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ABSTRACT: Shear-wave velocity (Vs) is used to evaluate the soil shear modulus and 

classify the soil type in pseudo-static analysis. Empirical correlations are developed to 

relate Vs and Cone Penetration Test (CPT) records. However, uncertainty in the input 

parameter measurements is always a major concern. Therefore, the current research 

employs a novel method based on robust optimization to study the effect of such 

uncertainties. To measure the merits of the suggested method, 407 records were collected 

and categorized for several soil types. The identification procedure employed in this 

investigation is based on the robust model of least squares, solved using the interior point 

technique for second-order cone problems. The uncertainty definition is examined against 

correlation coefficients for empirical models, and optimum values are determined based 

on the frobenius norm of the data points. A diagram for calculating the shear wave 

velocity considering uncertainties is also presented. This study suggests that the robust 

method is the best pattern recognition tool for uncertain datasets compared to previous 

statistical models. Other power models also have good accuracy compared to the 

polynomial model, but when uncertainty is taken into account, the accuracy of the other 

models is lower compared to the polynomial model.  

 

Keywords: CPT, Polynomial Model, Robust Optimization, Shear-Wave Velocity, 

Uncertainty. 

   

1. Introduction 

 

The Shear Wave Velocity (Vs) induced 

shear modulus is a main geotechnical 

property corresponding to small strains 
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which is of importance in geotechnical 

research. Due to the constraints in gathering 

undisturbed samples, particularly in 

granular soils, in situ seismic tests, in place 

of laboratory measurements are the best 
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possible direct tests in achieving the Vs. To 

establish the Vs profile, the surface wave 

velocity assessment, as well as down-hole 

and cross-hole techniques can be conducted 

(Eslami et al., 2020; Mayne, 2007; 

Robertson, 2009). However, because of the 

limits of the noise level and space 

constraints in urban areas, seismic in situ 

investigations are not usually possible or 

appropriate. Therefore, it is convenient to 

estimate Vs indirectly by other common in 

situ tests, such as the Standard Penetration 

Test (SPT) for compacted soils and the 

Cone Penetration Test (CPT) for soft soils. 

Among in situ tests, CPT is a more 

versatile and reliable test that is used in 

geotechnical site investigations 

(Anagnostopoulos et al., 2003). Zhang et al. 

(2021) proposed a Multilayer Fully 

Connected Network (ML-FCN) to optimize 

the training of the Deep Neural Network 

(DNN) using the Vs and SPT datasets. Zhao 

et al. (2021) developed a new PSO-KELM 

hybrid machine learning model to evaluate 

soil liquefaction potential and explore 

nonlinear relationships between Cyclic 

Resistance Ratio (CRR), CPT and Vs 

measurements. Wang et al. (2022) assessed 

thirteen alluvium sites in Taipei Basin, and 

measurements of shear wave velocity were 

concurrently obtained using the five 

common seismic methods. 

Measurement discrepancies were 

quantified through statistical analysis of the 

data, offering guidance for method 

selection. Yang et al. (2023) integrated 

CPT-Vs data to create a simplified 

probabilistic assessment for liquefaction 

potential. Chala and Ray (2023) employed 

Machine Learning (ML) algorithms to 

predict Vs from CPT data, including 

Random Forests (RFs), Support Vector 

Machine (SVM), Decision Trees (DT) and 

eXtreme Gradient Boosting (XGBoost). 

 Zhou et al. (2022) presented two SVM 

models optimized with Genetic Algorithm 

(GA) and Grey Wolf Optimizer (GWO) to 

predict soil liquefaction potential, validated 

using CPT, SPT and VS test data with 

varying input variables. Several 

correlations and  mathematical methods 

were suggested for estimating the Vs based 

on CPT records for loose sand, silt, clay, 

and all other soil types (Comina et al., 2022; 

Jakka et al., 2022; Meng and Pei, 2023; 

