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ABSTRACT: The material properties of geotextiles play a significant role in shaping the long-term behavior of 
reinforced soils, potentially leading to issues like instability and excessive deformation. To address these 
challenges, thorough research into geotextile materials' rheological properties and nonlinear behavior is 
essential. This study specifically focuses on the investigation of six commonly employed isotropic hyperelastic 
models (Neo-Hooke, Mooney-Rivlin, Ogden, Yeoh, Arruda-Boyce, and Van der Waals) for describing the 
behavior of PET woven geotextiles in civil engineering applications. These models are fine-tuned through 
uniaxial tension tests conducted in warp and weft directions. Upon analyzing the experimental data, it becomes 
evident that the Yeoh and Neo-Hooke models exhibit exceptional accuracy in predicting geotextile behavior. 
The primary objective of this study is to advance our comprehension of how geotextiles react to varying loads, 
achieved through a combination of testing and finite element simulations. The robust correlation between 
experimental and simulation results significantly contributes to developing dependable hyperelastic material 
models tailored for geotextiles. This research framework holds considerable potential value for manufacturers 
and engineers as it equips them with practical tools to address concerns associated with soil-structure 
interaction in their projects. 

 Keywords:  Soil-Structure Interaction Interface, Hyperelastic Models, Uniaxial Tension Testing, FEA Modeling. 

 

1.  Introduction  
In civil engineering, geotextiles find extensive 
applications, such as soil stabilization, drainage 
systems, and erosion control. PET woven geotextiles 
are frequently utilized among various geotextile 

materials. To comprehensively assess and forecast 
the performance of PET woven geotextiles under 
varying loads and environmental conditions, the 
utilization of hyperelastic models proves beneficial. 
These models offer a structured approach for gaining 



 

 
 

insights into the material's mechanical properties and 
behavior when deformation occurs. 

Hyperelastic models are employed to characterize 
the stress-strain response of materials that undergo 
substantially elastic deformations, as is the case with 
PET-woven geotextiles. These models rely on strain 
energy density functions, which establish a 
connection between the energy stored within the 
material and the deformations it experiences. By 
selecting an appropriate strain energy density 
function, it becomes possible to depict the 
mechanical behavior of the material accurately. 
Geotextiles and geosynthetics, polymers extensively 
utilized in civil engineering, geotechnical engineering, 
and transportation, augment lateral resistance and 
enhance the properties of backfill materials in 
foundation systems (Wu et al.,2020). 
Ongoing research is directed toward integrating 
geotextiles into the design process and scrutinizing 
the interfaces between geotextiles and 
geomembranes. Researchers employ diverse 
techniques, including shear tests to assess frictional 
behavior, triaxial compression tests, and advanced 
constitutive models such as the one proposed by Guo 
et al. (Guo et al.,2022). These methodologies yield 
valuable insights into geotextile-geomembrane 
interfaces' performance, stability, and mechanical 
characteristics under varying loading conditions. 
Cutting-edge constitutive models consider material 
properties, stress-strain relationships, and interface 
properties, enabling precise simulation of geotextile 
behavior and its interaction with geomembranes. 

Finite element modeling employs physical tests 
and a hyperelastic methodology to assess the 
puncture resistance of needle-punched nonwoven 
geotextiles (Saberi et al.,2017). This approach 
scrutinizes these geotextiles' structural integrity and 
durability by examining their response to puncture 
loads, thereby facilitating performance prediction 
and design optimization.  

In a broader context, research within civil and 
geotechnical engineering is primarily centered 
around analyzing geotextile-geomembrane 
interfaces and gaining insights into the behavior of 
geotextiles within foundation systems. Various 
techniques, including shear tests, triaxial 
compression tests, constitutive models, and finite 
element modeling, collectively advance geotextile 
design and application, ultimately enhancing 
efficiency and durability in construction projects. 

Various constitutive models have been studied, 
including quasi-linear, hyperbolic, and creep 
elastoplastic models (Zohra et al.,2022). For 
simulating reinforced soil, the point material method 
has been employed, considering fiber interaction 
through the equivalent additional stress method. 
Using the estimated rheological viscoelastic behavior 
presented by Sawicki et al. (Sawicki et al.,1998), some 
researchers have treated reinforcement as an 
interface. This involved conducting creep tests on 
woven and nonwoven geotextiles.  

To address the phenomenon of creep as the load 
increases gradually during partial discharge, the 
Linear Solid Model (LSM) has been developed. 
Additionally, two modified viscoelastic models have 
been explored to account for plastic deformations in 
geotextiles. Ding et al. (Ding et al.,2023) proposed a 
constitutive model that captures the creep behavior 
and stress relaxation of geogrids under various 
loading levels.  

wang et al. (Wang et al.,2020) investigated the 
creep deformation and stress relaxation of polymer 
geosynthetics using conventional test methods. Jeon 
et al. (Jeon et al.,2009) examined the stress relaxation 
behavior of geosynthetics under additional stresses 
and/or elevated temperatures. Lastly, Peng et al. 
(Peng2010 et al.,) introduced an elasto-viscoplastic 
constitutive model to simulate the velocity-
dependent behavior of polymeric geosynthetics. 

 

2.  Material and Methods  
 
Phenomenological and micromechanical models use 
extensively in characterizing the elastic and nearly 
incompressible mechanical responses of materials 
that undergo deformation under low loads and retain 
their deformations even after the load removal. In 
polymers and plastics, a common approach involves 
employing non-Gaussian force-extension 
relationships (Treloar ,1975), which are tailored to 
stress-strain data obtained from uniaxial tests 
(Hackett ,2016). These relationships are instrumental 
in capturing hyperelasticity curves, along with their 
corresponding parameters, as well as describing 
isotropic elastic properties.  

