
 

1 
 

Civil Engineering Infrastructures Journal xx,xx 

DOI: 10.22059/CEIJ.2024.364871.1956 

 

 

 

 

Prediction of Compressive Strength of Geopolymer Fiber Reinforced 

Concrete Using Machine Learning 

 

 

# Name Email Address Degree Position 
Countr
y 

Affiliation 

1 
Kumar, 
Pramod
  

chaudharypramod600@gmail.co
m 

Other 

Assistan
t 
Professo
r 

India 

Department 
of Civil 
Engineering, 
Mohan Babu 
University 
(SVEC), 
Tirupati 
517102, 
Andhra 
Pradesh, 
India 

2 
Sharma, 
Sanjay  

2019rsce004@nitjsr.ac.in 
Ph.D. 
Candidat
e 

Other India 

Department 
of Civil 
Engineering, 
National 
Institute of 
Technology 
Jamshedpur, 
Jharkhand, 
India-
831014 

3 
PRATAP
, 
BHEEM  

bheempratapbind009@gmail.co
m 

Ph.D. 

Assistan
t 
Professo
r 

India 

Department 
of Civil 
Engineering, 
Graphic Era 
(Deemed to 
be 
University), 
Dehradun, 
Uttarakhand
-248002, 
India. 

 



 

2 
 

Received: 11/09/2023      
Revised: 02/01/2024       
Accepted: 16/03/2024 

 

 

 

Abstract: Geopolymers represent a cutting-edge class of inorganic materials that provide a 

sustainable substitute for conventional cement and concrete. Through meticulous combinations 

and ratios of elements like fly ash (FA), silica fume, ground granulated blast slag (GGBS), 

alkaline solutions, aggregates, superplasticizers, and fibers, geopolymer concrete mixes are 

generated as part of the experimental program. The investigation concentrates on predicting 

the 28-day compressive strength, a pivotal parameter in assessing concrete performance. The 

dataset comprises 96 data points, and two advanced techniques, namely Support Vector 

Regression (SVR) and Artificial Neural Networks (ANN), are harnessed for this research. The 

ANN demonstrates an R2 value of 0.992 on the training dataset, indicating its capacity to 

elucidate around 99.2% of the variability. On the other hand, SVR boasts an R2 value of 0.995, 

signifying an ability to account for about 99.5% of the variance. When applied to the testing 

data, the ANN achieves an R2 of 0.96, while SVR attains an R2 of 0.99. This study suggests 

that SVR exhibits slightly superior performance in elucidating variance within the testing 

dataset. 

Keywords: ANN, Fly ash, GGBS, Soft computing. 

Introduction 

Reinforced concrete (RC) is a global construction material used worldwide, supported by a 

substantial global cement production, estimated to be approximately 4.6 gigatons (Gt) in 2015. 

Despite its widespread use and durability, RC structures can face challenges over time due to 

various factors, such as environmental exposure, chemical attack, or structural damage caused 

by external events (Jindal et al; 2023). Interventions are often necessary to maintain the load-

carrying capacity and extend the service life of existing RC structures. Over the last few 

decades, externally bonded composite materials have emerged as an effective solution for 

rehabilitating and enhancing RC structures. Among these materials, fiber-reinforced 

cementitious matrix (FRCM) composites have gained significant attention as an alternative to 

traditional fiber-reinforced polymer (FRP) composites (D’Antino et al. 2014; Tayeh et al. 2021; 

Wong 2022). Both FRCMs and FRPs consist of continuous high-strength fibers embedded 

within a matrix, but they differ in the composition of the matrix material (Wang et al. 2009). 
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Furthermore, FRCMs exhibit excellent compatibility with concrete, which promotes a strong 

bond between the composite material and the existing structure (Carloni et al. 2015). Alkali-

activated materials are a diverse group of inorganic materials that include a novel category 

known as geopolymers (Qaidi et al. 2022). These materials not only provide alternatives to 

traditional cement-based products but also mitigate environmental impacts by reusing 

industrial byproducts and reducing carbon emissions (Kumar et al. 2023).  

 Polypropylene fibers (Althoey et al. 2023; Tayeh et al. 2022) are commonly utilized to control 

cracking in concrete, but they may not be ideal for geopolymer composites due to this weak 

interaction. Steel fibers are a popular choice for reinforcing cementitious composites. Steel 

fibers' tensile strength and ultimate elongations can vary significantly, ranging from 310-2850 

MPa and 0.5-3.5%, respectively (Al-Majidi et al. 2017; Sukontasukkul et al. 2018; Wang et al. 

