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ABSTRACT: Geopolymers represent a cutting-edge class of inorganic materials that 

provide a sustainable substitute for conventional cement and concrete. Through 

meticulous combinations and ratios of elements like Fly Ash (FA), silica fume, Ground 

Granulated Blast Slag (GGBS), alkaline solutions, aggregates, superplasticizers, and 

fibers, geopolymer concrete mixes are generated as part of the experimental program. The 

investigation concentrates on predicting the 28-day compressive strength, a pivotal 

parameter in assessing concrete performance. The dataset comprises 96 data points, and 

two advanced techniques, namely Support Vector Regression (SVR) and Artificial Neural 

Networks (ANN), are harnessed for this research. The ANN demonstrates an R2 value of 

0.992 on the training dataset, indicating its capacity to elucidate around 99.2% of the 

variability. On the other hand, SVR boasts an R2 value of 0.995, signifying an ability to 

account for about 99.5% of the variance. When applied to the testing data, the ANN 

achieves an R2 of 0.96, while SVR attains an R2 of 0.99. This study suggests that SVR 

exhibits slightly superior performance in elucidating variance within the testing dataset.  

 

Keywords: ANN, Fly Ash, GGBS, Soft Computing. 

   

1. Introduction 

 

Reinforced Concrete (RC) is a global 

construction material used worldwide, 

supported by a substantial global cement 

production, estimated to be approximately 

4.6 Gigatons (Gt) in 2015. Despite its 

widespread use and durability, RC 

structures can face challenges over time due 

to various factors, such as environmental 

exposure, chemical attack, or structural 

damage caused by external events (Jindal et 
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al., 2023). Interventions are often necessary 

to maintain the load-carrying capacity and 

extend the service life of existing RC 

structures. Over the last few decades, 

externally bonded composite materials have 

emerged as an effective solution for 

rehabilitating and enhancing RC structures. 

Among these materials, Fiber-

Reinforced Cementitious Matrix (FRCM) 

composites have gained significant 

attention as an alternative to traditional 

Fiber-Reinforced Polymer (FRP) 
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composites (D’Antino et al., 2014; Tayeh et 

al., 2021; Wong, 2022). Both FRCMs and 

FRPs consist of continuous high-strength 

fibers embedded within a matrix, but they 

differ in the composition of the matrix 

material (Wang et al., 2009). Furthermore, 

FRCMs exhibit excellent compatibility 

with concrete, which promotes a strong 

bond between the composite material and 

the existing structure (Carloni et al., 2015). 

Alkali-activated materials are a diverse 

group of inorganic materials that include a 

novel category known as geopolymers 

(Qaidi et al., 2022). These materials not 

only provide alternatives to traditional 

cement-based products but also mitigate 

environmental impacts by reusing industrial 

byproducts and reducing carbon emissions 

(Kumar et al., 2023). Polypropylene fibers 

(Althoey et al., 2023; Tayeh et al., 2022) are 

commonly utilized to control cracking in 

concrete, but they may not be ideal for 

geopolymer composites due to this weak 

interaction. Steel fibers are a popular choice 

for reinforcing cementitious composites. 

Steel fibers' tensile strength and ultimate 

elongations can vary significantly, ranging 

from 310-2850 MPa and 0.5-3.5%, 

respectively (Al-Majidi et al., 2017; 

Sukontasukkul et al., 2018; Wang et al., 

2018). The corrugated surface enhances the 

interaction between the steel fibers and the 

binder, improving the composite material's 

performance and strength (Wang et al., 

2018; Yin et al., 2015). One significant 

application of recycled synthetic fibers lies 

in the construction industry, offering an 

effective solution for disposing of 

commonly consumed plastics like 

Polyethylene Terephthalate (PET) and 

Polypropylene (PP) on a global scale 

(Siddique et al., 2008). Among the synthetic 

fibers used in construction PP, Polyvinyl 

Alcohol (PVA), Polyethylene (PE), and 

PET are the most prevalent ones (Farooq et 

al., 2019; Mastali et al., 2018; Ranjbar et al., 

2016; Sukontasukkul et al., 2018). PP, 

derived from the monomeric C3H6, is a cost-

effective option with inert characteristics in 

high PH cementitious environments 

(Farooq et al., 2019). It helps control plastic 

shrinkage cracking in concrete and allows 

for easy dispersion (Larena and Pinto 

1993). It has drawbacks such as poor 

thermal resistance, low modulus of 

elasticity, and difficulty in forming a strong 

bond with cementitious matrices due to its 

inherent hydrophobic nature (Banthia and 

Gupta 2006; Mu et al., 2002; Yin et al., 

2015). On the other hand, PET fibers, 

produced by recycling PET bottles, exhibit 

mechanical properties comparable to PP 

and nylon fibers while being more cost-

effective and environmentally friendly to 

produce (Ochi et al., 2007).  