However, it's important to note that distinct 
hyperelastic material systems necessitate specific 
properties for characterizing Cauchy-Green tensor 



 

 
 

strains, central strain ratios, stretching behavior, and 
simulation stress energies (Mansouri et al.,2014). 

Hyperelastic constitutive models, such as the 
Mooney-Rivlin and Ogden models, find widespread 
use in the characterization and design of the 
viscoelastic behavior of various materials under 
conditions involving finite strains (Heymans et 
al.,2004l). These materials encompass synthetic 
polymers, vulcanized rubber, and biological 
substances.  

While the Mooney-Rivlin and Ogden models 
serve as standard choices for isotropic hyperelastic 
modeling (Kang et al.,2018), other models like the 
Ogden-Yeoh and Arruda Boyce models have been 
extensively tested and applied to specific materials 
like rubber and flexible foams (Kenja et al.,2020, li et 
al.,2016). 
The calibration of these models for soft and surrogate 
tissues considers experimental factors that influence 
uniaxial test data. As a result, this work delves into 
exploring a range of hyperelastic material models, 
both phenomenological and micromechanical, 
intending to describe the mechanical behavior of PET 
woven geotextiles accurately. This investigation takes 
into account the viscoelastic properties and finite-
strain conditions characteristic of these materials. 
 

 
 

Fig. 1. Rheological coefficients of the Zener model 

(chevalier2001modification) 

 

The Mooney-Rivlin model (Mihai et al.,2017) utilizes 
a strain energy density function resembling the Neo-
Hookean model and is frequently employed in 
characterizing material behavior. However, in cases 
involving rubber materials or flexible foams with 
restricted elasticity, alternative models like Ogden-
Yeoh, Arruda Boyce, and Blatz have undergone 
thorough testing and are commonly utilized. 

In a study conducted by Narayanan et al. 
(Narayanan et al.,2023), a range of hyperelastic 
constitutive models, including polynomial, Ogden, 
Arruda-Boyce, and Van der Waals forms, were 
investigated for their suitability in finite element 
analysis (FEA) of large elastic deformations in 
isotropic materials. These materials encompassed 
incompressible and nearly incompressible 
substances, such as elastomers and PET polymers 
used in geotextiles.  

Notably, the Ogden (Yun et al.,2021), Arruda-
Boyce (Mokhireva et al.,2020), and Van der Waals 
models were found to exhibit viscoelastic behavior 
(Brinson et al.,2008). The study demonstrated that 
even relatively simple constitutive models, readily 
available in FEA software, yielded promising results 
for nearly incompressible materials. 

This comparative analysis examines various 

hyperelastic constitutive models for their 

applicability in characterizing the mechanical 

behavior of PET woven geotextiles. The results 

provide valuable insights into selecting suitable 

models for accurately representing the viscoelastic 

properties and accommodating large elastic 

deformations in these materials. 

The optimization technique known as the 

Levenberg-Marquardt algorithm is used to calibrate 

the hyperelastic material models. This technique is 

widely recognized for minimizing errors between 

model predictions and experimental data. It is a 

nonlinear least squares optimization algorithm often 

used to calibrate hyperelastic material models (Gavin 

et al.,2019, Van et al.,2020) based on the Gauss-

Newton algorithm. The Gauss-Newton method is a 

linearization method that assumes the model is linear 

around the current parameter estimates. This 

assumption is often violated in nonlinear problems, 

leading to convergence problems. The Marquardt 

method introduces a regularization term into the 

objective function that penalizes significant changes 

in the parameter estimates. This helps improve the 

algorithm's robustness to ill-conditioning and can 

help prevent it from getting stuck in local minima. 

The Levenberg-Marquardt algorithm is a powerful 

and versatile optimization algorithm that can be used 

to calibrate a wide variety of models. It is particularly 

well-suited for calibrating hyperelastic material 



 

 
 

models because it is robust to ill-conditioning and can 

converge quickly. 

 

2.1 Insights into Stress-Strain Relationships for 

Hyperelastic Models 

 
This study focuses on geotextile samples comprising 
synthetic fibers, notably polyethylene terephthalate 
(PET) (Chevalier et al.,2012). Polyester, the material 
employed to produce these fibers, is a composite of 
ethylene glycol and terephthalic acid (or dimethyl 
terephthalate) (Carreau et al.,2021). Polyester is 
selected for geotextiles owing to its advantageous 
characteristics, including a high modulus, resistance 
to creep, and chemical inertness.  The scope of this 
study is primarily limited to hyperelastic constitutive 
models that establish the relationship between strain 
and stress based on material properties. The strain 
energy function (W) is a crucial aspect of these 
models and is differentiated for each invariant of the 
Cauchy-Green deformation tensor. It can be 
expanded in an infinite power series of the Cauchy-
Green deformation tensor. Under the condition of 
incompressibility, the strain energy function can be 
expressed as: 

 

𝑤 = 𝑓(𝐼1, 𝐼2,, 𝐼3)                             (1) 

 

Where 𝑤 is the strain energy potential, 𝐼1, 𝐼2,, 𝐼3 are 
the invariants of the Cauchy-Green deformation 
tensors.  
 
