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ABSTRACT: This study analyzes bearing capacity and settlement for a strip footing at 

the proposed nit Patna Bihta campus site. It uses the Random Finite Element Method 

(RFEM) based software, which combines viscoplastic finite element analysis with 

random field theory. The program generates random realizations of the soil domain using 

local average subdivision method. The average response of the soil domain with variable 

properties is estimated using Monte-Carlo simulation. The study assumes random 

variation of soil parameters like cohesion, friction angle, and elastic modulus, while 

Poisson’s ratio and dilation angle are treated as deterministic variables. The study also 

considers the cross correlation between cohesion and friction angle. For no cross 

correlation, theoretical predictions are made for mean and standard deviation of bearing 

capacity which are verified using Monte Carlo simulation based RFEM results. The 

probability of bearing capacity failure is also calculated using random finite element 

analysis and compared with theoretical results. The stochastic analysis of bearing capacity 

problem indicates that conservative results can be obtained with Prandtl’s bearing 

capacity formula with consideration correlation length equal to the width of the footing.  

In settlement analysis, elastic settlement of strip footing on spatially variable soil is 

presented. Locally averaged log normally distributed random fields of elastic modulus 

are generated to conduct probabilistic settlement analysis using RFEM and it is seen that 

there is very good agreement between the predicted and the actual value of settlement at 

small and large correlation lengths.  It is concluded that RFEM is a very suitable and 

efficient tool for investigation of the effect of variation of soil properties in determining 

the overall mean response for the bearing capacity and settlement behavior. 
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1. Introduction 

 

The foundation is the most important part of 

a structure as it connects the structure to the 

ground and transfers the load from the 

superstructure to the ground. In the 

literature, deterministic analysis is mostly 

used to calculate bearing capacity and 

settlement of foundation (Pan-war and 

Dutta, 2023).  Such analysis assumes the 

soil to have a uniform value of parameters 

like cohesion, friction angle, elastic 

modulus etc. But these values are not 

uniform over the soil domain. So, for an 

important structure, one needs to carry out 

the reliability analysis to find out the 

probability of failure and the associated 

risks. For such a purpose Fenton and 

Griffiths (2008) developed a program called 

Random Finite Element Method (RFEM) 

which is based on the combination of finite 

element method and random field theory.  

It has edge over the other reliability 

methods in the way that it can produce soil 

domains with spatially varying properties 

thus considering the uncertainty associated 

and hence the response of the soil domain to 

the loads will be more realistic. Many 

researchers have successfully been able to 

model this uncertainty using finite element 

method and other techniques (Halder and 

Chakraborty, 2022; Jimenez and Sitar, 

2009; Johari and Talebi, 2021; Kumar et al., 

2023; Mellah et al., 2000; Pula and 

Zaskorski, 2015; Rezaie Soufi et al., 2020; 

Zhang and Peil, 1997).  

Vivisects et al. (2021) performed 

uncertainty quantification in the estimation 

of bearing capacity for shallow foundations 

in sandy soils using the finite element 

method. Mofidi Rouchi et al. (2014) 

performed lower bound limit analysis for 

strip footings near slopes. Griffiths and 

Fenton (2008) used the program to carry out 

the probabilistic analysis of many 

geotechnical problems like flow problems, 

bearing capacity analysis, slope stability 

analysis etcetera. 

Fenton and Vanmarcke (1990) 

developed a method called Local Average 

Subdivision (LAS) which have been 

popular for generating a realization of 

random field. Pieczynska et al. (2011) 

presented their work on probabilistic 

analysis of bearing capacity including new 

factors, like introduction of anisotropy in 

the random fields of cohesion and friction 

angle. Another addition made in this study 

was that the soil was not considered 

weightless anymore. The inclusion of 

anisotropy produces more realistic results 

and effectiveness of RFEM predictions 

increases.  

In recent years as well, many 

researchers have made use of this program 

to publish their work. Tan et al. (2009) 

performed slope stability analysis using 

fuzzy random finite element method. They 

said that fuzziness and randomness exist 

simultaneously in the soil and that is why it 

was important to carry out fuzzy random 

reliability analysis of slope.  Pramanik et al. 

(2019) used fuzzy set theory along with 

RFEM to perform the reliability analysis of 

elastic settlement of surface strip footing 

resting on cohesion less soil. Johari et al. 

(2015) for the case of loose sand, carried out 

an analysis to find the reliability against 

static liquefaction. They used the RFEM for 

doing so. Monotonic loading was 

considered in their study. They employed a 

truncated normal probability density 

function to represent all the random 

parameters considered in the study.  

Jimenez and Sitar (2009) performed 

RFEM analysis on foundation settlement. 

They assumed different distributions for 

elastic modulus like lognormal, gamma and 

beta. They characterized the elastic 

modulus using random fields. The scale of 

fluctuation tooke on the extreme values in 

their study. They performed their analysis 

for 2-dimensional shallow footing and the 

finite element model used was for plane 

strain condition. In recent years as well, a 

lot of research has been done on this topic 

(Zhang and Peil, 1997). Pula and Zaskorski 

(2015) investigated for a suitable 

distribution of the bearing capacity in case 

of cohesion less soil. They assumed a 
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bounded distribution for friction angle. The 

underlying Gaussian field was assumed to 

be tied with an ellipsoidal correlation 

function. They found that the probability 

distribution for the bearing capacity had a 

close resemblance with the Weibull 

distribution. 

Luo and Bathurst (2018) carried out 

deterministic and random finite element 

analysis of unreinforced and reinforced 

embankments brought to failure using strip 

footing. Chenari et al. (2019) presented 

immediate settlement analysis of shallow 

foundation resting on a spatially random 

anisotropic soil layer. Chawla (2019) 

studied the worst case correlation length for 

mean bearing capacity values using RFEM. 

Selmi et al. (2019) performed capacity 

assessment of offshore skirted foundations 

subject to vertical horizontal moment loads 

using RFEM. Kawa and Pula (2020) carried 

out probabilistic bearing capacity analysis 

of footing on spatially variable soils in 3D 

using RFEM. Shu et al. (2020) studied the 

effect of autocorrelation distance on mean 

bearing capacity of Spudcan foundations.  

Ning and Zhe (2021) explored the effect 

of rotated anisotropy of soil property on the 

bearing capacity of embedded strip footings 

using RFEM. Arel and Mert (2021) dealt 

with settlement analysis of a vertically 

loaded strip footing using 2D RFEM. 

