and (b) testing  

The error analysis of a 

compressive strength prediction model 

involves assessing its accuracy by comparing 

the predicted strength with actual 

experimental data. In Fig. 6a and 6b, the 

study focuses on the training and testing 

phases, visually representing the errors 

encountered. The term "error" refers to the 

disparity between predicted values from the 

model and the actual experimental results. 

The figures indicate minimal deviation 

between predicted and experimental values 

in both phases. This suggests that the model's 

predictions for the compressive strength of 

AAC under elevated temperatures closely 

align with the values obtained through 

experimentation. The small discrepancies 



 

 

observed in the error study imply a high 

degree of accuracy in the model's ability to 

forecast compressive strength under these 

conditions.

  

(a) (b) 

Fig. 6. Compressive strength Error for (a) training and (b) testing 

3.2. Flexural Strength Prediction and 

Error Analysis 

The flexural strength (FS) data acquired from 

laboratory experiments is the foundation for 

training and evaluating a predictive model. 

The model's efficacy is assessed using the 

performance parameter R2, which gauges the 

goodness of fit between the predicted values 

and the actual experimental results.  The R2 

value of 0.9965 (Fig. 7a) for the training 

phase suggests an extremely robust fit during 

the model's learning process, affirming its 

capacity to reproduce the observed flexural 

strength within the laboratory setting 

accurately. The slightly lower R2 value of 

0.98611 (Fig. 7b) for the testing phase 

indicates a slightly reduced but impressive 

performance when applied to new, unseen 

data. 

 
 

(a) (b) 

Fig. 7. Flexural strength prediction for (a) training and (b) testing 



 

 

Verifying predicted flexural strength 

involves a comparative analysis between the 

model's predictions and actual experimental 

data. Figs. 8a and 8b illustrate this 

investigation for the training and testing 

phases. These figures are a crucial validation 

step for the predictive model's accuracy, 

particularly under elevated temperature 

conditions for AAC. The minimal difference 

observed between the predicted and 

experimental values in both phases indicates 

high accuracy and reliability in the model's 

predictions for the flexural strength of AAC 

under elevated temperature conditions. This 

suggests that the model effectively captures 

and reproduces the complex relationships 

within the data, demonstrating its ability to 

generalize well to new, unseen instances. The 

Hyperparameters are used for Flexural 

strength prediction; LSTM architectures 

span 1 to 4 layers with 50 to 400 units per 

layer. The sequence length and learning rate 

mirrored those used for compressive strength 

prediction, adapting to the specific dynamics 

of flexural strength data. Batch sizes and 

dropout rates were adjusted similarly to 

compressive strength models to balance 

computational efficiency and model 

robustness. Activation functions like ReLU 

or tanh were preferred here, catering to the 

nature of flexural strength data, and 

enhancing the model's ability to capture 

nonlinear dependencies. 

 
 

(a) (b) 

Fig. 8. Flexural strength error for (a) training and (b) testing 

3.3. Split Tensile Strength Prediction and 

Error Analysis 

Developing a predictive model for the split 

tensile strength (STS) of AAC mirrors the 

approach taken for compressive and flexural 

strength prediction models. The process 

involves initial training of the model 

followed by testing with experimental data, 

divided into 70% for training and 30% for 

testing. The model's performance is 

evaluated using the performance coefficient, 

R2.  

In the training phase, the obtained R2 value 

of 0.9743 (Fig. 9a) indicates a strong 

correlation between the model's predictions 

and the actual split tensile strength data used 

for training. This high R2 value suggests that 

the model effectively captures the underlying 

patterns and relationships in the training 

data.  

Similarly, in the testing phase, the R2 value 

of 0.9852 (Fig. 9b) signifies a robust 

performance when applied to new, unseen 

data. This indicates the model's ability to 

generalize well beyond the training dataset, 

providing accurate predictions for split 

tensile strength under conditions not 

encountered during the training phase. In 

predicting split tensile strength, LSTM 

networks typically mirrored the 



 

 

configurations used for compressive 

strength, with 1 to 3 layers and 50 to 300 

units per layer. Sequence lengths, learning 

rates, batch sizes, and dropout rates aligned 

closely with those used in compressive and 

flexural strength models, ensuring 

consistency in training approaches across 

different mechanical properties. Activation 

functions such as tanh or sigmoid were 

selected to effectively model the split tensile 

strength data, aiming to optimize predictive 

accuracy under varying thermal conditions.  