2018). The corrugated surface enhances the interaction between the steel fibers and the binder, 

improving the composite material's performance and strength (Wang et al. 2018; Yin et al. 

2015). One significant application of recycled synthetic fibers lies in the construction industry, 

offering an effective solution for disposing of commonly consumed plastics like polyethylene 

terephthalate (PET) and polypropylene (PP) on a global scale (Siddique et al. 2008). Among 

the synthetic fibers used in construction PP, polyvinyl alcohol (PVA), polyethylene (PE), and 

PET are the most prevalent ones(Farooq et al. 2019; Mastali et al. 2018; Ranjbar et al. 2016; 

Sukontasukkul et al. 2018). PP, derived from the monomeric C3H6, is a cost-effective option 

with inert characteristics in high pH cementitious environments(Farooq et al. 2019). It helps 

control plastic shrinkage cracking in concrete and allows for easy dispersion (Larena and Pinto 

1993). It does have drawbacks such as poor thermal resistance, low modulus of elasticity, and 

difficulty in forming a strong bond with cementitious matrices due to its inherent hydrophobic 

nature(Banthia and Gupta 2006; Mu et al. 2002; Yin et al. 2015). On the other hand, PET fibers, 

produced by recycling PET bottles, exhibit mechanical properties comparable to PP and nylon 

fibers while being more cost-effective and environmentally friendly to produce (Ochi et al. 

2007).  

Soft computing (SC) is an effective approach for addressing complex problems, particularly 

when mathematical models struggle to express relationships among parameters. SC offers a 

notable advantage in solving nonlinear and linear problems by accommodating intricate 

relationships that may be challenging to model mathematically (Ghanbari et al. 2017). A key 

strength of SC lies in its ability to incorporate human-based knowledge, recognition, 

understanding, and learning into computational processes (Vadel et al. 2019). In recent years, 

researchers have increasingly harnessed artificial intelligence (AI) methods and machine 
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learning (ML) techniques as integral components of SC in predicting various properties of 

concrete. AI and ML, as sub-branches of SC, bring advanced computational capabilities to the 

forefront (Shariati et al. 2022). 

However, accurately predicting the compressive strength of geopolymer concrete (GPC) poses 

challenges due to the significant influence of physical and chemical variables. Fortunately, AI 

and ML have emerged as promising solutions to enhance accuracy and efficiency in predicting 

concrete strength (Naghibzadeh et al. 2022). While traditional regression methods lacked 

accuracy, ML methodologies have significantly improved predictions, the advanced techniques 

such as genetic engineering programming (GEP), SVR, ANN, and ensemble approaches (Sahu 

et al. 2023). SVR constructs hyperplanes that best separate data points based on their features, 

enabling it to make precise predictions (Li et al. 2022; Shariati et al. 2022). Its ability to handle 

high-dimensional data and capture nonlinear relationships has made SVR a popular choice in 

concrete strength estimation. Inspired by the human brain's functioning, ANN is a deep learning 

technique capable of learning and generalizing from large datasets (Kaveh and Khavaninzadeh 

2023). As ANN layers process and transform input data, the model comprehensively 

understands the relationships between variables, leading to highly accurate predictions. 

Ensemble approaches combine multiple models to improve predictive accuracy by leveraging 

the strengths of individual algorithms (Huang et al. 2023).  

The primary aim of the current research is to create models that can predict experimental data 

by utilizing two specific techniques: SVR and ANN. The focus of this study is centered around 

geopolymer concrete, a unique type of concrete made from components such as FA, silica 

fume, GGBS, as well as polyvinyl alcohol fiber (PVA) and steel fiber. To evaluate the 

effectiveness of the prediction models (SVR and ANN), the parameter chosen for analysis is 

the compressive strength of the geopolymer concrete after a curing period of 28 days. This 28-

day compressive strength is a critical indicator of the concrete's performance and durability. By 

using the SVR and ANN models, the study aims to establish accurate predictions of this 

compressive strength based on the specific combinations of materials used in the geopolymer 

concrete. 