Zhao et al., 2022).Wang et al. (2022) 

investigated 13 alluvial sites in Taipei Basin 

and measured the velocity profiles 

employing each of the five most common 

seismic methods. Using test data and 

statistical models, differences in seismic 

methods were quantified as calibrated 

measurement uncertainties, which can be 

used as a reference for selecting an 

appropriate method to measure shear wave 

velocity. Zhai et al. (2024) aimed to develop 

a Bayesian framework that considered both 

in-situ test data (SPT, CPT) and prior 

information, to determine the probabilistic 

characteristics of Vs while accounting for 

transformation uncertainty. The study 

found out that the model which includes 

two in_situ tests accurately predicts shear 

wave velocity. Using different travel times 

(i.e., first arrival picks, peaks and troughs 

picks, crossover picks, and the peak 

response of the cross-correlation function) 

and different velocity analysis methods 

(i.e., pseudo-interval, true-interval, 

corrected vertical travel time slope-based, 

and raytracing), Stolte et al. (2020) 

developed a number of Vs profiles. Gilder et 

al. (2021) presented CPTu data related to 

the Kathmandu valley sediments and 

employed the established CPTu 

interpretation procedures to assess the in-

situ soil properties. Previously, for the 

assessment of variability and seismic 

response of the subsoils in Kathmandu, SPT 

data and limited shear wave velocity 

measurements were predominantly used. 

This study provided further data to 

supplement the existing SAFER/GEO-591 

database, new shear wave velocity 

measurements, and initial estimates of CRR 

at the visited sites. It was concluded that 

liquefaction assessment mainly due to the 

presence of saturated silts in the valley 

demands a more detailed methodology. 

Wang et al. (2022) examined the 
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performance of Vs-SPT and Vs-CPTU 

models and found that VS has a strong 

correlation with the depth of soil (D) but 

weak correlation with SPT-N or CPT-qc. 
This indicates that most of the 

transformation models in previous studies 

are not suitable to these sites as they 

disregard soil depth in their formulation. In 

an attempt to confirm if the assumption 

about the consistency of depth is true for Vs 

data using models created in the CSR 

framework, Wang et al. (2022) created two 

models to assess the chances of 

liquefaction. These models use the Vs based 

probabilistic approach and consider the 

uncertainty of measurements. By assuming 

consistency in depth, it was found that the 

performance of the suggested models is 

similar to two commonly used models 

based on the CSR framework, and better 

than the Chinese code model. 

Mohammadikish et al. (2023) utilized 

two different approaches, namely, the 

whole data strategy and partial distance 

strategy, in their study. Bayat et al. (2023) 

introduced an analytical approach to 

optimize the compaction pattern and 

dynamic compaction variables regarding 

regular constraints. They employed a 

metaheuristic approach (Genetic 

Algorithm) to find global optimum. Results 

indicated that the maximum allowed values 

of tamper mass and the number of tamper 

drops were required to minimize 

compaction energy. In this study, 

researchers examined the effectiveness of 

fuzzy c-means clustering in analyzing 

incomplete data to evaluate the probabilistic 

liquefaction. The data used for this analysis 

included CPT and Vs field data. This 

method compared the traditional 

deterministic and probabilistic liquefaction 

evaluation approaches, and it was found 

that the fuzzy c-means clustering model 

demonstrated a similar predictive capability 

compared to other methods. Thus, it is 

considered reliable for evaluating the 

liquefaction possibility. The main variables 

as input parameters are cone resistance (qc), 

sleeve friction (fs) and overburden pressure 

in effective form (σV0
′ ) in the correlation 

functions, such as linear, logarithm, power, 

and polynomial functions. Some of the 

important correlations are presented in 

Table 1, in which, ai's are constant 

coefficients of the model and each 

researcher has estimated the coefficients 

using the data related to the study case. 

Such empirical correlations (Table 1) are 

generally based on statistical regression 

analyses with notable modeling drawbacks.  

For example, inaccuracies enter into the 

field measurements of Vs in case histories 

similar to all other natural phenomena 

measurements (Ghose, 2004). Such 

inaccuracies may exist in other influencing 

parameters and can cause deviation.  

Therefore, proposing a formula capable of 

dealing with the uncertainties and 

inaccuracies in input parameters is required. 