Soft Computing (SC) is an effective 

approach for addressing complex problems, 

particularly when mathematical models 

struggle to express relationships among 

parameters. SC offers a notable advantage 

in solving nonlinear and linear problems by 

accommodating intricate relationships that 

may be challenging to model 

mathematically (Ghanbari et al., 2017). A 

key strength of SC lies in its ability to 

incorporate human-based knowledge, 

recognition, understanding, and learning 

into computational processes (Vadel et al., 

2019). In recent years, researchers have 

increasingly harnessed Artificial 

Intelligence (AI) methods and Machine 

Learning (ML) techniques as integral 

components of SC in predicting various 

properties of concrete. AI and ML, as sub-

branches of SC, bring advanced 

computational capabilities to the forefront 

(Shariati et al., 2022). However, accurately 

predicting the compressive strength of 

Geopolymer Concrete (GPC) poses 

challenges due to the significant influence 

of physical and chemical variables. 

Fortunately, AI and ML have emerged as 

promising solutions to enhance accuracy 

and efficiency in predicting concrete 

strength (Naghibzadeh et al., 2022). While 

traditional regression methods lacked 

accuracy, ML methodologies have 

significantly improved predictions, the 

advanced techniques such as Genetic 

Engineering Programming (GEP), SVR, 
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ANN, and ensemble approaches (Sahu et 

al., 2023). SVR constructs hyperplanes that 

best separate data points based on their 

features, enabling it to make precise 

predictions (Li et al., 2022; Shariati et al., 

2022). Its ability to handle high-

dimensional data and capture nonlinear 

relationships has made SVR a popular 

choice in concrete strength estimation. 

Inspired by the human brain's 

functioning, ANN is a deep learning 

technique capable of learning and 

generalizing from large datasets (Kaveh and 

Khavaninzadeh, 2023). As ANN layers 

process and transform input data, the model 

comprehensively understands the 

relationships between variables, leading to 

highly accurate predictions. Ensemble 

approaches combine multiple models to 

improve predictive accuracy by leveraging 

the strengths of individual algorithms 

(Huang et al., 2023).  

The primary aim of the current research 

is to create models that can predict 

experimental data by utilizing two specific 

techniques: SVR and ANN. The focus of 

this study is centered around geopolymer 

concrete, a unique type of concrete made 

from components such as FA, silica fume, 

GGBS, as well as Polyvinyl Alcohol Fiber 

(PVA) and steel fiber. To evaluate the 

effectiveness of the prediction models 

(SVR and ANN), the parameter chosen for 

analysis is the compressive strength of the 

geopolymer concrete after a curing period 

of 28 days. 

This 28-day compressive strength is a 

critical indicator of the concrete's 

performance and durability. By using the 

SVR and ANN models, the study aims to 

establish accurate predictions of this 

compressive strength based on the specific 

combinations of materials used in the 

geopolymer concrete. 
 

2. Materials and Data Demonstrations 
 

The experiment involves the development 

of a novel type of concrete called 

geopolymer hybrid fiber-reinforced 

concrete. This concrete is designed to have 

enhanced strength and durability by 

combining various materials and fibers. The 

main components used in this experiment 

are FA, Silica fume, GGBS, alkaline 

solutions, fine and coarse aggregates, 

superplasticizers, and a hybrid combination 

of steel fiber and PVA fiber. Concrete relies 

on binding agents to ensure that its 

components are properly linked together.  

In addition to binding materials, concrete 

also contains fine and coarse aggregates like 

sand and gravel. The experimental program 

involves creating different concrete mixes 

by varying the proportions of these 

materials. The specific combinations and 

ratios of FA, Silica fume, GGBS, alkaline 

solutions, aggregates, superplasticizers, and 

hybrid fibers are detailed in Table 1 of the 

experiment. This mix design is a roadmap 

for producing batches of geopolymer hybrid 

fiber-reinforced concrete with consistent 

and controlled properties. ML approaches 

necessitate a diverse set of input variables 

(Wang et al., 2018). These input variables 

and the corresponding outputs are derived 

from an experimental program.  