Kozlowska and Vessia (2022) 

calculated bearing capacity of shallow 

foundations considering drained and 

undrained condition using RFEM. He et al. 

(2023) compared the Load and Resistance 

Factor Design (LRFD) approach with the 

RFEM in case of shallow foundation in 

order to calibrate the LRFD based 

approach. Teshager et al. (2023) examined 

settlement of a strip footing placed on a two 

layered soil profile using random finite 

element model in conjunction with a 

hardening soil model. Hoek-brown failure 

criteria was used to form stability charts 

(Kumar et al., 2023). Bendriss and 

Harichane (2023) performed seismic 

bearing capacity analysis of strip footing 

resting on soils having random soil 

properties and pseudo static seismic 

coefficient.  

This study investigates influence of 

variation of soil properties in bearing 

capacity and settlement analysis of a strip 

footing in Bihta site where the construction 

of new campus of NIT Patna is proposed. 

The results of this study are obtained by 

using RFEM program (MRBEAR2D and 

MRSETL2D) developed by Fenton and 

Griffith (2008).  

To get the response of the system to 

applied loads, the program makes use of the 

finite element code. Also, the program 

makes use of Monte Carlo simulation to 

estimate the probabilistic response a strip 

footing against bearing capacity failure of 

soil as well as the probability of failure 

against the settlement criteria. This research 

describes the behavior of a strip footing for 

NIT Patna, Bihta campus for the first time, 

and this aspect can be regarded as a major 

contribution in the form of a case study of a 

real-life project. 

 

2. Methodology 

 

In this section, the concepts, terms, and the 

formulations that are used in this study will 

be introduced. As, in this study of bearing 

capacity and settlement analysis, soil of 

spatially varying properties is considered. 

The first step was to take observations from 

the site. After obtaining the raw data, a 

suitable distribution was decided upon for 

the variable. Then, a random field was 

defined and a realization was generated 

using random field generator. Evaluation of 

the response to this generated input was 

done next. Generation of the realization and 

evaluation of the response was repeated for 

as many times as feasible. This whole 

process is called Monte Carlo simulation, 

i.e., producing possible replications of 

actual site conditions, to be able to study the 

probabilistic nature of response. 

 

2.1. Selection of a Distribution 

In this study, the random process being 

considered is a continuous state and 
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continuous space/time random process. 

Continuous state means that a variable can 

take any real value while continuous 

space/time means that the points, at which 

trials are done, are continuous in space or 

time. To represent continuous state 

processes, continuous probability 

distributions are used.  

 

2.1.1. Normal Distribution 

As per central limit theorem, when 

random variables are added together, they 

follow a normal distribution. Many natural 

phenomena in our surrounding are 

generally a sum of many random variables 

or involve many accumulating factors and 

hence, they tend to a normal distribution. A 

random variable (P) follows a normal 

distribution for the following form of pdf. 

 

𝑓(𝑝) =
1

𝜎√2𝜋
𝑒[−(

1

2
)(

𝑝−𝜇

𝜎
)

2
] for −∞ < 𝑝 < ∞ (1) 

 

A normal distribution can be completely 

represented by its mean (µ) and variance 

(σ2). When multiple variables are involved, 

then the mean and variance of each random 

variable can also be used to show their 

behavior through normal distribution. The 

multivariate normal pdf has the following 

form: 

 

𝑓(𝑝1. 𝑝2. … . 𝑝𝑘) =
1

2𝜋
𝑘
2

∗
1

|𝐶|
1
2

∗

𝑒{−
1

2
(𝑝−𝜇)𝑇𝐶−1(𝑝−𝜇)}  

(2) 

 

where  𝑝𝑖: is the random variable, µ: is the 

vector of mean values, one for each 𝑝𝑖, C: is 

the covariance matrix between the 𝑝𝑖 and |C| 

is its determinant. C is a k × k symmetric, 

positive definite matrix. 
 

2.1.2. Lognormal Distribution 

It is a non-negative distribution that can 

be obtained from normal distributions 

through simple transformation, If H is a 

normally distributed random variable, 

having range -∞ < h < ∞, then P = exp[H] 

will have a range 0 ≤ p ≤ ∞. This random 

variable P will be log normally distributed. 

Conversely, it can also be said that if 

ln(P) is normally distributed, then P will be 

log normally distributed. So, if P is log 

normally distributed random variable, it 

will have the probability density function. 

 

𝑓(𝑝) =
 1

𝑝𝜎𝑙𝑛𝑃√2𝜋
𝑒

{−
1
2(

𝑙𝑛 𝑝−µ𝑙𝑛𝑃
𝜎𝑙𝑛𝑃

)
2

}
  .   

0 ≤ 𝑝 < ∞ 

(3) 

 

where µ𝑙𝑛𝑃 = 𝐸[𝑙𝑛 𝑃]: represents 

expectation of P and  𝜎𝑙𝑛𝑃
2  𝑉𝑎𝑟 [𝑙𝑛 𝑃]: is the 

mean and variance of 𝑙𝑛 𝑃 can be found 

from mean and variance of P with the help 

of the following relations. 

 

𝜎𝑙𝑛𝑃
2 =𝑙𝑛  (1 +

𝜎𝑃
2

µ𝑃
2 ) (4) 

µ𝑙𝑛𝑃 =𝑙𝑛  (µ𝑃)  −
1

2
𝜎𝑙𝑛𝑃

2  (5) 

 
2.1.3. Bounded Tanh Distribution 

This distribution can also be derived 

from normal distribution using the 

following transformation. 

 

𝑃 = 𝑎 +
1

2
(𝑏 − 𝑎) [1 +𝑡𝑎𝑛ℎ (

𝑚 + 𝑠𝐺

2𝜋
) ] (6) 

 

where, G: is a normally distributed variable 

and X: is bounded on the interval (a,b), m: is 

called location parameter. If m = 0, then the 

distribution will be symmetric about 

midpoint. s: is called scale parameter and it 

shows variability of the distribution. The 

pdf of P is: 

 
𝑓𝑃(𝑝)

=
√𝜋(𝑏 − 𝑎)

√2𝑠(𝑝 − 𝑎)(𝑏 − 𝑝)

× 𝑒𝑥𝑝
{−

1
2𝑠2[𝜋𝑙𝑛 (

𝑝−𝑎
𝑝−𝑏) −𝑚]

2
}
 

(7) 

 

In this study, cohesion and friction 

angles are treated as random variables with 

in bearing capacity analysis while elastic 

modulus will be random variable in 

settlement analysis. But normal distribution 

has a shortcoming that it has non-zero 

probability of getting negative values. So, to 

overcome this problem, making use of 
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lognormal distribution will be very helpful 

as it only yields positive values (Das et al., 

2022). Similarly, for elastic modulus, 

lognormal distribution will be an 

appropriate one. As friction angle is going 

to have both an upper bound and a lower 

bound, a bounded tanh distribution will be 

appropriate for it (Pula and Griffiths, 2021). 