Through our examination of these hyperelastic 
constitutive models, our objective is to attain a more 
profound comprehension of the mechanical 
characteristics exhibited by PET geotextiles and how 
they react under diverse loading conditions. The 
strain energy function for hyperelastic constitutive 
models is expressed in Equation 1. The material 
properties are determined based on the invariants of 
the I1, I2, and I3. These invariants are mathematically 
defined in terms of the principal stretches, λ1, λ2, and 
λ3, derived from the deformation tensor. 
Hyperelastic constitutive models are highly effective 
in accurately describing material behavior during 
significant deformations. They achieve this by 
utilizing the strain energy function and the derivation 
of material parameters from the Cauchy-Green 
deformation tensors. A comprehensive 

understanding of this interplay is essential for 
accurately predicting and analyzing material 
responses in various engineering applications. 

 In the scenario of uniaxial tension applied to an 

incompressible material, where σ2 = σ3 = 0, the 

invariants can be conveniently expressed in terms of 

the stretch along the direction of tension, λ1, as 

demonstrated in Equation 5. To compute both the 

strain, ε, and the stretches, λi, specifically for this 

situation, one can effectively utilize Equations 6 and 

7, respectively. These equations employ the initial 

length of the sample as a reference point for the 

calculations. 

 

𝐼1 =,𝜆1
2 + 𝜆2

2 + 𝜆3
2 (2) 

𝐼2, = 𝜆1,
2 𝜆2

2 + 𝜆2
2𝜆3,

2 + 𝜆3
2𝜆1

2 (3) 

𝐼3 = 𝜆1
2𝜆2

2𝜆3
2 (4) 

𝜆1
2𝜆2

2𝜆3
2 = 1,,,,,,,,,, (5) 

 
Where𝜆1, 𝜆2,𝑎𝑛𝑑,𝜆3are the principal 
stretches,derived from the deformation 
tensor,𝐼1, 𝐼2,,and,𝐼3. We can establish a clear 
relationship between the applied uniaxial tension, 
the resulting strain, and the stretches in various 
directions using these equations. This knowledge 
holds significant importance in comprehending how 
materials behave under uniaxial tension and is pivotal 
for making accurate predictions regarding material 
responses in engineering applications. 
 

ε =
∆l

l0
 

(6) 

λ = ε + 1 (7) 
 
Where ε is the stain ratio,  l0 is the inial lenth and ∆l 
is the leth variation. The following are some of the 
hyperelastic constitutive models that are commonly 
used to describe the mechanical behavior of 
materials: 

Reduced polynomial model: This model is a 
simplified version of the Ogden model that uses a 
polynomial function of the first invariant of the 
Cauchy-Green tensor. It is a good choice for materials 
that exhibit a linear relationship between stress and 
strain. 

Mooney-Rivlin model: This is a two-parameter 
model that uses the first and second invariants of the 
Cauchy-Green tensor to describe the strain energy 



 

 
 

function. It is a good choice for materials that exhibit 
nonlinear elastic behavior. 

Neo-Hookean model: This one-parameter model 
uses the second invariant of the Cauchy-Green tensor 
to describe the strain energy function. It is a good 
choice for materials that exhibit small elastic 
deformations. 

Yeoh model: This three-parameter model uses 
the first invariant of the Cauchy-Green tensor to 
describe the strain energy function. It is a good choice 
for materials that exhibit nonlinear elastic behavior 
and are incompressible. 

Arruda-Boyce model: This four-parameter model 
uses the first invariant of the Cauchy-Green tensor to 
describe the strain energy function. It is a good choice 
for materials that exhibit nonlinear elastic behavior 
and are compressible. 

 

2.2  Reduced Polynomial Model 
 

Initially introduced by Rivlin, the reduced polynomial 

model has been expanded to encompass N values up 

to 6, significantly enhancing its capacity to capture 

intricate strain behaviors. At N=3, this model aligns 

with the Yeoh model, and at N=1, it corresponds to 

the Neo-Hookean model. The reduced polynomial 

model primarily leverages the first invariance (I1) and 

demonstrates minimal sensitivity to variations in 

stress-energy encompassed within the second 

invariance (I2). This distinctive characteristic renders 

it an attractive choice for predicting complex strain 

behaviors, even in scenarios with limited 

experimental data. The shear modulus of the reduced 

polynomial model is explicitly defined as µ0 = 2C10, 

and its energy potential is expressed by Equation 8. 

Researchers and engineers can harness this model 

effectively to anticipate and analyze material strain 

responses, providing valuable insights for various 

engineering applications. 
 

𝑊 =∑𝐶10(𝐼1 − 3)𝑖
𝑁

𝑖=1

∑
1

𝐷𝑖

𝑁

𝑖=1

(𝑗𝑒𝑙 − 1)2𝑖,,,, 
 

(8) 

Where 𝑾 is strain energy potential, 𝒋𝒆𝒍 the elastic 

volume ratio, 𝑪𝟏𝟎 is material shear behavior constant 

and  𝑫𝒊  is constant for incomprsessible metrials. 

 

2.3 The Mooney-Rivlin Model  

 

Prior research has convincingly demonstrated the 

efficacy of the Mooney-Rivlin model, an elastic 

model, in accurately characterizing moderate to large 

strains and shear deformations occurring in uniformly 

dilated or contracted planes (Mooney ,1940, Rivlin 

,1948). This model finds widespread use for 

representing the elasticity of gels and tissues. The 

strain-energy function for the Mooney-Rivlin model 

has been derived in a general form (Barbero ,2023), 

with its specific expression provided in Equation 9. 