 
 Table 1. Mix design of the experimental program 

Mix designations P0S1 P0S2 P0S3 P1S4 P1S0 P2S0 P3S0 P4S0 

FA 585 585 585 585 585 585 585 585 

Silica fume 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 

GGBS 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 

Na2SiO3 156 156 156 156 156 156 156 156 

NaOH 104 104 104 104 104 104 104 104 

Fine aggregate 850 850 850 850 850 850 850 850 

Coarse aggregate 800 800 800 800 800 800 800 800 

Super plasticizer 10 10 10 10 10 10 10 10 

Polyvinyl alcohol fiber 0 0 0 0 0.10% 0.20% 0.30% 0.40% 

Steel fiber 0.10% 0.20% 0.30% 0.40% 0 0 0 0 

*P1S0: is Polyvinyl alcohol fiber 0.1% and Steel fiber 0%. 
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This specific study focuses primarily on 

predicting the 28-day compressive strength, 

a critical parameter for evaluating concrete 

performance. The models employed for this 

purpose involve a selection of input 

variables, and their correlation with the 28-

day compressive strength is investigated. 

The chosen input variables encompass a 

variety of factors that contribute to the 

properties of the concrete mixture. These 

variables include cement, water, sand, 

coarse aggregate, superplasticizer, silica 

fume, FA, alkali/binder ratio, steel fiber, 

and PVA fiber. Each of these variables 

plays a distinct role in shaping the 

characteristics of the final concrete product. 

The dataset used in this study comprises 

96 data points, each representing a specific 

combination of input variables and the 

corresponding 28-day compressive 

strength. These data points serve as the 

basis for training and testing the ML 

models. Table 2 presents a comprehensive 

summary of the statistical analysis 

conducted on the input variables. The 

statistics presented in the table include the 

mean, standard deviation, minimum value, 

and maximum value for each input variable. 

These statistics collectively offer a 

thorough understanding of the variability 

and central tendencies within the input 

dataset. 

 

3. Methodology 

  

In this study, ML models were employed to 

estimate the compressive strength of a 

material, and these models were 

implemented using Python code through the 

Anaconda software platform. Anaconda 

Navigator is a hub for accessing Python and 

other programming languages crucial for 

data science and machine learning 

applications. It emphasizes activities like 

package development and maintenance to 

support these tasks effectively. The study 

employed three distinct techniques, namely 

ANN and SVR, to predict the compressive 

strength of a material. These techniques are 

widely used in ML for regression tasks, 

where the goal is to predict a continuous 

numerical output.  

To assess the accuracy of the predictions 

generated by these models, the R2 was 

utilized. The R2 value is a metric that ranges 

from 0 to 1, with higher values indicating 

better alignment between the predicted 

outcomes and the actual measured values. 

Furthermore, the study conducted rigorous 

evaluations to gauge the models' 

performance. This involved statistical 

checks and error assessments, including 

Mean Absolute Error (MAE) and Root 

Mean Squared Error (RMSE). These 

metrics offer insights into how well the 

models' predictions align with the actual 

data by measuring the average magnitude of 

errors. A lower MAE and RMSE indicate 

better predictive accuracy and a smaller 

deviation between predicted and actual 

values.  The data set is generated from the 

experimental programs. The process 

involved organizing a dataset into two 

subsets: a training set and a test set. 

Table 2. Statistical description of input variables 
 Total Mean SD Min. 25% 50% 75% Max. 

FA 96 552.5 26.67 520 520 552.50 585 585 

GGBS 96 48.75 13.34 32.5 32.5 48.75 65 65 

Silica fume 96 48.75 13.34 32.50 32.50 48.75 65 65 

NaOH 96 110.6 14.61 91 100.50 110.50 120.3 130 

Na2SiO3 96 165.75 21.92 136.50 151.13 165.75 180.4 195 

Coarse aggregate 96 850 0 850 850 850 850 850 

Fine aggregate 96 800 0 800 800 800 800 800 

alk/b 96 0.425 0.056 0.35 0.3875 0.425 0.46 0.50 

Superplasticizer 96 10 0 10 10 10 10 10 

Polyvinyl alcohol fiber 96 0.125 0.14 0 0 0.05 0.2 0.40 

Steel fiber 96 0.125 0.14 0 0 0.05 0.2 0.40 

Compressive strength 96 38.81 8.56 21.56 32.26 38.46 44.25 58.8 
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In the 70-30 data split, a dataset is 