Also, it resembles a beta distribution but 

obtained from transformation of a random 

field following normal distribution. 

 

2.2. Defining a Random Field 

In the present analysis, the random 

fields of the parameters involved in the 

determinations of bearing capacity and 

settlement of a shallow footing are created 

to conduct the necessary probabilistic 

analyses. The random fields used are 

continuous state-space in nature. Using the 

assumptions of random field being 

Gaussian and stationary, the requirements 

to characterize the field reduces to: 

● Mean of the field, µ 

● Variance of the field, σ 

● Variation of the field in space 

The last point can be captured by the 

covariance function (second moment of 

field’s joint distribution). 

 

2.3. Covariance Function and  

Correlation Function 

It is already known that covariance 

measures how two variables change 

together. It is similar to variance for a joint 

probability distribution function. When 

more than one random variable is involved, 

it measures how two random variables 

changes with respect to each other. If P and 

Q random variables having joint probability 

distribution fPQ (p,q), then the correlation 

for random variable P at positions x and x* 

can be expressed in terms of variances (i.e., 

σP and σQ) as well as the covariance matrix 

𝐶(𝑥. 𝑥∗) in the following way: 

 

𝜌(𝑥. 𝑥∗) =
𝐶(𝑥. 𝑥∗)

𝜎𝑃(𝑥)𝜎𝑃(𝑥∗)
 (8) 

 

This helps in simplifying the probability 

models. Markov correlation function can be 

conveniently used in such cases with the 

following form: 

 

𝜌(𝜏) = 𝑒𝑥𝑝
{−

2|𝜏|
𝜃

}
 (9) 

 

where θ: is the correlation length, the length 

in the space domain up to which soil 

properties are significantly correlated. In 

this study, following correlation function is 

used for cohesion field. 

 

𝜌𝑙𝑛𝑐(𝜏) = 𝑒
{−

2|𝜏|

𝜃𝑙𝑛𝑐
}
  (10) 

 

where θlnc: is the correlation length which is 

defined as the separation between two 

values of lnc that are significantly 

correlated and τ: is the separation between 

two points for which correlation is being 

computed. A similar correlation function 

has been used for friction angle (ϕ) field. 

For elastic modulus field, the following 

correlation function is used. 

 

𝜌𝑙𝑛𝐸(𝜏) = 𝑒
{−

2|𝜏|
𝜃𝑙𝑛𝐸

}
 (11) 

 

where θlnE: is defined as the separation 

between two values of lnE that are 

significantly correlated. The cross 

correlation between c and ϕ are investigated 

at the correlation extremes (-1 and +1) as 

their correlation has no clear evidence in 

literature. 

 

2.4. Variance Function 

Most of the engineering properties are 

generally the local averages of some kind. 

Variance reduction function can be used to 

represent local averaging nature of any 

variable as: 

 

𝛾(𝑋1. 𝑋2) =
𝜃1

2𝜃2
2

4𝑋1
2𝑋2

2 [
2|𝑋1|

𝜃1
+ 𝑒

{−
2|𝑋1|

𝜃1
}

−

1] [
2|𝑋2|

𝜃2
+ 𝑒

{−
2|𝑋2|

𝜃2
}

− 1]  

(12) 

 

where X1 × X2: is the area of the plane for 

which local averaging is done. The 
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Gaussian quadrature (numerical method) 

can also be used to compute the variance 

function instead of using Eq. (23), for more 

accurate results. 

 

2.5. Generating a Realization of Random 

Field Using Local Average Subdivision 

(LAS) Method 

This method of generating realization is 

fast and accurate, and therefore, has been 

adopted by many researchers in the past 

(Fenton and Griffiths, 2008). The majority 

of the measurements taken in the 

engineering field are actually the local 

averages of the property. That is why, using 

this method of generating realization can 

yield accurate results even for coarser 

meshes. 

As shown in Figure 1, a normally 

distributed global average (𝑍1
0) is generated 

with variance being same as derived in local 

averaging theory with zero mean. Next, the 

field is split up into four equal parts and then 

four normally distributed values, Z1
1, Z2

1, 

Z3
1 and Z4

1 are generated in such a way that 

their mean and variances follows the below 

mentioned criteria: 

a) As per local averaging theory, the 

correct variance must be shown by them. 

b) Proper correlation among them must 

be maintained. 

c) Their average must be equal to the 

parent value, i.e. ¼ (Z1
1 + Z2

1 + Z3
1 + Z4

1) = 

Z1
0. Each locally averaged cell thus 

obtained is again split up into four parts that 

must be equal and the process is repeated. A 

2D LAS algorithm for a sample function is 

shown in Figure 2. 

 

2.5.1. Covariance Matrix Decomposition 

Covariance Matrix Decomposition 

produces homogeneous random field 

through a simple direct method. However, it 

is only useful for small fields. A discrete 

process of zero mean Zi = Z (xi), can be 

produced as per Eq. (13). 

 

 
Fig. 1. Local average subdivision in 2 dimensions (Fenton and Griffiths, 2008)) 

 
Fig. 2. 2D sample function generated from LAS 
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Z = LU (13) 

 

where L: is a lower triangular matrix and 

satisfies the relationship LLT = C and U: is 

a vector of n random variables of Gaussian 

nature. Each of them has zero mean and unit 

variance. C, in this case, represents a 

covariance matrix having elements Cij = C 

(τij). 

 

2.6. Methods Used in This Study 

In this study, in bearing capacity 

analysis, cross correlation between the field 

of cohesion and the field of friction angle is 

implemented using covariance matrix 

decomposition. The random fields for 

cohesion, friction angle and elastic modulus 

are generated using LAS method.  

This process involves two steps. In the 

first step, the underlying Gaussian random 

field Glnc (x), Gϕ (x) and GlnE (x), having 

zero mean, unit variance and Markov 

correlation function, are generated. Then 

using the following transformations, values 

of cohesion, ci (i denotes the ith element), 

friction angle, ϕi and elastic modulus Ei are 

obtained. 