Accordingly, a novel optimization 

method is proposed in the present study to 

overcome the disadvantages of the previous 

empirical correlations by considering the 

uncertainties. The other main aim of this 

paper is to validate the previous models for 

Vs based on the CPT parameters, qc, and fs, 

via a database and to quantify the effect of 

uncertainties on the evaluation of the 

correlation parameters using the robust 

optimization model. The robust 

optimization model is the robust 

counterpart of the least-squares model that 

is reformulated as a Second-Order Cone 

Program (SOCP) in which possible 

uncertainties can be reasonably adjusted. 

The SOCP has been widely used in 

optimization and could be applied in 

predicting Vs as an advancement in terms of 

assessment compared to previous 

regression methods. Also, SOCP considers 

the variation of inaccuracies and 

uncertainties. The novelty of this article is 

the consideration of data uncertainty, which 

was not taken into account in previous 

similar articles. Therefore, this article 

presents an uncertainty-tolerant model for 

use by researchers. In other words, a model 

that has very low uncertainty in the 

parameters of its influence on the result 
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output. It is worth noting that given the 

uncertainty of the data, the coefficients of 

the models are also revised. The rest of the 

paper is organized as follows: Section 2 

analyzes the uncertainty and robust 

optimization model. Section 3 presents the 

database. In Sections 4 and 5, the modeling 

process and main results obtained from the 

present study are summarized, respectively. 

 

2. Review of the Robust Optimization 

Framework 
 

Robust optimization is a modeling method 

where significant uncertainties are 

presented. This model aims to discover 

ideal solutions for the worst-case scenario 

of uncertainties in a specific database (Ben-

Tal et al., 2009). In real-world applications, 

it is common to assume that the data is 

available with a certain level of uncertainty. 

Thus, classical algorithms may not meet 

the expectations of the modeler. Robust 

optimization is a framework for dealing 

with such situations. It should be noted that 

the robust approach normally involves 

computational complexity, such as, 

inaccuracies entered in the field 

measurements of Vs or depth (precision in 

measurement). Such inaccuracies may also 

exist in other influential parameters, which 

may cause prediction uncertainties. 