 
 

(a) (b) 

Fig. 9. Split tensile strength prediction for (a) training and (b) testing 

The error analysis of the split tensile strength 

prediction model follows a methodology like 

that employed for the compressive and 

flexural strength prediction models. In Figs. 

10a and 10b, a graphical representation 

compares predicted and experimental split 

tensile strength values for the training and 

testing phases. This visualization enables a 

comprehensive examination of the model's 

accuracy.   

The outcome of the error analysis reveals a 

close similarity between predicted and 

experimental strength values. The minimal 

deviation observed in the training and testing 

phases suggests that the model performs 

exceptionally well. The closely aligned 

predicted, and experimental values indicate 

that the model accurately captures the 

intricate relationships within the split tensile 

strength data. 

  



 

 

(a) (b) 

Fig. 10. Split tensile strength Error for (a) training and (b) testing 

Table 2 serves as a comprehensive summary 

of the model's performance in predicting the 

mechanical properties of AAC. The 

assessment employs three optimizer 

evaluation functions: R2 (coefficient of 

determination), RMSE (root mean square 

error), and MAE (mean absolute error). 

These metrics are crucial in gauging the 

developed model's accuracy and reliability in 

predicting AAC's mechanical properties. The 

results presented in Table 3. indicate that, 

across all models, there is an observable 

trend of superior performance. This implies 

that the LSTM models consistently 

demonstrate effectiveness in capturing and 

predicting the mechanical characteristics of 

AAC. The use of R2, RMSE, and MAE as 

evaluation criteria collectively reinforces the 

robustness of the model, as these metrics 

provide a holistic assessment of predictive 

accuracy, error distribution, and absolute 

prediction deviations. 

Table 3. Assessing the performance metrics of LSTM networks using various Coefficient 

Coefficient 
Compressive strength Flexural strength Split tensile strength 

Training Testing Training Testing Training Testing 

R2 0.9838 0.9134 0.9965 0.9861 0.9743 0.9852 

RMSE 1.3323 2.6696 0.098 0.2865 0.2663 0.2727 

MAE 1.0784 2.1625 0.0727 0.2094 0.1733 0.1941 

4. Conclusions 

The present study experimentally 

investigated the mechanical properties of 

Alkali-Activated Concrete (AAC). The 

present study employed Long Short-Term 

Memory (LSTM) networks to accurately 

predict these properties under elevated 

temperatures. The LSTM models 

demonstrated strong performance, with 

coefficients of determination (R2) exceeding 

0.9 for compressive strength (training: 

0.9838, testing: 0.9134), flexural strength 

(training: 0.9965, testing: 0.9861), and split 

tensile strength (training: 0.9743, testing: 

0.9852). Additionally, low root means square 

error (RMSE) and mean absolute error 

(MAE) values (compressive strength: RMSE 

1.3323, MAE 1.0784; flexural strength: 

RMSE 0.098, MAE 0.0727; split tensile 

strength: RMSE 0.2663, MAE 0.1733) 

further confirm the models' accuracy in 

predicting AAC behaviour under extreme 

thermal conditions. Further error analysis 

was conducted for all three properties, 

affirming the robustness of the LSTM 

networks in capturing the intricate 

relationships within AAC datasets. These 

findings highlight the potential of LSTM 

models to enhance predictions of material 

properties essential for structural fire safety 

assessments and sustainable construction 

practices. 

5. Future Scope 

Expanding the present dataset to include a 

broader spectrum of temperatures exceeding 

800°C holds the potential for refining 

predictions in more severe thermal 

environments. Moreover, augmenting the 

dataset with diverse compositions of alkali 

activators and supplementary materials like 

metakaolin or slag could bolster the model's 

robustness and extend its applicability across 

various AAC formulations. Additionally, 



 

 

integrating advanced machine learning 

techniques such as ensemble or hybrid 

models that combine LSTM with other 

algorithms could further elevate prediction 

accuracy. Beyond predictive prowess, future 

research could explore optimizing AAC mix 

designs to achieve specific mechanical 

properties under diverse environmental 

conditions. moreover, validating these 

predictive models in practical settings, such 

as in structural fire safety assessments or 

sustainable construction practices, could 

substantiate their real-world utility and 

promote widespread adoption within the 

construction industry. 
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