 

𝑐𝑖 = 𝑒𝑥𝑝{µ𝑙𝑛𝑐+𝜎𝑙𝑛𝑐×𝐺𝑙𝑛𝑐(𝑥𝑖)} (14) 

𝜙𝑖 = 𝜙𝑚𝑖𝑛 +
1

2
(𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛) {1 +

𝑡𝑎𝑛ℎ (
𝑠𝐺𝜙(𝑥𝑖)

2𝜋
) }  

(15) 

𝐸𝑖 = 𝑒𝑥𝑝{µ𝑙𝑛𝐸+𝜎𝑙𝑛𝐸×𝐺𝑙𝑛𝐸(𝑥𝑖)} (16) 

 

where xi: is the centroid of ith element and 

H(xi) is the local average value generated by 

the LAS algorithm. 
 

2.6.1. Finite Element Discretization of 

the Random Field Domain 

In this study, the program by Fenton and 

Griffiths (2008) makes use of finite element 

method, is used for both bearing capacity 

and settlement problems, to obtain response 

of the system.  

In bearing capacity problem, footing is 

displaced until the failure happens while in 

settlement problem, a certain amount of 

load is placed on the footing and the 

settlement is recorded. 

 

2.6.1.1. Governing Equations 

Both the bearing capacity problem and 

settlement problem are represented using a 

2D plane strain model. The governing 

equations for such a model are: 

 

{
𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜎𝑥𝑦

𝜕𝑦
+ 𝑏𝑥 =

𝜌𝜕2𝑢

𝜕𝑡2  
𝜕𝜎𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦

𝜕𝑦
+

𝑏𝑦 = 𝜌
𝜕2𝑣

𝜕𝑡2  
(17) 

 

where normal stresses are represented by σx 

and σy, shear stress on planes xz and yz is 

represented by σxy, body forces per unit 

volume in x and y directions are represented 

by bx and by, respectively, and 

displacements in x and y directions are 

represented by u and v, respectively. 

 

2.6.1.2. Boundary Conditions 

In bearing capacity problem, eight-node 

elements are used while in settlement 

problem, four-node elements are used for 

discretizing the domain. The elements used 

are isoperimetric elements i.e. they use 

same shape functions to define the 

element’s geometric shape and the 

displacement within the element. 

Boundary conditions have to be 

satisfied at a part of the boundary or the 

whole boundary, where a set of differential 

equations are to be solved. In bearing 

capacity problem, the left and right faces of 

the mesh can have translation in vertical 

direction but restricted against horizontal 

rotation. The bottom nodes are restricted 

against rotations as well as translation. 

Same boundary conditions apply in case 

of settlement problem. In this study, for 

bearing capacity problem, the finite element 

mesh has 1000 elements. They are laid in 

such a way that width of the mesh occupies 

50 elements while depth of the mesh 

occupies 20 elements. Each element has a 

dimension of 0.1 m × 0.1 m. In settlement 

problem, the finite element mesh consists of 

1200 elements. They are laid in such a way 

that width of the mesh occupies 60 elements 

and depth of the mesh occupies 20 
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elements. Each element has a dimension of 

0.05 m × 0.05 m. That makes the mesh 3 m 

wide and 1 m deep. 

 

2.6.2. Modelling of Soil as a Material 

The stress-strain behavior of soil under 

any general loading is essentially nonlinear. 

Therefore, it is necessary to consider a 

proper modelling technique to represent the 

nonlinear stress-strain behavior of soil. In 

the present work, Mohr-Coulomb failure 

criterion is used to represent its constitutive 

behavior of soil material.  

One of the popular methods for 

modelling material nonlinearity is to use 

"constant stiffness" approach coupled with 

altering "loads" vector as described by 

Smith et al. (2013).  In such analysis, global 

stiffness matrix is only formed once and 

kept unchanged for rest of load application 

iterations.  It is required to satisfy a properly 

defined yield criterion (in this case, Mohr-

Coulomb failure criteria) to model the 

nonlinear stress-strain characteristic of the 

soil material.  

The "loads " vector consists of externally 

applied loads as well as the self-

equilibrating "body loads". The self-

equilibrating "body loads" vector is 

managed in such way so that the net loading 

on the system remains unchanged. The 

viscoplastic algorithm along with initial 

stress method is used by RBEAR2D and 

RSETL2D programs developed by Fenton 

and Griffiths (2008) to model the nonlinear 

stress-strain response of soil.  

These two programs have been used in 

the present study. Interested readers can 

find more information about the application 

of viscoplastic material nonlinearity for soil 

modelling in existing literatures 

(Sienkiewicz et al., 1969, 1977; 

Sienkiewicz and Ormeau, 1974). 
 

2.6.3. Monte Carlo Simulations 

Our objective to perform this simulation 

is to estimate the variance, mean and 

probabilities associated with response of 

system. To analyze the probability of the 

response of the system through Monte Carlo 

simulation, it is required to carry out a 

significant number of simulations. For 

every simulation, a new realization of the 

random field is generated and response of 

the system is recorded. In the bearing 

capacity analysis, 1000 simulations have 

been performed for probabilistic analysis. 

On the other hand, in case of settlement 

analysis, 5000 simulations have been 

performed for probabilistic analysis. 

 

2.6.4. Formulations Used for Analysis of 

Results 

 

2.6.4.1. Bearing Capacity 

In literature, following relationship has 

been used frequently to determine bearing 

capacity. 

 

𝑞𝑢 = 𝑐𝑁𝑐 + 𝑞𝑁𝑞 +
1

2
𝐵𝛾𝑁𝛾 (18) 

 

where qu: represents ultimate bearing stress, 

q̅: represents overburden stress, c: 

represents cohesion, γ: represents unit 

weight of soil, Nc, Nq and Nγ: represents 

bearing capacity factors and are the function 

of ϕ and B: represents footing width. If the 

weight of the soil assumed to be neglected 

and that no surcharge is applied on the soil, 

then the above equation simplifies to: 
 

𝑞𝑢 = 𝑐𝑁𝑐 (19) 

 

This equation will be employed to get 

the statistics of bearing capacity. Up on 

dividing the equation by the cohesion mean, 

µc, it can be expressed in non-dimensional 

zed form as follows: 
 

𝑀𝑐 =
𝑞𝑢

µ𝑐
=

𝑐𝑁𝑐

µ𝑐
 (20) 

 

where Mc: is the bearing capacity factor and 

a stochastic equivalent of Nc. Now, it would 

become necessary to find the distribution of 

Mc. For that purpose, the distribution 

assumed for cohesion and friction angle, is 

lognormal distribution and bounded 

distribution, respectively, and their 

expressions are the same as given in Eqs. 