The Mooney-Rivlin model is pivotal in faithfully 

modeling the mechanical behavior of materials 

undergoing significant strains and shear 

deformations. Its formulation yields valuable insights 

for comprehending and forecasting the behavior of 

diverse materials, especially in contexts involving gels 

and tissues. 

𝑊 = 𝐶10,(𝐼1 − 3),𝐶01(𝐼2 − 3),
1

𝐷𝑖

(𝑗𝑒𝑙 − 1)2,,,  

(9) 

𝐶,10 =
𝜇1
2
,,,,𝑎𝑛𝑑,𝐶01 = −𝜇2,,,,,, 

 

 
Where 𝐶01,𝑎𝑛𝑑,𝐶10 are material constants or 
parameters repectively, ,define the behavior of the 
material being modeled. 𝜇1,,𝜇2 are constants related 
to the material's viscoelastic properties . 

2.4 Neo-Hooke model 
 
The Neo-Hooke, an elastic model that employs a 
nonlinear approach grounded in Hooke's law, excels 
at handling relatively modest deformations 
effectively. However, it is limited because it cannot 
account for stress recovery. In scenarios where 
material data is unavailable, the model can be 
simplified by setting C01 to 0, resulting in a widely 
used subset of the Mooney-Rivlin model (Shahzad et 
al.,2015). While the Neo-Hooke model is user-
friendly and performs admirably for small 
deformations, it cannot account for stress and strain 
recovery. The mathematical representation for the 
strain-energy function employed in the Neo-Hooke 
model is provided in Equation 10. This model imparts 
valuable insights into the mechanical behavior of 
materials subjected to small deformations. Still, its 
inability to capture stress recovery must be 
considered when applying it to engineering analyses. 

 



 

 
 

𝑊 = 𝐶10,(𝐼2 − 3)
1

𝐷1
(𝑗𝑒𝑙 − 1),2,,,,,,,,,,,,,, 

(10) 

 

The Yeoh model presents a mathematical 

approach employing a third-order polynomial 

equation grounded in the first invariant of the strain 

tensor. It is adept at accurately characterizing the 

nonlinear elastic behavior of materials like rubber 

and plastic when subjected to significant 

deformations. This model can fit experimental data 

and capture a broad spectrum of deformation 

patterns, demanding only minimal input information. 

Furthermore, the reduced polynomial variant of the 

Yeoh model is suitable for compressible materials. It 

yields precise forecasts of the stress-strain response 

for various substances, including carbon-filled black 

rubber. The strain-energy function utilized in the 

Yeoh model is expressed mathematically through 

Equation 10.  

By employing the Yeoh model, researchers and 

engineers can proficiently analyze and predict the 

nonlinear elastic behavior of materials, delivering 

invaluable insights applicable across a wide array of 

applications. 

 

𝑊 =∑𝐶𝑖0(𝐼1 − 3)𝑖
3

𝑖=1

∑
1

𝐷𝑖

3

𝑖=1

(𝑗𝑒𝑙 − 1)2𝑖 ,,,,,,,,,,,,,, 
 

(11) 

 

2.5 Arruda-Boyce Model 

 
A third-order polynomial model, relying on the first 
invariant of the strain tensor, finds extensive use in 
characterizing the nonlinear elastic behavior of 
materials such as rubber and plastics when subjected 
to significant deformations (Arruda et al.,1993). This 
versatile model fits experimental data and effectively 
describes a wide range of deformation patterns. 
Moreover, the reduced polynomial variant of this 
model is especially well-suited for compressible 
materials, offering precise forecasts of the stress-
strain response across diverse materials, including 
carbon-filled black rubber. Mathematically, the 
strain-energy function employed in this model can be 
expressed as follows: 
 

𝑊 = 𝜇∑
𝐶𝑖

𝜆𝑚
2𝑖−2

5

𝑖=1
(𝐼1

𝑖 − 3𝑖)
1

𝐷
{
𝑗𝑒𝑙
2 − 1

2
− 𝑙𝑛 𝑗𝑒𝑙} 

 

 

 

(12) 

𝐶1 =
1

2
  , 𝐶2 =

1

20
, 𝐶3 =

11

1050
 , 𝐶4 =

19

7000
  

𝐶5 =
519

673750
  

 

D =
9𝐾 + 8𝜇

3(𝐾 + 2𝜇)
 

 

Where, 𝜆𝑚 is the initial shear modulus and the 

locking stretch, which refers to the point where the 

stress-strain curve experiences a notable increase in 

the upturn. K denote  the initial bulk modulus, and D 

is double the inverse initial bulk modulusn,while 𝜇 

represents the initial shear modulus.   Using this 

third-order polynomial model, researchers and 

engineers can proficiently analyze and predict the 

nonlinear elastic behavior of materials, facilitating a 

deeper understanding and enabling practical 

applications across numerous fields. 