 
Table 1. A list of the proposed correlations between Vs and CPT 

Functional form Proposed correlation (m/s) Eq. Author(s) 
Soil 

type 

Units 

qc fs 

𝑽𝑺 = 𝒂𝟏 + 𝒂𝟐𝒒𝒄 

Vs =154+0.64qC 1 Barrow (1983) All 
kgf/c

m2 
- 

Vs=134+0.52qC 2 Sykora (1983) Sand 
kgf/c

m2 
- 

Vs =160+0.9qC 3 
Iyisan and 

Ansal (1993) 
All 

kgf/c

m2 
- 

Vs =218+0.70qC 4 
Iyisan and 

Ansal (1993) 
Sand 

kgf/c

m2 
- 

𝑽𝑺 = 𝒂𝟏 + 𝒂𝟐 𝒍𝒏( 𝒒𝒄) 
Vs = 109.29+52.674ln(qC) 5-1 Tun (2003) All MPa MPa 

Vs =109.29+52.674ln(qC) 5-2 
Tun and 

Ayday (2018) 
All MPa MPa 

𝑽𝑺 = 𝒂𝟏 + 𝒂𝟐 𝒍𝒐𝒈(𝒇𝒔) Vs =18.5+118.8log(fS) 6 Mayne (2006) All - kPa 

𝑽𝑺 = 𝒂𝟏(𝒒𝒄)
𝒂𝟐 

Vs =54.8(qC)0.29 7-1 Sykora (1983) Sand 
kgf/c

m2 
- 

Vs =45(qC)0.41 7-2 
Iyisan and 

Ansal (1993) 
All 

kgf/c

m2 
- 

Vs =1.75(qC)0.627 7-3 
Mayne and Rix 

(1995) 
Clay kPa kPa 

Vs =55.3(qC)0.377 7-4 
Iyisan and 

Ansal (1993) 
Clay 

kgf/c

m2 
- 

Vs =211(qC)0.23 7-5 
Madiai and 

Simoni (2004) 
All MPa MPa 

𝑽𝑺 = 𝒂𝟏(𝒒𝒄)
𝒂𝟐𝒇𝒔

𝒂𝟐 

Vs =12.02(qC)0.319(fS)-0.0466 8-1 
Hegazy and 

Mayne (1995) 
Sand kPa kPa 

Vs =155(qC)0.29(fS)-0.10 8-2 
Madiai and 

Simoni (2004) 
All MPa MPa 

𝑽𝑺 = 𝒂𝟏(𝒒𝒄 𝑷𝒂⁄ )𝒂𝟐

+ 𝒂𝟑 
Vs =50[(qC/pa)0.43 - 3] 9 

Paoletti et al. 

(2010) 
Sand kPa - 

𝑽𝑺
= 𝒂𝟏(𝒒𝒄)

𝒂𝟐(𝒇𝒔)
𝒂𝟐(𝝈𝒗)

𝒂𝟑 
Vs =359(qC)0.119(fS)0.1(𝜎𝑣

′)0.204 10 
Kruiver et al. 

(2021) 
All MPa MPa 

𝑽𝑺
= 𝒂𝟏(𝒒𝒄)

𝒂𝟐(𝒇𝒔)
𝒂𝟐(𝒁)𝒂𝟑 

𝑉𝑆 = 18.4(𝑞𝑐)
0.144(𝑓𝑠)

0.0832(𝑍)0.278 11 
McGann et al. 

(2015b) 
All kPa kPa 

𝑽𝑺
= 𝒂𝟏 + 𝒂𝟐𝒒𝒄 + 𝒂𝟑𝒇𝒔
+ 𝒂𝟒𝒒𝒄

𝟐 + 𝒂𝟓𝒇𝒔
𝟐

+ 𝒂𝟔(𝒒𝒄𝒇𝒔) 

Vs (m/s) = 100[1.36 - 0.35fs + 0.15qc 

- 0.05fs
2 - 0.018qc

2 + 0.39(fs)(qc)] 
12-1 

Mola‐Abasi et 

al. (2015) 

Clay MPa MPa 

Vs (m/s) = 100[1.73 + 2.74fs + 0.03qc 

- 4.015fs
2 - 0.00026qc

2 + 

0.007(fs)(qc)] 

12-2 Sand MPa MPa 

Vs (m/s) = 100[1.47 + 2.07fs + 0.10qc 

+ 9.50fs
2 - 0.0023qc

2 - 0.034(fs)(qc)] 
12-3 Mixed MPa MPa 

Vs (m/s) = 100[1.40 + 1.59fs + 0.09qc 

- 1.33fs
2 - 0.002qc

2 + 0.05(fs)(qc)] 
12-4 All MPa MPa 
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Suppose that such input-induced 

variations are considered boundaries of the 

central data point (Figure 1) and the true 

data point exists at every point within this 

boundary. In this case, robust optimization 

aims to minimize the maximum error with a 

certain level of uncertainty (Kalantary, 

2013). Such input-induced deviations are 

considered the boundaries of the central 

data point (Figure 1).  Evaluating constant 

coefficients (ai) of empirical Eqs. (1-12) (a1 

to a6) using regression analysis can be 

formulated as follows: 
 

 
Fig. 1. Robust and regression methods 

 
𝐴𝑥 = 𝑏. 𝐴 ∈ 𝑅𝑚×𝑛 . 𝑏 ∈ 𝑅𝑚×1 𝑎𝑛𝑑 𝑥

∈ 𝑅𝑛×1 
(13) 

 

where A and b: are data matrices, and x: is 

the vector of variables. Also, m and n: are 

the number of case histories and input 

parameters, respectively, that show the 

over-determined set of equations in the case 

of (m > n). All models are first examined 

using a compiled database and simple least-

squares regression analysis. The classic 

method for solving the least squares 

problem is as follows: 
 

𝑚𝑖𝑛𝑥∈𝑅𝑛  ‖(𝐴𝑥 − 𝑏)‖
2 (14) 

 