(14-15). In Eq. (21), geometric averages are 
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employed for cohesion and friction angle, in 

order to present an approximate model. 
 

𝑀𝑐 =
𝑐̅𝑁𝑐

̅̅ ̅

µ𝑐
 (21) 

 

where 𝑁𝑐
̅̅ ̅ =

𝑒𝜋𝑡𝑎𝑛�̅�𝑡𝑎𝑛2(
𝜋

4
+

�̅�

2
)−1

𝑡𝑎𝑛�̅�
 , c̅ and ϕ:̅ 

represents geometric averages of cohesion 

and friction angle. Using probability theory, 

the following relations showing mean and 

variance of lnMc can be found. 

 

µ𝑙𝑛𝑀𝑐
≃ 𝑙𝑛𝑁𝑐(µ𝜙) −

1

2
𝑙𝑛 (1 +

𝜎𝑐
2

µ𝑐
2)                      

(22) 

 

𝜎𝑙𝑛𝑀𝑐

2 ≃ 𝛾(𝐷){𝑙𝑛 (1 +
𝜎𝑐

2

µ𝑐
2)  +

[(
𝑠

4𝜋
) (𝜙𝑚𝑎𝑥 −

𝜙𝑚𝑖𝑛)𝛽(µ𝜙)]
2

}  

(23) 

 

where γ (D): represents variance reduction 

function and ϕ: is measured in radians. µc 

and µϕ: are the arithmetic mean of cohesion 

and friction angle fields: 𝛽(𝜙) =
𝑏𝑑

𝑏𝑑2−1
[𝜋(1 + 𝑎2)𝑑 + 1 + 𝑑2] −

1+𝑎2

𝑎
 here, 

𝑎 = 𝑡𝑎𝑛 (𝜙) . 𝑏 = 𝑒𝜋𝑎 𝑎𝑛𝑑 𝑑 = 𝑡𝑎𝑛 (
𝜋

4
+

𝜙

2
). 

All the other symbols have their usual 

meaning. As the simulation results are in 

terms of bearing capacity, qu, following 

results needs to be used to transform them 

in terms of bearing capacity factor, Mc, for 

number of realizations equal to 1000. 

 

𝑀𝑐𝑖
=

𝑞𝑢𝑖

µ𝑐
.   𝑖 = 1.2. … … 1000 (24) 

µ𝑙𝑛𝑀𝑐
=

1

1000
∑ 𝑙𝑛𝑀𝑐𝑖

1000
𝑖=1   

(25) µ𝑙𝑛𝑀𝑐
=

1

1000
∑ 𝑙𝑛 (

𝑞𝑢𝑖

µ𝑐
)1000

𝑖=1   

µ𝑙𝑛𝑀𝑐
= µ𝑙𝑛𝑞𝑢

− 𝑙𝑛µ𝑐 

𝜎𝑙𝑛𝑀𝑐

2 =
1

1000
∑ (𝑙𝑛𝑀𝑐𝑖

− µ𝑙𝑛𝑀𝑐
)

1000

𝑖=1

 (26) 

𝜎𝑙𝑛𝑀𝑐

2 =
1

1000
∑ (𝑙𝑛 (

𝑞𝑢𝑖

µ𝑐
)  −1000

𝑖=1

(µ𝑙𝑛𝑞𝑢
− 𝑙𝑛µ𝑐))

2

  (27) 

𝜎𝑙𝑛𝑀𝑐

2 =
1

1000
∑ (𝑙𝑛𝑞𝑢𝑖

− µ𝑙𝑛𝑞𝑢
)21000

𝑖=1   

𝜎𝑙𝑛𝑀𝑐

2 = 𝜎𝑙𝑛𝑞𝑢
 

2.6.4.2. Settlement 

Settlement problem is linear in many of 

its parameters. Elastic modulus is one of 

those parameters. So, a footing founded on 

a soil layer of uniform (but random) elastic 

modulus, E, can have the settlement, δ, of 

following form: 

 

𝛿 =
𝛿𝑑𝑒𝑡µ𝐸

𝐸
 (28) 

 

where δdet: is the deterministic value of 

settlement when E = µE. Hence: 

 
µ𝑙𝑛𝛿 = 𝑙𝑛 (𝛿𝑑𝑒𝑡)  + 𝑙𝑛 (µ𝐸)  − µ𝑙𝑛𝐸  

(29) 
µ𝑙𝑛𝛿 = 𝑙𝑛 (𝛿𝑑𝑒𝑡)  +

1

2
𝜎𝑙𝑛𝐸

2   

 

and as the local averaging is done, the 

standard deviation of log settlement is given 

by: 
 

𝜎𝑙𝑛𝛿 = √𝛾(𝐵. 𝐻)𝜎𝑙𝑛𝐸 (30) 

 

where B×H: is the averaging region on 

which variance reduction function, γ(B, H) 

depends. 

 

2.6.5. Chi-Square Test 

It is a goodness of fit test used for 

checking how much a hypothesized 

distribution fits the actual distribution. To 

do so, it performs a numerical comparison 

between predicted histogram and the 

observed one. Firstly, a histogram having k 

interval is constructed. Calculating the 

following value is the next step. 

 

𝜒2 = ∑
(𝑁𝑗−𝑛𝑝𝑗)2

𝑛𝑝𝑗

𝑘
𝑗=1   (31) 

 

where Nj: is the number of observations in 

the jth interval, n: is the total number of 

observations and pj: is the probability that 

an observation lies in jth interval in fitted 

distribution. The fitted distribution is 

rejected if: 

 
𝜒2 > 𝜒𝛼.𝑘−1

2  (32) 

 

where α: is the level of significance. The 
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smallest value of α at which the fitted 

distribution is rejected is called p-value. 

 

3. Results and Discussions 

 

3.1. General 

In this section, the results of the study 

are presented and the efforts are made to 

explain a certain trend. These results of 

bearing capacity analysis and settlement 

analysis are for a strip footing founded on 

the Bihta site and are carried out by using 

MRBEAR2D and MRSETL2D part of 

RFEM software respectively, originally 

developed by Griffiths and Fenton (2008). 

The results are presented in two separate 

sections, one of which is dedicated to 

bearing capacity analysis while the other 

has the results of settlement analysis.  