 

 

 

 

2.6 Van Der Waals Model 

 
The Van der Waals model, also known as Kilian's 
model, is a hyperelastic potential extensively 
employed for describing the nonlinear elastic 
behavior of materials (Mihai et al.,2017). This 
comprehensive model encompasses equations for 
various parameters, including primary stretches, the 
Jacobean determinant, the locking stretch λm, and 
the linear mixture parameter β. The strain energy 
function of the Van der Waals model, as outlined in 
Equation 13, relies on the initial shear modulus µ and 
the inverse initial bulk modulus D. Additionally, the 

model incorporates three parameters: I, η, and α, 
which are defined by equations 14, 15, and 16, 
respectively. 
 

w = 𝜇{−(𝜆𝑚
2 − 3 ln[(1 − 𝜂) + 𝜂],−

2𝛼

3
)(

𝐼 − 3

2
)

3
2⁄

+
1

𝐷
[
𝑗𝑒𝑙
2 − 1

2
−𝑙𝑛(𝑗𝑒𝑙)]},,,,,,,,, 

 

 

(13) 

𝐼 = (1 − 𝛽)𝐼1 + 𝐼2𝛽,,,,,,,,, 
 

(14) 

𝜂 = √
𝐼 − 3

𝜆𝑚
2 − 3

,,,,,,,,, 

 

 

(15) 

𝛼 =
2𝐶01
3𝜇

+
𝜆𝑚
2

𝜆𝑚
3 − 1

,,,,,,, 
(16) 



 

 
 

 

Where,  𝛽, 𝜂   and 𝛼 are intermediate variables and 

measures related to the material's deformation 

within the Van der Waals hyperelastic model, aiding 

in the calculation of the strain energy function and 

providing insights into the material's behavior under 

deformation. The Van der Waals model facilitates 

precise analysis and characterization of the nonlinear 

elastic behavior of materials. Its incorporation of 

multiple parameters yields valuable insights 

applicable across various engineering applications. 

 

2.7  Ogden Model 

 

The Ogden model, introduced by Ogden (Yun et 

al.,2021), is a mechanical model that describes the 

elasticity of materials experiencing non-uniform 

deformation. It utilizes a strain energy function that 

integrates material parameters and strain invariants. 

Diverging from constant-based models, the Ogden 

model's dependency on the principal strain sets it 

apart. Equation 17 depicts the mathematical 

representation of the strain energy function (Lim et 

al.,2011). 

 

W=∑
2𝜇1

𝛼𝑖
2

𝑛
𝑖=1 (𝜆1

𝛼1 + 𝜆2
𝛼1 + 𝜆3

𝛼1 − 3) 

∑
1

𝐷𝑖

𝑁

𝑖=1

(𝑗𝑒𝑙 − 1)2𝑖 

  

(17) 

 
The reduced polynomial model is a simplified version 
of the Ogden model that is easier to implement and 
can be used to model a broader range of materials. 
The Mooney-Rivlin model is a two-parameter model 
often used to model rubber-like materials. The Neo-
Hookean model is a one-parameter model often used 
to model materials exhibiting small elastic 
deformations. The Yeoh model is a three-parameter 
model that is often used to model materials that 
exhibit nonlinear elastic behavior and are 
incompressible. The Arruda-Boyce model is a four-
parameter model often used to model materials that 
exhibit nonlinear elastic behavior and are 
compressible. 

The choice of which model to use depends on the 
modeled material and the accuracy required. The 
reduced polynomial model is the simplest option, but 
it may need to be more accurate for some 

applications. The Mooney-Rivlin model is a good 
compromise between accuracy and simplicity. The 
Neo-Hookean model is the simplest one that can 
accurately capture the behavior of materials 
exhibiting small elastic deformations. The Yeoh 
model is a good choice for materials that exhibit 
nonlinear elastic behavior and are incompressible. 
The Arruda-Boyce model is a good choice for 
materials that exhibit nonlinear elastic behavior and 
are compressible. 

3. Characterizing Geotextile Materials through 
Uniaxial Tension Testing 

 

This section is dedicated to the characterization of 

geotextile materials through uniaxial stress testing. In 

this testing method, the material undergoes tension 

in one direction while the other remains constant. 

This enables the measurement of the material's 

reaction to deformation along a single axis, offering 

valuable insights into its mechanical behavior. The 

mechanical setup, as shown in Figure 2, features a 

PET-woven geotextile sample and a traction machine 

equipped with geotextile strips. 

Fig. 2. (a) Test specimen (PET woven geotextile), (b) 

Traction machine with geotextile strips 



 

 
 

 

Tension tests were performed on dumbbell-shaped 

PET specimens (Treloar ,1943, Treloar1979) with a 

minimum aspect ratio of 2.5 and a length of 50mm 

(Iso ,2008) (refer to Figure 2). These tests were 

carried out using a constant-speed testing machine, 

and the resultant tensile strength-extension curves 

were scrutinized to extract the material's stiffness 

parameters and tensile strength. The curves display 

nonlinear behavior, underscoring the inapplicability 

of Hooke's law and emphasizing that the modulus of 

elasticity can only be valid within a restricted strain 

range. 
The material was clamped between two sheet 

metal sheets bonded to form a standard tension rod 
for conducting the uniaxial tension tests. This rod was 
subsequently affixed to a tensile testing machine for 
assessment. To measure strain, the thinnest portion 
of the rod was chosen, and drilled plates were affixed 
to determine strength and tensile strength. It's worth 
noting that the modulus of elasticity varies depending 
on the levels of both linear and nonlinear elastic 
strain (Lagan et al.,2007). 

 

• Phase I, often called the "toe region," is 

distinguishable by a low modulus of elasticity and 

significant deformation. This behavior arises from 

the presence of elastin fibers in the skin, which are 

pivotal in facilitating stretching mechanisms (𝐸𝐼). 

• Phase II, alternatively termed the "linear region," is 

marked by an escalation in stiffness. This shift 

occurs as the fibers within the skin progressively 

align and straighten (𝐸𝐼𝐼). 

Where 𝐸𝐼  and 𝐸𝐼𝐼 represent the elastic modulus 

related to phase I and phase II, respectively. 