partitioned into two subsets: 70% is 

allocated for training a model, and the 

remaining 30% is reserved for testing the 

model's performance. Each example in 

these sets was broken down into individual 

instances of input features, also known as 

independent variables, which were 

associated with a specific target or 

dependent variable to be predicted. The 

input features utilized in this analysis were 

chosen to represent quantifiable aspects that 

experiments could measure. These features 

were carefully defined and structured to 

provide an advantageous learning 

environment for the various models being 

evaluated (Figure 1). This structured setup 

ensured that the models could learn 

effectively from the data.  

The ANN underwent a process of 

manual fine-tuning to achieve a reasonable 

level of accuracy in predicting the target 

variable. This fine-tuning process involved 

adjusting the model's internal parameters 

and architecture to minimize prediction 

errors and enhance performance. 

Subsequently, the hyper parameters of the 

ANN were determined based on the 

outcomes of this initial manual fine-tuning 

(Pratap et al., 2023). Hyper parameters are 

settings external to the model but influence 

its learning process. SVR aims to find the 

optimal function that best captures the 

underlying patterns in the data while 

maintaining a certain margin of error. The 

fundamental idea is to identify a hyperplane 

that effectively fits as many data points as 

possible within a specific epsilon (ε) tube, 

where the goal is to minimize the deviation 

of data points from the predicted values 

while allowing for a controlled tolerance. 

SVR employs a mathematical approach 

to determine the optimal hyperplane by 

solving a constrained optimization problem. 

One of the strengths of SVR is its ability to 

handle non-linear relationships between 

variables by utilizing kernel functions. 

These functions transform the original 

feature space into a higher-dimensional 

space, enabling the algorithm to capture 

complex patterns that might not be apparent 

in the original data. 

 

4. Results and Discussions 

 

The study evaluates the predictive accuracy 

of the ANN model by comparing its 

predicted outcomes to the actual measured 

compressive strengths. The analysis 

involves two main aspects: the statistical 

comparison pattern and the model's 

performance metrics.  

 

 
Fig. 1. An input and output roadmap for the ANN and SVR algorithms 
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In terms of statistical analysis, the study 

assesses the pattern of outcomes obtained 

from the actual testing of geopolymer 

concrete samples and the predictions made 

by the ANN and SVR models. The R2 value 

serves as an indicator of how well the 

model's predictions match the actual data. 

In this case, the R2 value of 0.9924 for 

training and 0.9672 for testing signifies an 

excellent performance of the ANN model in 

accurately calculating the compressive 

strength outcomes. Figures 2a and 3a 

visually represent these high R2 values, 

highlighting the closeness of the model's 

predictions to the real data points. On the 

other hand, Figures 2b and 3b provide a 

graphical depiction of the distribution of the 

investigated outcomes compared to the 

estimated outcomes by the ANN model. 

These figures allow for a direct comparison, 

revealing the model's efficacy in capturing 

the trend of the actual outcomes.  

 

  
(a) (b) 

Fig. 2. a) Relation between experimental and predicted values for training model of ANN; and b) Distribution of 

experimental, predicted and error values for training model of ANN 

 

 
 

(a) (b) 

Fig. 3. a) Relation between experimental and predicted values for a testing model of ANN; and b) Distribution of 

experimental, predicted and error values for a testing model of ANN 
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The study also addresses the errors 

associated with the ANN model's 

predictions. This study analyzes the spread 

of errors in terms of the largest, lowest, and 

average error values. For the training phase, 

the largest error is 2.003 MPa, the lowest 

error is 0.0314 MPa, and the average error 

is 0.5646 MPa. Similarly, for the testing 

phase, the largest error is 3.69 MPa, the 

lowest error is 0.028 MPa, and the average 

error is 1.356 MPa. The SVR model 

demonstrates exceptional performance in 

accurately predicting compressive strength 

outcomes, as evidenced by high R2 values 

of 0.9985 (Figure 4a) for training and 

0.9908 (Figure 5a) for testing. These values 

highlight the strong alignment between the 

model's predictions and actual data points. 

This closeness between predicted and real 

values is visually represented in Figures 4. 