In bearing capacity analysis, mean and 

standard deviation of log bearing capacity 

factor is plotted for various values of 

coefficient of variation, correlation length 

and cross correlation coefficient and also a 

comparison has been made with the 

predicted values. In settlement analysis, 

mean and standard deviation of log 

settlement is plotted for various values of 

coefficient of variation, correlation length 

and cross correlation coefficient. A 

comparison has also been made with the 

predicted values. From the data obtained by 

exploration of Bihta site, on which new NIT 

Patna building is proposed, the averages for 

cohesion, friction angle and elastic modulus 

are calculated and are given below.  

In this study, the probabilistic bearing 

capacity analysis and settlement analysis 

for a shallow footing is carried out. Hence, 

while calculating averages, values of soil 

properties are considered for only up to 2.5 

m depth. 
 

𝜇𝑐 ≃ 50 𝑘𝑁/𝑚2 

(33) 𝜇𝜙 = 5° 

𝜇𝑁 = 15  

 

Som and Das (2003) recommended the 

use of the following empirical relationship 

to calculate elastic modulus E of soil based 

on SPT(N) (Standard Penetration Test) 

value which was originally proposed by 

Schultz and Menzenbach (1961). The 

following relation between elastic modulus 

E and N value is used to calculate elastic 

modulus: 

 
𝐸 = 24 + 5.3𝑁 (34) 

 
where E: is in kg/cm2. For the present 

analysis, the average value of elastic 

modulus (𝜇𝐸) is considered to be 10000 

kN/m2.  

 
3.2. Bearing Capacity Analysis 

3.2.1. Input Data 

In the bearing capacity analysis, a 

smooth rigid strip footing is considered 

which is assumed to be founded on 

weightless soil. Hence a plane stress 

condition prevailed. In this analysis a Mohr-

Coulomb failure criterion is considered 

along with an elastic-perfectly plastic 

stress-strain law. A viscoplastic algorithm 

has been used to accomplish plastic stress 

redistribution. 

The finite element mesh consists of 50 

elements wide by 20 elements deep i.e. 

1000 elements. Eight node quadrilateral 

elements are considered and each element 

has a size of 0.1 m × 0.1 m. The strip footing 

is assumed to occupy 10 elements which 

makes its width equals to 1 m. 

 

3.2.1.1. Boundary Conditions 

In bearing capacity problem, eight-node 

elements are used while in settlement 

problem, four-node elements are used for 

discretizing the domain. The elements used 

are isoperimetric elements i.e. they use 

same shape functions to define the elements 

geometric shape and the displacement 

within the element.  

Boundary conditions have to be 

satisfied at a part of the boundary or the 

whole boundary, where a set of differential 

equations are to be solved. In bearing 

capacity problem, the left and right faces of 

the mesh can have translation in vertical 

direction but restricted against horizontal 
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rotation. The bottom nodes are restricted 

against rotations as well as translation. 

Same boundary conditions apply in case 

of settlement problem. In this study, for 

bearing capacity problem, the finite element 

mesh has 1000 elements. They are laid in 

such a way that width of the mesh occupies 

50 elements while depth of the mesh 

occupies 20 elements. Each element has a 

dimension of 0.1 m × 0.1 m. Figure 3 shows 

the geometry of the domain along with 

dimensions, and the support conditions. 

Elastic modulus of soil, Poisson’s ratio 

and dilation angle are assumed to be 

deterministic. Value of elastic modulus is 

set at 10000 kN/m2 as obtained by 

averaging the field data. Poisson’s ratio is 

set to 0.3 while dilation angle is assumed to 

be zero. The cohesion and friction angle are 

set as random parameters. A lognormal 

distribution is assumed to characterize 

cohesion while a bounded than distribution 

is assumed to characterize friction angle. 

Local average subdivision method is 

used to generate random fields of cohesion 

and friction angle. Covariance matrix 

decomposition method is used to establish 

cross correlation between cohesion and 

friction angle. The scale factor of friction 

angle is set equal to coefficient of variation 

of cohesion. The mean of cohesion is set to 

50 kN/m2 as obtained by averaging. The 

mean of friction angle is set at 5° as 

obtained by averaging. The upper bound for 

friction angle is set at 9° and lower bound is 

set at 1°.   

Figures 4 and 5 show the cohesion and 

friction angle random fields for the ‘ith’ 

simulation. Varying values of correlation 

length, coefficient of variation and cross 

correlation coefficient are used in this 

study. Monte Carlo simulations involving 

1000 realizations are performed. Each 

realization has a different soil property 

random field and hence a different bearing 

capacity value. In Figure 6, qu: is the 

bearing capacity, µc: is the mean value of 

cohesion and δv: represents the deformation 

in the soil. The stress-strain  and load-

displacement response of soil is nonlinear. 

Figure 7 plots the deformed finite element 

mesh of the soil at failure. 
 

 
Fig. 3. Geometry of the domain and boundary conditions 

 

 
Fig. 4. Cohesion random field 
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Fig. 5. Friction angle random field 

 

 
Fig. 6. Load-deformation curves corresponding to different realizations of soil 

 

 
Fig. 7. Deformed finite element mesh at failure of soil having random properties, lighter regions indicate weaker 

soil  
 

It can be seen that the failure surface is 

not strictly logarithmic spiral. The reason 

for the deviation could be that the path 

followed by the failure surface is through 

the weakest soil regions which might not be 

strictly logarithmic spiral in case of 

spatially variable soil. This deviation 

indicates that considering the randomness 

of soil while calculating bearing capacity is 

important to avoid overestimation or 

underestimation of N factors (which are 

calculated by assuming the failure surface 

to be log-spiral in most cases). 

3.2.2. Mean of Log Bearing Capacity 

Factor vs. Cohesion 

In this study, efforts are made to find out 

the variation of mean of log bearing 

capacity factor (µlnMc) with coefficient of 

variation, correlation length and cross 

correlation coefficient. A comparison has 

also been made with the predicted mean as 

per Eq. (22). Also, as the results of 

simulation were obtained in terms of 

bearing capacity, to convert them in terms 

of log bearing capacity factor, Eq. (25) is 

used. Results are presented below in 
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graphical form. Ρ: represents the cross-

correlation coefficient while θ represents 

correlation length. 

As predicted by Eq. (22), the value of 

µlnMc tends towards deterministic value ln 

Nc(µϕ), i.e. 1.87008 when variability of soil 

is small and mean properties are taken 

everywhere. Several researchers (Haldar 

and Mahadevan, 2000; Kiureghian and Ke, 

1988; Johari et al., 2015) have suggested 

different choices of the correlation length 

for use in a RFEM simulation. A ratio 

varying between 4 and 8 for the correlation 

length to the length of finite element was 

suggested by Kiureghian and Ke (1988). 