Next, the robust least-squares model is 

presented in Eq. (15). If the level of 

uncertainty in the databases is known and is 

equal to 𝜌, the robust model for minimizing 

the worst-case residual is as follows 

(Alizadeh and Goldfarb, 2003): 
 

𝑚𝑖𝑛𝑥𝑚𝑎𝑥‖[𝐸.𝑟‖𝐹≤𝜌‖(𝐴 + 𝐸)𝑥 − (𝑏

+ 𝑟)‖2 
(15) 

where, 𝜌, E and r: are the uncertainties in A 

and b, respectively, and the norm of the 

matrix, ∥ ∥𝐹 is the Frobenius norm (Golub 

and Van Loan, 2013). Eq. (15) in its current 

form cannot be solved. However, it can be 

written in SOCP form (Sturm, 2002). First, 

for a given x: 

 
𝑟(𝐴. 𝑏. 𝑥) 
𝑑𝑒𝑓
→  𝑚𝑎𝑥 {‖(𝐴 + 𝐸)𝑥 − (𝑏 + 𝑟)‖| |   ‖𝐸. 𝑟‖𝐹 ≤ 𝜌} 

(16) 

 

Eq. (17) is resulted from the triangular 

inequality. 

 
‖(𝐴 + 𝐸)𝑥 − (𝑏 + 𝑟)‖

≤ ‖𝐴𝑥 − 𝑏‖

+ ‖(𝐸.−𝑟) (
𝑥

1
)‖ 

(17) 

 

Moreover, 

 

‖(𝐸.−𝑟) (
𝑥

1
)‖ ≤ ‖𝐸. 𝑟‖𝐹 ‖(

𝑥

1
)‖

≤ 𝜌‖(
𝑥

1
)‖ 

(18) 

 

but for the choice (𝐸.−𝑟) = 𝑢𝑣𝑡, where: 

 

𝑢 = {
𝜌
𝐴𝑥 − 𝑏

‖𝐴𝑥 − 𝑏‖
. 𝑖𝑓 𝐴𝑥 − 𝑏 ≠ 0

any vector ∈ 𝑅𝑚 of norm 𝜌. otherwise

 

and 

  

v =
(x1)

‖(x1)‖
   

(19) 

 

Eq. (20) is obtained. 

 

‖(𝐸.−𝑟) (
𝑥

1
)‖ = ‖𝑢‖ × ‖(

𝑥

1
)‖

= 𝜌‖(
𝑥

1
)‖ 

(20) 

 

Therefore, 

 

𝑟(𝐴. 𝑏. 𝑥) = ‖𝐴𝑥 − 𝑏‖ + 𝜌‖(
𝑥

1
)‖ (21) 

 

Thus, min r(A,b,x): is equivalent to the 

following SOCP: 

 
𝑚𝑖𝑛(𝑡 + 𝜌𝑠) 

(22) ‖𝐴𝑥 − 𝑏‖ ≤ 𝑡.   

√1 + ‖𝑥‖2 ≤ 𝑠 
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The problem of Eq. (22) is a SOCP that can 

be solved using efficient interior point-

based software packages such as SeDuMi 

(Sturm, 1999). It is solved for different 

values of uncertainty parameters, 𝜌. To 

account for the uncertainty, a new 

parameter of Eq. (23) is introduced. 

 

Uncertainty  (%) =
𝜌

2‖𝐷𝐴𝑇𝐴 ‖𝑓𝑟𝑜
× 100 (23) 

 

The uncertainty parameter introduced in 

Eq. (23) means that each data point can 

have an extreme uncertainty up to half of its 

value. In other words, data are assumed to 

be in the form of Eq. (24). 

 
Data point = actual value

± uncertainty
= actual value

± (
actual value

2
) 

(24) 

 

One of the advantages of this method is 

to find the model coefficients and find a 

logical relationship between the uncertainty 

and the predicted value. In other words, by 

knowing the measurement accuracy 

associated with the data and determining 

the corresponding uncertainty, the 

corresponding uncertainty coefficient can 

be determined and the model output value 

can be predicted from the corresponding 

graphs. Of course, the models must be 

simple and straightforward enough so that 

they can be converted into linear and matrix 

models by changing parameters or 

mapping. 