The resultant mechanical properties of the material, 

encompassing the elastic modulus (E_I and E_II) 

 

 

computed using Equations 18 and 19, along with the 

maximum tensile strength for both the warp and weft 

test directions, are briefly presented in Table 1. The 

tests were conducted using a constant-speed testing 

machine. 

       Subsequently, the resulting tensile strength-

extension curves underwent analysis to ascertain the 

material's stiffness parameters and tensile strength. 

It was observed that these curves displayed nonlinear 

behavior, signifying the inapplicability of Hooke's law 

and the limited range for which the modulus of 

elasticity can be employed. The stress-strain curve 

from the tension test can be categorized into linear 

elastic and nonlinear plastic regions, as illustrated in 

Figure 3. The mechanical properties of the material, 

derived by plotting sample strength against stretch, 

are briefly summarized in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐸𝐼 =
𝜕𝜎𝑒

𝜕𝜀𝑒
,,,,,,, 

(18) 

𝐸𝐼𝐼 =
𝜕𝜎𝑒𝑛

𝜕𝜀𝑒𝑛
,,,,,,, 

(19) 



 

 
 

 

 

 

 

 

 

 

 
Fig. 3. Stretch test experiments in two orientations with four samples 

 

Table 1. Geotextile material properties 
                                 

Material 
Model 

Coefficients Sample 01 Sample 02 Sample 03 Sample 04 

Weft Test 
direction 

Elastic modulus 
EI [MPa] 

691.07 652.10 613.63 521.64 

 Elastic modulus 
EII [MPa] 

193.22 203.15 191.60 191.60 

 Max Tensil 
stenght (KN/m) 

149.26 150.28 151.25 152.33 

Warp Test 
direction 

Elastic modulus 
EI [MPa] 

2,343.58 1,827.31 2,559.77 2,043.58 

 Elastic modulus 
EII [MPa] 

1,903.19 1,833.55 1,673.27 1,624.03 

 
Max 

force/wide 

KN/m 

47.94 49.12 48.12 47.94 

 

 
 

Fig. 4. Load extension segmented curves related to 

sample in the weft direction 

 
According to (Ward et al.,2012), Hooke's stress-

strain relation represents a linear constitutive 
relation applicable to ideal elastic, isotropic solids 

under low strains. This law establishes that stress is 
directly proportional to strain, with the modulus of 
elasticity or Young's modulus as the constant of 
proportionality. However, when grappling with high 
strains, it becomes essential to employ nonlinear 
constitutive relationships, as discussed in 
(Hackett2016), to precisely depict the mechanical 
characteristics of materials. Table 1 offers an 
overview of the laboratory properties of geotextiles, 
encompassing both their elastic and nonlinear 
behavior when subjected to uniaxial deformation. 
 

3.1 PET Geotextile Samples Per Direction 
 

During the stretching process, the specimens 

experience irreversible plastic deformation, which 

progressively increases as the deformation 

continues. When the strain is below the yield 

strength, the stress resulting from plastic strain 

remains relatively constant. The material undergoes 

stiffening and displays nonlinear behavior due to the 



 

 
 

increased rigidity of the molecular chains. The 

maximum elongation, approximately 40%, 

corresponds to a stress of nearly 150 KN/m in the 

weft direction, whereas it is only 50 KN/m in the warp 

direction, as indicated in the manufacturer's 

technical data sheet.  The following are the key points 

noted from Table 1. 

 
• The elastic modulus EI is higher in the warp 

direction than the EII in the warp and weft test 
directions. This suggests that the material exhibits 
greater stiffness in the warp direction than in the 
weft direction. 

• The maximum tensile strength is also notably 
higher in the warp direction than in the weft 
direction. 

• The material displays nonlinear behavior, as 
evidenced by the curves in Figure 4. This implies 
that Hooke's law does not apply to this material, 
and the modulus of elasticity can only be used ithin 
a limited strain range. 

Constitutive relations are mathematical 
representations used to describe the mechanical 
behavior of materials, and they can be categorized 
into two main types: linear and nonlinear. Hooke's 
law exemplifies a linear relation, typically applicable 
to ideal elastic, isotropic solids undergoing low 
strains. However, employing nonlinear constitutive 
relations to represent material behavior accurately 
becomes essential when dealing with high strains. 
The stress-strain curve, elaborated in references 
(Powell et al.,2023), illustrates the typical response of 
polymers, encompassing elastic deformation, yield, 
plastic flow, necking, strain hardening, and eventual 
fracture. The diagram presented in (Hieu et al.,2023) 
summarizes typical behavior as follows. The stress-
strain curve exhibits three distinct regions: 
 

• Region 1: This initial region is characterized by a 
linear relationship between stress and strain, 
known as the elastic region, where the material 
undergoes reversible deformation.  

• Region 2: This subsequent region is characterized 
by a nonlinear relationship between stress and 
strain, denoted as the plastic region, where the 
material undergoes irreversible deformation. 

• Region 3: The final region is characterized by a 
decrease in stress with increasing strain, known 

as the necking region, where the material forms 
a neck and eventually fails. 

 
The stress-strain curve also includes two transitional 
phases: 
• The yield point marks the point where the material 

initiates plastic deformation. 
• The necking point: This signifies the point at which 

the material begins to form a neck. 
 
Figure 4 illustrates these three distinct regions and 
the two transitional phases. In the initial region, 
stress exhibits a linear increase, followed by a more 
gradual increment as deformation advances (phase 
II), ultimately resulting in irreversible plastic 
deformation. Significant morphological changes mark 
this phase, including material fragmentation and the 
release of stored elastic energy. Additionally, the 
diagram denotes two transitional regions. 
 