However, Fenton and Griffiths (2008) 

considered correlation length as high as 8 

for a similar sized footing considered in the 

present study, while investigating bearing 

capacity problem using RFEM.  

In this analysis, the correlation length 

has been varied from 0.1 m to 1.0 m. The 

minimum correlation length is considered 

equal to the size of the element used, 

whereas the maximum correlation length is 

considered equal to the size of the footing 

i.e., 1.0 m. However, following the works of 

Fenton and Griffith (2008), the influence of 

correlation length C.L = 8 is also studied. 

The variation of µlnMc vs. dimensionless 

parameter σc/µc is shown in Figure 8. As the 

variability increases, a significant reduction 

from the Prandtl’s solution can be observed. 

Soils having perfect correlation between 

cohesion and friction angle appear to be 

most affected while the least reduction has 

been observed in negatively correlated 

soils.  

The independent case lies between the 

two. By some researches in the literature, it 

has been cited that cohesion and friction 

angle are negatively correlated 

(Javankhoshdel and Bathurst, 2015; Liu et 

al., 2020).  

 

 
Fig. 8. Sample mean of lnMc along with the predicted one 

 

So, if the soil parameters are assumed to 

be uncorrelated while designing, then that 

will yield results on the conservative side. 

The effect of θ does not appear too much, 

but still the values are lower than the 

predicted ones. Also, Eq. (22) does not 

incorporate the effect of correlation length. 

Hence a separate plot is presented in 

Section 3.2.4 to analyze the effect of 

correlation length. 

 

3.2.3. Standard Deviation of Log 

Bearing Capacity Factor vs. Coefficient 

of Variation of Soil 

Results for standard deviation of log 

bearing capacity factor are presented as a 

graphical plot in Figure 9. From the results 

it is evident that cross-correlation 

coefficient does not have significant effect 

on standard deviation of log bearing 

capacity factor. However, the correlation 

length does affect it quite significantly. The 

variation reduction function decreases with 

decrease in correlation length. From Eq. 

(23), it is also clear that standard deviation 

of log bearing capacity factor depends upon 

0.1

1

10

0 1 2 3 4

μ
ln

 M
c

σc/μc

Predicted

C.C=0, C.L=0.1

C.C=0, C.L=1

C.C=0, C.L=8

C.C=1, C.L=0.1

C.C=1, C.L=1

C.C=1, C.L=8

C.C=-1, C.L=0.1

C.C=-1, C.L=1

C.C=-1, C.L=8



396  Vinay et al. 

 

variance reduction function. Hence, with 

decrease in correlation length, the standard 

deviation of log bearing capacity factor 

decreases. 

 

3.2.4. Sample Mean of Log Bearing 

Capacity Factor vs. Correlation Length  

The results presented in this section 

show how the sample mean of log bearing 

capacity factor varies with correlation 

length. The results of the simulation are 

presented as a graphical plot in Figure 10. 

When correlation length tends towards 

infinity, the mean value of log bearing 

capacity factor tends towards the value as 

predicted by Eq. (22). 

 

 
Fig. 9. Sample standard deviation of ln Mc 

 

 
Fig. 10. A plot of sample µlnMc versus normalized correlation length (θ/B) 

 

An effort can be made to explain the 

reasoning behind this. When correlation 

length tends towards infinity, the soil 

properties becomes spatially constant for a 

particular realization. Hence the failure 

surface returns to log spiral and mean 

values tends towards the predicted ones. It 

is also evident from the graph that when 

correlation length tends towards zero (i.e. 

infinitely rough field), the mean values 

approaches the predicted ones. In this case, 

the weakest path becomes very long and 

failure surface has to return to log spiral. 

 From Figure 10, it is clear that for 

different values of coefficient of variation, 

the mean of log bearing capacity factor is 

minimum when correlation length and 

width of footing are of same order. As the 

correlation lengths 0.1 and 8 are 

approximately equally spaced from θ = 1, 

hence their plots lie so close. 
 

3.2.5. Sample Mean of Log Bearing 

Capacity Factor vs. Coefficient of 
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Variation 

As observed in the previous plot, when 

correlation length and width of footing are 

of same order, the sample mean of log 

bearing capacity factor deviates most from 

the value predicted in Eq. (22). Hence the 

Eq. (22) needs to be modified to give 

conservative results. This equation is 

modified in a way to give conservative 

results for worst correlation length for a 

zero value of cross correlation coefficient. 

Weakest path issue and a slight finite 

element model error are the reasons that 

such a correction is needed.  

The modified equation with empirical 

correction is: 

 

µ𝑙𝑛𝑀𝑐
≃ 0.92𝑙𝑛𝑁𝑐(µ𝜙) − 0.7𝑙𝑛 (1 +

𝜎𝑐
2

µ𝑐
2)  (35) 

 

Figure 11 shows the plot for µlnMc for 

different values of coefficient of variation 

and θ, is for ρ = 0. 

 

3.2.6. Sample Standard Deviation of Log 

Bearing Capacity Factor vs. Coefficient 

of Variation 

In this section, a comparison is done 

between the sample standard deviation and 

the ones predicted from Eq. (23). The 

domain size required to calculate the 

variance reduction function is taken as a 

region having mean wedge zone depth, w 

and width of 5w, where w is: 

 

𝑤 ≃
1

2
𝐵𝑡𝑎𝑛(

1

4
𝜋 +

1

2
µ𝜙) (36) 

 

Hence γ(D) becomes equal to γ(5w, w). 

This domain D approximately gives the 

area involved in failure region. It represents 

the area between mean log spiral curves on 

both sides of footing. The results of the 

simulation along with the predicted ones are 

given as a graphical plot in Figure 12. They 

are for a cross-correlation coefficient equals 

to zero. A close agreement between 

simulated values and predicted values can 

easily be seen. The variability involved in 

the weakest path and the variability 

involved in any nearby path in a statistically 

homogeneous medium will be similar and 

hence, this close agreement. 

 

3.2.7. Estimation of Probability Density 

Function of Bearing Capacity    

 An estimation of probability density 

function of bearing capacity is done through 

Monte Carlo simulations and goodness of 

fit analysis is performed through Chi square 

test. This test yields a value called p-value. 