Materials and Data Demonstrations 

The experiment involves the development of a novel type of concrete called geopolymer hybrid 

fiber-reinforced concrete. This concrete is designed to have enhanced strength and durability 

by combining various materials and fibers. The main components used in this experiment are 

FA, Silica fume, GGBS, alkaline solutions, fine and coarse aggregates, superplasticizers, and 
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a hybrid combination of steel fiber and polyvinyl alcohol (PVA) fiber. Concrete relies on 

binding agents to ensure that its components are properly linked together. In addition to binding 

materials, concrete also contains fine and coarse aggregates like sand and gravel. The 

experimental program involves creating different concrete mixes by varying the proportions of 

these materials. The specific combinations and ratios of FA, Silica fume, GGBS, alkaline 

solutions, aggregates, superplasticizers, and hybrid fibers are detailed in Table 1 of the 

experiment. This mix design is a roadmap for producing batches of geopolymer hybrid fiber-

reinforced concrete with consistent and controlled properties.  

Table 1. Mix design of the experimental program 

Mix 

Designations 

P0S1 P0S2 P0S3 P1S4 P1S0 P2S0 P3S0 P4S0 

FA 585 585 585 585 585 585 585 585 

Silica fume 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 

GGBS 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 

Na2SiO3 156 156 156 156 156 156 156 156 

NaOH 104 104 104 104 104 104 104 104 

Fine 

Aggregate  

850 850 850 850 850 850 850 850 

Coarse 

Aggregate  

800 800 800 800 800 800 800 800 

Super 

Plasticizer 

10 10 10 10 10 10 10 10 

Polyvinyl 

Alcohol 

Fiber 

0 0 0 0 0.10% 0.20% 0.30% 0.40% 

Steel Fiber 0.10% 0.20% 0.30% 0.40% 0 0 0 0 

*P1S0 = Polyvinyl alcohol fiber 0.1% and Steel fiber 0%. 

ML approaches necessitate a diverse set of input variables (Wang et al. 2018). These input 

variables and the corresponding outputs are derived from an experimental program. This 

specific study focuses primarily on predicting the 28-day compressive strength, a critical 

parameter for evaluating concrete performance. The models employed for this purpose involve 

a selection of input variables, and their correlation with the 28-day compressive strength is 

investigated. The chosen input variables encompass a variety of factors that contribute to the 

properties of the concrete mixture. These variables include cement, water, sand, coarse 

aggregate, superplasticizer, silica fume, FA, alkali/binder ratio, steel fiber, and PVA fiber. Each 

of these variables plays a distinct role in shaping the characteristics of the final concrete 

product.  
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The dataset used in this study comprises 96 data points, each representing a specific 

combination of input variables and the corresponding 28-day compressive strength. These data 

points serve as the basis for training and testing the ML models.   

Table 2 presents a comprehensive summary of the statistical analysis conducted on the input 

variables. The statistics presented in the table include the mean, standard deviation, minimum 

value, and maximum value for each input variable. These statistics collectively offer a thorough 

understanding of the variability and central tendencies within the input dataset. 

Table 2. Statical description of input variables 

 Total Mean SD Min. 25% 50% 75% Max. 

FA 96 552.5 26.67 520 520 552.50 585 585 

GGBS 96 48.75 13.34 32.5 32.5 48.75 65 65 

Silica fume 96 48.75 13.34 32.50 32.50 48.75 65 65 

NaOH 96 110.6 14.61 91 100.50 110.50 120.3 130 

Na2SiO3 96 165.75 21.92 136.50 151.13 165.75 180.4 195 

Coarse 

aggregate 
96 850 0 850 850 850 850 850 

Fine aggregate 96 800 0 800 800 800 800 800 

alk/b 96 0.425 0.056 0.35 0.3875 0.425 0.46 0.50 

Superplasticizer 96 10 0 10 10 10 10 10 

Polyvinyl 

alcohol fiber 
96 0.125 0.14 0 0 0.05 0.2 0.40 

Steel fiber 96 0.125 0.14 0 0 0.05 0.2 0.40 

Compressive 

Strength 
96 38.81 8.56 21.56 32.26 38.46 44.25 58.8 

Methodology 
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In this study, ML models were employed to estimate the compressive strength of a material, 

and these models were implemented using Python code through the Anaconda software 

platform. Anaconda Navigator is a hub for accessing Python and other programming languages 

crucial for data science and machine learning applications. It emphasizes activities like package 

development and maintenance to support these tasks effectively. The study employed three 

distinct techniques, namely ANN and SVR, to predict the compressive strength of a material. 