 

3. Database Compilation  

 

This study utilizes the data from a project in 

Eskisehir, Turkey. From a combination of 

CPT logs and Vs profiles extracted from the 

SCPT data, 407 triple data (qc, fs and Vs) 

were obtained from 37 sites within the 

specified range where the Vs values come 

from approximately the same depth ranges. 

  The database was divided into four soil 

types. Figure 2 shows the CPT data as a 

sample and Figure 3 shows the scatter of qc, 

fs and Vs as a function of depth. Also, in 

Table 2, a sample of the database is 

presented. Mola‐Abasi et al. (2015) and 

Tun (2003) introduced more information 

about the site investigation and data 

process. In the mentioned articles, detailed 

explanations of the data and physical-

mechanical conditions were given, and 

since this is not part of the main discussion 

of the article, the readers' attention was 

drawn to these articles for further research.
 

   
(a) (b) (c) 

Fig. 2. An example of a CPT and Vs record: a) qc; b) fs and c) Vs 
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(a) (b) (c) 

Fig. 3. Depth distribution of measurement values: a) qc; b) fs; and c) Vs for clay, sand, and mix 
 

Table 2. A series of CPT and Vs case records in this study 
Soil type qc (MPa) fs (MPa) Vs 

Clay 

1.00 0.02 137.40 

2.00 0.10 167.30 

1.00 0.03 185.80 

Sand 

26.00 0.20 279.40 

16.00 0.10 233.70 

20.00 0.05 250.50 

Mix 

40.00 0.10 185.80 

1.000 0.010 153.60 

2.000 0.030 172.00 

4. Modeling Using Robust Optimization 

Method 

 

Six correlation models are considered to 

investigate how parameter uncertainty 

affects the prediction of Vs. These models 

are similar to the great majority of those 

listed in Table 1, in the sense that the Vs is 

assumed to be independent of any soil 

parameter, except qc and fs. The six 

equations of the models are as follows:  

 
𝑉𝑆 = 𝑎1 + 𝑎2𝑞𝑐 (25) 

𝑉𝑆 = 𝑎1 + 𝑎2 𝑙𝑛( 𝑞𝑐) (26) 

𝑉𝑆 = 𝑎1 + 𝑎2 𝑙𝑜𝑔( 𝑓𝑠) (27) 

𝑉𝑆 = 𝑎1(𝑞𝑐)
𝑎2 (28) 

𝑉𝑆 = 𝑎1(𝑞𝑐)
𝑎2𝑓𝑠

𝑎2 (29) 

𝑉𝑆 = 𝑎1 + 𝑎2𝑞𝑐 + 𝑎3𝑓𝑠 + 𝑎4𝑞𝑐
2

+ 𝑎5𝑓𝑠
2 + 𝑎6(𝑞𝑐𝑓𝑠) 

(30) 

 

To evaluate the model’s performance in 

this study, several performance indices, 

including the absolute fraction of variance 

(R2) as defined in Eq. (31); the Root Mean 

Square Error (RMSE) as determined by Eq. 

(32); the Mean Absolute Percentage Error 

(MAPE) as calculated using Eq. (33); and 

the Mean Absolute Deviation (MAD) as 

given by Eq. (34), were calculated as 

follows: 
 

𝑅2 = 1 − [
∑ ( 𝑌(𝑖)𝑐 − 𝑌(𝑖)𝑜)

2𝑀
𝑖=0

∑ ( 𝑌(𝑖)𝑜)
2𝑀

𝑖=1

] (31) 

𝑅𝑀𝑆𝐸 = √
1

𝑀
∑(𝑌(𝑖)𝑜 −  𝑌(𝑖)𝑐)

2

𝑀

1

 (32) 

𝑀𝐴𝑃𝐸 =
∑ |𝑌(𝑖)𝑜 −  𝑌(𝑖)𝑐|
𝑀
1

∑ 𝐶𝑚𝑖
𝑀
1

× 100 (33) 

𝑀𝐴𝐷 =
∑ |𝑌(𝑖)𝑜 −  𝑌(𝑖)𝑐|
𝑀
1

𝑀
 (34) 

 

where, M: is the number of data, and Yc and 

Yo: are calculated and observed values, 

respectively. The optimal model 

performance will be achieved by lower 
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RMSE, MAPE, and MAD values. The 

limitation of R2 is between 0 to 1 and 

increasing R2 leads to higher model 

accuracy. 