If p-value is high, then goodness of fit is 

high and vice versa. This test was 

performed for all the results and an average 

p value of 30% was obtained, which is high 

enough for good agreement with 

hypothesized distribution. Few percentage 

of simulations have p-value less than 5%. 

Around 10% of simulations has p-value less 

than 0.01%. Figures 13a and 13b show two 

fits with different values of coefficient of 

variation and correlation length.  Even with 

the smaller p-values, a reasonable fit can be 

seen. Hence it can be said that bearing 

capacity approximately follows lognormal 

distribution. 

 

3.3. Settlement Analysis 

 

3.3.1. Input Data 

Two dimensional settlement analysis is 

done for single footing. Elastic theory is 

used to calculate both the immediate 

settlement and consolidation settlement 

(Terzaghirl, 1943). 

The soil on which footing is founded, is 

assumed to be underlain by bedrock. A 2D 

plane strain model is used to represent the 

physical problem. The finite element mesh 

consists of four nodded quadrilateral 

elements. Each element is a square of side 

0.05 m. The mesh has 100 elements in the 

horizontal direction and 40 elements in the 

vertical direction. This makes the width of 

the mesh equals to 5 m and depth of the 

mesh equals to 2 m. A fixed load of 1000 

kN was applied to the footing. Value of 

Poisson’s ratio was fixed at 0.25. Mean 

value of elastic modulus was fixed at 10000 

kN/m2. Elastic modulus was assumed to 

follow lognormal distribution and its 
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random field was generated using local 

average subdivision method. Standard 

deviation of elastic modulus, width of 

footing and correlation length were varied. 

Monte Carlo simulations were used and for 

each input parameter, 5000 realizations 

were performed. An RFEM representation 

of single footing is given in Figure 14. 
 

 
Fig. 11. Plot of Sample and estimated mean of lnMc versus ν, for different θ 

 

 
Fig. 12. Plot of Sample and estimated mean of lnMc versus ν, for different θ 

  
(a) (b) 

Fig. 13. a) Fitted lognormal distribution for s = σc/µc = 0.1, θ = 4 and ρ = 0 having large p-value; and b) Fitted 

lognormal distribution for s = σc/µc = 5, θ = 1 and ρ = 0 having small p-value 

 

3.3.2. Mean of Log Settlement vs. 

Variance of Log Elastic Modulus 

The results for variation of mean of log 

settlement (mlnδ) with respect to variance of 

log elastic modulus (σ2
lnE) for different 

values of correlation length are presented as 
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a graphical plot in Figure 15 to show the 

variation. These results are for a footing of 

width 0.1 m. All the correlation length is 

plotted in the figure but they are not 

identifiable because they lie very close to 

each other. This shows that mean of log 

settlement does not depends very much on 

the correlation length. As mean of the local 

averaging process is not affected by 

correlation length, hence this should not be 

a surprise. Also, the simulation results show 

good agreement with the results predicted 

by Eq. (29). 

 

 
Fig. 14. RFEM representation of single footing 

 

 
Fig. 15. RFEM representation of single footing 

 

3.3.3. Standard Deviation of Log 

Settlement vs. Correlation Length for 

Different Footing Width  

The results for simulated standard 

deviation of log settlement (slnδ) for 

different values of correlation length, 

footing width and coefficient of variation of 

elastic modulus are shown as a graphical 

plot in Figure 16 for comparison between 

simulated results and results predicted from 

Eq. (30). 

As correlation length tends to zero, the 

values of elastic modulus at any two distinct 

points becomes independent. Therefore, 

with decrease in correlation length, the 

value of variance function decreases. In 

other words, due to local averaging process, 

the values of elastic modulus tend towards 

mean value. Hence, from Eq. (30) it can be 

said that the standard deviation of log 

settlement tends towards zero with the mean 

value approaching deterministic value. 

While for another limiting case, when 

correlation length approaches infinity, the 

elastic modulus field becomes uniform but 

still random from realization to realization. 

Variance reduction function for such a field 

will approach to unity. So basically, the plot 

is actually showing the variation of variance 

reduction function with respect to the 
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correlation length. The agreement between 

simulated results and predicted results is 

quite remarkable at small and large 

correlations lengths and for intermediate 

correlation lengths also, the agreement is 

good. 

 

3.3.4. Probability Density Function of 

Settlement 

A histogram of the settlement is shown 

in Figure 17. This is a normalized histogram 

as the frequency density plot was desired. 

Parameters used to produce this histogram 

are B = 0.1 m, ν = 1 and θ = 0.1. A 

lognormal distribution is superimposed on 

it. In appearance, the lognormal distribution 

seems quite fit. But this simulation had one 

of the least p-value of Chi square test. For 

other simulations p-value was not much 

low. Hence it would be safe to say that 

settlement follows the lognormal 

distribution. 

 

 
Fig. 16. Comparison of simulated and theoretical standard deviation of log settlement 

 

 
Fig. 17. Frequency density plot of settlement and fitted lognormal distribution 

4. Conclusions 

 

The study on the effect of variation of soil 

properties on baring capacity analysis of a 

strip footing founded in NIT Patna Bihta 

campus concludes that on average, the 

bearing capacity of a soil having spatially 

varying properties will be less than the 

bearing capacity calculated from Prandtl’s 

formula using only mean values. When the 

soil properties become random in nature, the 

failure surface shifts from logarithmic spiral 

to a surface which is weaker and exists in 

the vicinity of the spiral one. To predict the 

statistics of bearing capacity, it is possible to 

use Prandtl’s formula if the geometric 

averages are the basis for the properties used 

in the formula. Although an empirical 

adjustment is needed for mean. The 

stochastic behavior of bearing capacity does 
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not seem to be much affected by cross 

correlation between cohesion and friction 

angle.  

Anyway, the independent case was 

found to be conservative. Generally, the 

information about correlation length at a site 

is not available. For such instances a worst 

case correlation length (θ  ≃ B) was found. 

So if the design is based on this correlation 

length, it would be conservative. The 

settlement study concludes that lognormal 

distribution appropriately represents the 

settlement of the footing placed on the soil 

having spatially random elastic modulus 

represented by lognormal distribution itself.  

Mean along with the variance of the log 

elastic modulus field are the parameters that 

are required to represent mean of log 

settlement. Using the limiting values of 

correlation length, it is possible to 

approximate the mean of log settlement. 

When log elastic modulus field is locally 

averaged directly under the footing and its 

variance is taken, it will produce the 

quantity that very accurately approximates 

the standard deviation of log settlement. 
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