These techniques are widely used in ML for regression tasks, where the goal is to predict a 

continuous numerical output. To assess the accuracy of the predictions generated by these 

models, the R2 was utilized. The R2 value is a metric that ranges from 0 to 1, with higher values 

indicating better alignment between the predicted outcomes and the actual measured values. 

Furthermore, the study conducted rigorous evaluations to gauge the models' performance. This 

involved statistical checks and error assessments, including Mean Absolute Error (MAE) and 

Root Mean Squared Error (RMSE). These metrics offer insights into how well the models' 

predictions align with the actual data by measuring the average magnitude of errors. A lower 

MAE and RMSE indicate better predictive accuracy and a smaller deviation between predicted 

and actual values. 

The data set is generated from the experimental programs. The process involved organizing a 

dataset into two subsets: a training set and a test set. In the 70-30 data split, a dataset is 

partitioned into two subsets: 70% is allocated for training a model, and the remaining 30% is 

reserved for testing the model's performance. Each example in these sets was broken down into 

individual instances of input features, also known as independent variables, which were 

associated with a specific target or dependent variable to be predicted. The input features 

utilized in this analysis were chosen to represent quantifiable aspects that experiments could 

measure. These features were carefully defined and structured to provide an advantageous 

learning environment for the various models being evaluated (Fig. 1). This structured setup 

ensured that the models could learn effectively from the data. The ANN underwent a process 

of manual fine-tuning to achieve a reasonable level of accuracy in predicting the target variable. 

This fine-tuning process involved adjusting the model's internal parameters and architecture to 

minimize prediction errors and enhance performance. Subsequently, the hyperparameters of 

the ANN were determined based on the outcomes of this initial manual fine-tuning (Pratap et 

al. 2023). Hyperparameters are settings external to the model but influence its learning process. 

SVR aims to find the optimal function that best captures the underlying patterns in the data 

while maintaining a certain margin of error. The fundamental idea is to identify a hyperplane 

that effectively fits as many data points as possible within a specific epsilon (ε) tube, where the 
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goal is to minimize the deviation of data points from the predicted values while allowing for a 

controlled tolerance. SVR employs a mathematical approach to determine the optimal 

hyperplane by solving a constrained optimization problem. One of the strengths of SVR is its 

ability to handle non-linear relationships between variables by utilizing kernel functions. These 

functions transform the original feature space into a higher-dimensional space, enabling the 

algorithm to capture complex patterns that might not be apparent in the original data. 

 

Fig.1. An input and output roadmap for the ANN and SVR algorithms 

Results and discussions 

The study evaluates the predictive accuracy of the ANN model by comparing its predicted 

outcomes to the actual measured compressive strengths. The analysis involves two main 

aspects: the statistical comparison pattern and the model's performance metrics. In terms of 

statistical analysis, the study assesses the pattern of outcomes obtained from the actual testing 

of geopolymer concrete samples and the predictions made by the ANN and SVR models.  

The R2 value serves as an indicator of how well the model's predictions match the actual data. 

In this case, the R2 value of 0.9924 for training and 0.9672 for testing signifies an excellent 

performance of the ANN model in accurately calculating the compressive strength outcomes. 

Figures 2(a) and 3(a) visually represent these high R2 values, highlighting the closeness of the 

model's predictions to the real data points. On the other hand, Figures 2(b) and 3(b) provide a 

graphical depiction of the distribution of the investigated outcomes compared to the estimated 
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outcomes by the ANN model. These figures allow for a direct comparison, revealing the 

model's efficacy in capturing the trend of the actual outcomes. The study also addresses the 

errors associated with the ANN model's predictions. This study analyzes the spread of errors in 

terms of the largest, lowest, and average error values. For the training phase, the largest error 

is 2.003 MPa, the lowest error is 0.0314 MPa, and the average error is 0.5646 MPa. Similarly, 

for the testing phase, the largest error is 3.69 MPa, the lowest error is 0.028 MPa, and the 

average error is 1.356 MPa. 

  
(a) (b) 

Fig. 2. (a) Relation between experimental and predicted values for training model of ANN (b) 

Distribution of experimental, predicted and error values for training model of ANN  
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(a) (b) 

Fig. 3. (a) Relation between experimental and predicted values for a testing model of ANN 

(b) Distribution of experimental, predicted and error values for a testing model of ANN 

The SVR model demonstrates exceptional performance in accurately predicting compressive 

strength outcomes, as evidenced by high R2 values of 0.9985 (Fig. 4a) for training and 0.9908 

(Fig. 5a) for testing. These values highlight the strong alignment between the model's 

predictions and actual data points. This closeness between predicted and real values is visually 

represented in the figures. Conversely, Figures 4(b) and 5(b) visually illustrate how the SVR 

model's estimated outcomes compare to the investigated outcomes. This direct comparison 

underscores the model's ability to capture the underlying trends in the actual data (Li et al. 