 

  
(a) (b) 

Fig. 4. a) Relation between experimental and predicted values for training model of SVR; and b) Distribution of 

experimental, predicted and error values for training model of SVR 

 

  
(a) (b) 

Fig. 5. a) Relation between experimental and predicted values for the testing model of SVR; and b) Distribution 

of experimental, predicted and error values for a testing model of SVR 
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Conversely, Figures 4b and 5b visually 

illustrate how the SVR model's estimated 

outcomes compare to the investigated 

outcomes. This direct comparison 

underscores the model's ability to capture 

the underlying trends in the actual data (Li 

et al., 2022). The study also delves into the 

errors associated with the SVR model's 

predictions, examining their distribution 

(Sahu et al., 2023). The analysis of error 

distribution entails the consideration of the 

largest, smallest, and average error values. 

During the training phase, the most 

significant error observed is 1.164 MPa, 

while the smallest error is 0.00053 MPa, 

and the average error is 0.1389 MPa. 

Similarly, in the testing phase, the largest 

error amounts to 2.287 MPa, the smallest 

error is 0.152 MPa, and the average error is 

1.0366 MPa. Table 3 presents the 

performance metrics of two different 

machine learning algorithms, ANN and 

SVR, on a dataset. These metrics are 

commonly used to evaluate the quality of 

predictive models. This column simply lists 

the two machine learning algorithms being 

compared, which are ANN and SVR. These 

are different techniques used for regression 

tasks, where the goal is to predict a 

continuous numerical output. The ANN has 

an R2 of 0.992 on the training set, indicating 

it explains about 99.2% of the variance, and 

SVR has an R2 of 0.995, indicating it 

explains about 99.5% of the variance. Both 

values are very high, suggesting strong 

performance on the training data. ANN has 

an RMSE of 0.73, while SVR has an RMSE 

of 0.32. Lower RMSE values indicate better 

model accuracy, so SVR is performing 

better on the training data in this regard. 

ANN has an MAE of 0.56, and SVR has 

an MAE of 0.13. Again, lower MAE values 

indicate better accuracy, and SVR has a 

lower MAE, suggesting better performance 

on the training data. ANN has an R2 of 0.96 

on the testing data, while SVR has an R2 of 

0.99, indicating that SVR performs slightly 

better in terms of explaining variance in the 

testing data. ANN has an RMSE of 1.65, 

and SVR has an RMSE of 0.81. Again, 

lower RMSE values are better, so SVR 

outperforms ANN on the testing data. ANN 

has a MAE of 1.35, while SVR has a MAE 

of 0.53. Like RMSE, lower MAE values 

indicate better accuracy, and SVR is more 

accurate on the testing data. 

 

5. Conclusions 

 

This research successfully demonstrated the 

development of geopolymer concrete 

through a combination of fibers, FA, and 

GGBS as precursor materials. Elaborate 

prediction studies were conducted 

involving partial replacement of FA with 

GGBS and silica fume. The conclusions 

drawn from the results and interpretations 

can be summarized as follows: 

 The performance of the prediction 

models is assessed using the coefficient 

of determination (R2). The ANN 

achieves an R2 of 0.992 on the training 

set, explaining approximately 99.2% of 

the variance, while the SVR obtains an 

R2 of 0.995, explaining about 99.5% of 

the variance. On the testing data, the 

ANN's R2 is 0.96, whereas the SVR's R2 

is 0.99. This indicates that SVR slightly 

outperforms ANN in terms of explaining 

variance in the testing data.  

 The analysis of error distribution 

involves assessing the largest, smallest, 

and average error values. During the 

training phase, the most significant error 

observed is 1.164 MPa, while the 

smallest error is 0.00053 MPa, and the 

average error is 0.1389 MPa. Similarly, 

in the testing phase, the largest error 

amounts to 2.287 MPa, the smallest error 

is 0.152 MPa, and the average error is 

1.0366 MPa.

 

Table 3. Training and testing results data 

Algorithms Training Testing 

 R2 RMSE MAE R2 RMSE MAE 

ANN 0.992 0.73 0.56 0.96 1.65 1.35 

SVR 0.995 0.32 0.13 0.99 0.81 0.53 
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 Overall, both models demonstrate strong 

performance on the training data, with 

SVR having a slight advantage in terms 

of RMSE and MAE. However, when 

applied to unseen testing data, SVR 

maintains its superior performance in 

terms of RMSE, MAE, and R-squared, 

suggesting that SVR is the more suitable 

model for this specific dataset. The 

importance of evaluating a model's 

performance on both training and testing 

data is highlighted by the results 

presented in this table. 
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