 
 
 

4. Data Test Calibration  

 

The stress-strain curve of polymers displays three 

distinct regions and two transition phases: elastic 

deformation, yield, plastic flow, necking, strain 

hardening, and fracture. To precisely characterize a 

material's mechanical behavior, the material 

calibration process is employed. This entails 

determining the parameters of a constitutive model 

by comparing experimental data, such as stress-strain 

curves, with model predictions and fine-tuning the 

model parameters until a close match is attained. 

Optimization techniques, like least squares or 

maximum likelihood Sample orientation, can 

influence experimental outcomes and the 

mathematical coefficients employed in evaluating 

isotropic hyperelastic constitutive laws. 

Consequently, variations may arise in the selection of 

the hyperelastic model and the determination of 

material constants. This influence can be observed in 

the strain energy function derived from uniaxial 

testing, as well as in the resulting coefficients and the 

root mean square error (R2), which are presented in 

Tables 2 and 3. 



 

 
 

 Estimation can be applied for parameter 

refinement. However, the precision of the calibrated 

model hinges on the quality and quantity of the 

experimental data used during the calibration 

process. The tables present the outcomes of 

calibrating various hyperelastic material models for 

the geotextile samples' warp and weft directions. 

These models encompass the Mooney-Rivlin, Ogden, 

Arruda-Boyce, Neo-Hookean, and Van-der-Waals 

models. The tables display the coefficients associated 

with each model, accompanied by R-squared values. 

 

4.1 Material Evaluation for Warp Sample 

Orientation 

 

It is important to acknowledge that factors such as 

sample orientation can also impact the assessment of 

hyperelastic constitutive laws, as detailed earlier in 

this section. Uniaxial testing was performed on each 

pair to assess material behavior for the warp sample 

orientation. The goal was to identify the most precise 

model for characterizing material behavior and 

constructing a strain energy function based on 

invariants or stretches. The test results for the 

different deformation modes investigated are 

detailed in Section 2.1 and illustrated in Figure 3. The 

calibration process for hyperelastic models involves 

minimizing the error between the predicted stress-

strain response of the model and experimental data. 

The following steps are involved: 

 

• Initialize the model parameters. 

• Calculate the predicted stress-strain 

response of the model. 

• Calculate the error between the predicted 

stress-strain response and the experimental 

data. 
• Repeat steps 2-4 until the error is minimized. 

 
We use a numerical optimization algorithm to 
calibrate hyperelastic models by minimizing the error 
between the predicted and experimental stress-
strain responses. The stress TU is the nominal or 
engineering stress. For the case of uniaxial 
deformation, the relationship between nominal 
stress and stretch is given by Eq20, regardless of the 
specific form of the strain energy function. This is 
because the first invariant of the right Cauchy-Green 
deformation tensor is the same for all these models. 
 

𝑇𝑈 = 2(𝜆 −
1

𝜆
,)𝐶10                                      (20) 

 
Where, 𝑇𝑈 represents the nominal stress 
 

Table 2. Models’ calibration for warp direction. 
 

Materiel Model Coefficients Sample 01 Sample 02 Sample 03 Sample 04 

Mooney-Rivlin D=0 C10(MPa) 1.94 1.76 2.00 1.92 
 C1(MPa) 1.39 1.92 -0.87 -1.57 

Ogden N=1 µI 4.24 5.54 3.01 2.10 
 α with DI = 0 1.97 1.79 2.13 2.28 
 R2 29.8 29.5 10.99 24.09 

Arruda-Boyce µ = µ0 4.14 4.23 3.34 2.53 
 λm 9197 18579 13 9.15 
 R2 29.6 21.18 12.08 25.82 

Neo-Hookean C10(MPa) 2.07 2.11 1.79 1.45 
 R2 16.2 15.2 11.2 12.5 

Yeoh material C10(MPa) 2.00 2.40 1.51 1.105 
 C20(MPa) 5.54 -5.45 8.28 1.08 
 C30(MPa) -4.19 1.76 -4.46 -5.14 
 R2 18.5 14.3 11.6 13.5 

Van-Der-Waals µ 4.36 5.52 3.11 2.17 
 λ 1113 27 1036 867.7 
 A 1.27 0.122 -3.3 -9.15 
 R2 29.5 19.05 11.36 24.41 



 

 
 

 

Fig. 5. Fitting hyperelastic models to all sample warp experimental findings 

Based on the results presented in Table 2, the Van der 
Waals, Ogden, Arruda-Boyce, and Neo-Hook 
hyperelastic material models were identified as more 
suitable for predicting geotextile behavior than the 
Mooney-Rivlin and Yeoh models. This selection was 
based on several key factors and considerations: 
 

• Model Fit (R2 Value): As indicated by the coefficient 
of determination (R2), the goodness of fit was one 
of the primary criteria for model selection. Higher 
R2 values suggest a better fit of the model to the 
experimental data. Among the models tested, the 
Van Der Waals, Ogden, Arruda-Boyce, and Neo-
Hook models consistently demonstrated higher R2 
values than the Mooney-Rivlin and Yeoh models; 
these models better represented the geotextile 
behavior under the given conditions. 
 

• Parameter Stability: The stability of the model 
parameters across different samples is crucial for 
reliable predictions. The selected models exhibited 

relatively stable parameter values (coefficients) 
across the tested samples, indicating their 
robustness and ability to capture the material 
behavior consistently. 

  

• Physical Justification: Each of the selected models 
has a physical basis or theoretical foundation that 
aligns with the behavior of geotextiles under 
uniaxial loading. These models are well-established 
in material modeling and have been successfully 
applied to various materials, including elastomers 
and polymers. 
 