2022). The study also delves into the errors associated with the SVR model's predictions, 

examining their distribution (Sahu et al. 2023). The analysis of error distribution entails the 

consideration of the largest, smallest, and average error values. During the training phase, the 

most significant error observed is 1.164 MPa, while the smallest error is 0.00053 MPa, and the 

average error is 0.1389 MPa. Similarly, in the testing phase, the largest error amounts to 2.287 

MPa, the smallest error is 0.152 MPa, and the average error is 1.0366 MPa. 

R² = 0.9684
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(a) (b) 

Fig. 4. (a) Relation between experimental and predicted values for training model of SVR (b) 

Distribution of experimental, predicted and error values for training model of SVR 

  
(a) (b) 

Fig.5. (a) Relation between experimental and predicted values for the testing model of SVR (b) 

Distribution of experimental, predicted and error values for a testing model of SVR  

The table 3 present the performance metrics of two different machine learning algorithms, 

ANN and SVR, on a dataset. These metrics are commonly used to evaluate the quality of 

predictive models. This column simply lists the two machine learning algorithms being 

compared, which are ANN and SVR. These are different techniques used for regression tasks, 
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where the goal is to predict a continuous numerical output. The ANN has an R2 of 0.992 on the 

training set, indicating it explains about 99.2% of the variance, and SVR has an R2 of 0.995, 

indicating it explains about 99.5% of the variance. Both values are very high, suggesting strong 

performance on the training data. ANN has an RMSE of 0.73, while SVR has an RMSE of 

0.32. Lower RMSE values indicate better model accuracy, so SVR is performing better on the 

training data in this regard. ANN has an MAE of 0.56, and SVR has an MAE of 0.13. Again, 

lower MAE values indicate better accuracy, and SVR has a lower MAE, suggesting better 

performance on the training data. ANN has an R2 of 0.96 on the testing data, while SVR has an 

R2 of 0.99, indicating that SVR performs slightly better in terms of explaining variance in the 

testing data. ANN has an RMSE of 1.65, and SVR has an RMSE of 0.81. Again, lower RMSE 

values are better, so SVR outperforms ANN on the testing data. ANN has a MAE of 1.35, while 

SVR has a MAE of 0.53. Like RMSE, lower MAE values indicate better accuracy, and SVR is 

more accurate on the testing data. 

Table 3:  Training and testing results data 

Algorithms Training Testing 

 R2 RMSE MAE R2 RMSE MAE 

ANN 0.992 0.73 0.56 0.96 1.65 1.35 

SVR 0.995 0.32 0.13 0.99 0.81 0.53 

Conclusions 

This research successfully demonstrates the development of geopolymer concrete through a 

combination of fibers, FA, and GGBS as precursor materials. Elaborate prediction studies are 

conducted involving partial replacement of FA with GGBS and silica fume. The conclusions 

drawn from the results and interpretations can be summarized as follows: 

• The performance of the prediction models is assessed using the coefficient of 

determination (R2). The ANN achieves an R2 of 0.992 on the training set, explaining 

approximately 99.2% of the variance, while the SVR obtains an R2 of 0.995, explaining 

about 99.5% of the variance. On the testing data, the ANN's R2 is 0.96, whereas the 
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SVR's R2 is 0.99. This indicates that SVR slightly outperforms ANN in terms of 

explaining variance in the testing data.  

• The analysis of error distribution involves assessing the largest, smallest, and average 

error values. During the training phase, the most significant error observed is 1.164 

MPa, while the smallest error is 0.00053 MPa, and the average error is 0.1389 MPa. 

Similarly, in the testing phase, the largest error amounts to 2.287 MPa, the smallest 

error is 0.152 MPa, and the average error is 1.0366 MPa. 

• Overall, both models demonstrate strong performance on the training data, with SVR 

having a slight advantage in terms of RMSE and MAE. However, when applied to 

unseen testing data, SVR maintains its superior performance in terms of RMSE, MAE, 

and R-squared, suggesting that SVR is the more suitable model for this specific dataset. 

The importance of evaluating a model's performance on both training and testing data 

is highlighted by the results presented in this table. 
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