 

5. Results 

 

The linear regression results for the models 

are presented below. As shown in Table 3, 

Models 6 and 4 have good accuracy, but 

based on other statistical parameters, Model 

6 is slightly more accurate than Model 4. 

One of the topics discussed in this study is 

investigating the effects of uncertainty, and 

an important question is whether Models 4 

and 6 (which have sufficient accuracy) have 

the same accuracy when the data is 

uncertain. In the following, the question 

was answered by examining the 

uncertainty.  

The variation of the coefficient (R2) is 

evaluated using the uncertainties of the four 

soil types. The results are summarized in 

Figures 4 and 5. Figure 4 shows that as the 

uncertainty increases, the variability 

decreases and approaches a stable value. It 

is important to note here that if the 

uncertainty is set to zero (for example, 

Figure 4f of this study), this method reduces 

to an ordinary least squares multiple 

regression technique with the same 

coefficients (Table 2). 

 
Table 3. The regression results for the models 

 Soil type a1 a2 a3 a4 a5 a6 R2 RMSE MAPE MAD 

Model 1 

Clay 5.59 150.13 - - - - 0.9687 22.70 9.875 17.7 

Sand 4.59 209.28 - - - - 0.8235 37.65 12.67 28.4 

Mixed 3.82 200.05 - - - - 0.8580 34.10 12.01 25.9 

All 5.84 171.05 - - - - 0.8550 34.41 12.07 26.1 

Model 2 

Clay 153.44 15.38 - - - - 0.9695 22.62 9.86 17.7 

Sand 118.44 63.28 - - - - 0.8208 37.92 12.72 28.6 

Mixed 167.72 44.12 - - - - 0.8804 31.79 11.57 24.2 

All 148.77 50.25 - - - - 0.8656 33.32 11.86 25.3 

Model 3 

Clay 175.66 11.42 - - - - 0.9676 22.82 9.898 17.8 

Sand 381.57 89.93 - - - - 0.8179 38.23 12.78 28.8 

Mixed 407.92 135.09 - - - - 0.8875 31.06 11.44 23.7 

All 339.56 98.86 - - - - 0.8313 36.85 12.52 27.8 

Model 4 

Clay 152.80 0.48 - - - - 0.9988 19.61 9.297 15.5 

Sand 237.63 0.84 - - - - 0.9958 19.92 9.355 15.7 

Mixed 175.10 2.52 - - - - 0.9965 19.84 9.34 15.7 

All 171.33 1.71 - - - - 0.9958 19.91 9.354 15.7 

Model 5 

Clay 151.60 0.09 0.00 - - - 0.9701 22.56 9.85 17.6 

Sand 227.67 0.13 0.08 - - - 0.8266 37.33 12.61 28.2 

Mixed 266.12 0.13 0.13 - - - 0.9151 28.22 10.91 21.7 

All 172.75 0.19 0.04 - - - 0.8742 32.43 11.69 24.7 

Model 6 

Clay 139.59 16.86 -77.19 -2.29 42.38 36.68 0.9988 19.60 9.296 15.5 

Sand 168.71 6.31 423.58 -0.06 -661.30 -0.98 0.9960 19.89 9.35 15.7 

Mixed 126.81 11.41 989.63 -0.32 -1237.26 2.90 0.9971 19.78 9.329 15.7 

All 132.99 12.96 284.00 -0.30 -399.72 7.47 0.9971 19.77 9.328 15.6 

 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Fig. 4. Variations of coefficients versus uncertainties for different models and different soil types: a) Model-1 

(Eq. (25)); b) Model-2 (Eq. (26)); c) Model-3 (Eq. (27)); d) Model-4 (Eq. (28));, e) Model-5 (Eq. (29)); and f) 

Model-6 (Eq. (30)) 
 
Figure 4 constitutes the sensitivity 

analysis of each coefficient of the variables 

related to the uncertainty level. In other 

words, it was proved that these respective 

variables had greater sensitivity for the 

coefficients with greater variations. Figure 

5 shows the variation of R2 versus 

uncertainties for each model of interest. As 

shown in Figure 5, the best-matched 

correlation amongst the others was in the 

form of Eq. (28) (Figure 5d when 

uncertainty is zero). However, the least 

error in the estimation of Vs was obtained 

by the polynomial models. As illustrated in 

Figure 5, the models mentioned above can 

make fairly accurate predictions when 

uncertainties are not taken into account, but 

they are not as reliable when dealing with 

high levels of uncertainty. In each sub-set, 

the proposed method achieved more 

accurate predictions assuming uncertainty. 

 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Fig. 5. Variations of R2 versus uncertainties for different models: a) Model-1 (Eq. (25)); b) Model-2 (Eq. (26)); 

c) Model-3 (Eq. (27)); d) Model-4 (Eq. (28)); e) Model-5 (Eq. (29)); and f) Model-6 (Eq. (30)) 

 

As presented in Eq. (30), the polynomial 

model provided a better fit to the observed 

data than the others. It can be easily seen 

that although the uncertainty level was 

almost 100 %, the value of R2 was greater 

than 0.9. For a more detailed explanation of 

Figures 4 and 5, it should be borne in mind 

that by using this method and taking data 

uncertainty into account, model coefficients 

are obtained, and the search for a logical 

relationship between the uncertainty and the 

predicted value reveals this term. In other 

words, by knowing the measurement 

accuracy associated with the data and 

determining the corresponding uncertainty, 

the corresponding uncertainty coefficient 

can be determined and the model output 

value can be predicted from the 

corresponding graphs. Of course, it is 

important to mention that all models are 

converted into linear and matrix models by 

changing the power with the logarithm. 

 

6. Conclusions 
 

Shear wave velocity is an essential 

engineering tool required to define the 

dynamic properties of soils and, preferably, 

can be determined indirectly by CPT.  

However, the inaccuracies in measuring or 

estimating the influencing parameters have 

consistently been a significant issue.  

Therefore, different statistical methods 

have been introduced to mitigate the impact 

of these inaccuracies on predicting future 

events by using the robust optimization 

model.  

Six correlation models were considered 

to investigate the impact of parameter 

uncertainty on the prediction of Vs. These 

models were similar to the great majority of 

those listed in Table 1 in that the Vs was 

assumed to be independent of any soil 

parameters, except for qc and fs. 

Other geotechnical soil properties can be 

added to obtain a better correlation, such as 
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relative density, void ratio, porosity, and 

unit weight. However, this study aimed to 

present the simplest correlation. The 

databases were evaluated by dividing them 

into four different groups, namely, clay, 

sand, mixed, and all soils. Six empirical 

correlation models, which different 

researchers introduced, were evaluated 

together with the proposed model.  

Among the previously proposed 

equations, the equations suggested in the 

form of Eq. (28) gave the highest 

R2 value. A robust optimization technique 

was developed to assess the impact of 

uncertainty of each model parameter, 

independently of the analysis results. This 

is an advance compared to limited 

stochastic approaches that consider 

parameter variations individually. A new 

parameter was introduced to represent the 

level of uncertainty in the data.  

Statistical comparison of the models 

showed that the accuracy of the model 

based on Eq. (28) was generally close to the 

polynomial model at very small uncertainty 

values. However, when data uncertainty is 

high (especially for the parameters 

mentioned above), the new polynomial 

model performs better. All the results 

obtained in this study showed that such 

correlations resulting from local records 

should not directly be used for Vs. 

The polynomial proposed relationships 

could be used for measuring Vs. It is 

recommend to reanalyze the presented 

model using data from other regions. It is 

proposed to adapt the methods of this work 

to new open model data. 
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