• Predictive Accuracy: During the calibration process, 
the selected models demonstrated a higher degree 
of accuracy in predicting the mechanical behavior 
of geotextiles under uniaxial loading conditions. 
This accuracy is essential for practical engineering 
applications requiring precise material behavior 
predictions. 
 



 

 
 

• Model Simplicity: While the selected models are 
sophisticated in their formulation, they do not 
introduce unnecessary complexity. They balance 
accuracy and simplicity, making them practical for 
engineering analysis and design. 

 
In sum, the choice of the Van Der Waals, Ogden, 
Arruda-Boyce, and Neo-Hook hyperelastic material 
models was based on their superior fit to the 
experimental data, stability across samples, physical 
relevance, predictive accuracy, and practical 
applicability in the context of geotextile behavior 
modeling. These models offer a robust framework for 
characterizing and predicting the mechanical 
response of geotextiles under uniaxial loading, which 
is essential for geotechnical engineering applications. 

 The findings presented in Table 2 show that the 
Van Der Waals, Ogden, Arruda-Boyce, and Neo-Hook 
hyperelastic material models have a higher 
coefficient of determination (R2) than the Mooney-
Rivlin and Yeoh models. The coefficient of 
determination measures how well the model fits the 
data. A higher R2 value indicates a better fit. In other 
words, the Van Der Waals, Ogden, Arruda-Boyce, and 
Neo-Hook models can predict the behavior of 
geotextiles more accurately than the Mooney-Rivlin 
and Yeoh models because the Van Der Waals, Ogden, 
Arruda-Boyce, and Neo-Hook models are more 
complex and consider more factors that affect the 
behavior of geotextiles. 

The Mooney-Rivlin and Yeoh models are simpler 
based on the assumption that the strain energy 
density is a function of the first and second strain 
invariants. The Van Der Waals, Ogden, Arruda-Boyce, 
and Neo-Hook models are more complex based on 
the assumption that the strain energy density is a 
function of the first, second, and third strain 
invariants. This latest invariant is a measure of the 
volume change of the material. Including the third 
strain invariant in the Van Der Waals, Ogden, Arruda-
Boyce, and Neo-Hook models makes them more 
accurate for predicting the behavior of geotextiles, 
which are often subjected to significant volume 
changes. 

In addition, the Van Der Waals, Ogden, Arruda-
Boyce, and Neo-Hook models can capture 
geotextiles' nonlinear behavior better than the 
Mooney-Rivlin and Yeoh models. Geotextiles are 

often subjected to large deformations, and the 
nonlinear behavior of these materials becomes more 
pronounced at large deformations. The Van Der 
Waals, Ogden, Arruda-Boyce, and Neo-Hook 
hyperelastic material models are more suitable for 
predicting geotextile behavior than the Mooney-
Rivlin and Yeoh models. 

 
4.1  Material evaluation: Weft Sample Orientation 

 

Table 3 presents the calibration results of various 

hyperelastic material models for the weft direction of 

geotextiles. These models include Mooney-Rivlin, 

Ogden, Arruda-Boyce, Neo-Hookean, Yeoh, and Van-

Der-Waals. The table shows the coefficients of these 

models for different samples (Sample 01, Sample 02, 

Sample 03, and Sample 04) in terms of their 

respective material parameters. 

The evaluation of the weft sample orientation 

involved utilizing multiple models, with their results 

being compared and analyzed. A significant 

differentiation among these models lies in how they 

compute strain energy density. While the Mooney-

Rivlin model relies on primary strain invariants, the 

Ogden model considers three primary sections. 

Consequently, these two models yield distinct 

outcomes for the weft direction, as illustrated in 

Figure 6. 

The calibration results for the weft direction reveal 

that the Van Der Waals, Ogden, Arruda-Boyce, and 

Neo-Hook hyperelastic material models exhibit 

higher R-squared values than the Mooney-Rivlin and 

Yeoh models. That signifies that the Van Der Waals, 

Ogden, Arruda-Boyce, and Neo-Hook models offer a 

better fit to the experimental data for the weft 

direction of the geotextile samples. In contrast, the 

Mooney-Rivlin and Yeoh models display lower R-

squared values, indicating a less accurate fit to the 

data. 

The Neo-Hookean model has the highest R-

squared value among the three samples; it implies 

that, for three out of the four samples, the Neo-

Hookean model best aligns with the experimental 

data for the weft direction of the geotextile samples. 

Other models show lower R-squared values, 

suggesting they are less suitable for this dataset. 

 
 



 

 
 

Table 3. Calibration of models for weft direction 
 

Material Model Coefficients Sample 01 Sample 02 Sample 03 Sample 04 

Mooney-Rivlin D=0 C10(MPa) 0.29 0.28 0.31 0.30 
 C01(MPa) 0.93 0.57 2.05 2.38 

Ogden N=1 µI 1.37 0.92 0.52 0.18 
 α with DI = 0 1.72 1.84 2.05 2.38 
 R2 12.11 24.89 9.79 10.65 

Arruda-Boyce µ = µ0 0.70 0.64 0.55 0.33 
 λm 62946 42139 45 22 
 R2 12.11 26.3 9.79 10.65 

Neo-Hookean C10(MPa) 0.35 0.30 0.29 0.20 
 R2 18.2 19.12 13.95 14.78 

Yeoh material C20=C30 C10(MPa) 0.48 0.38 0.27 0.13 
 R2 20.82 26.30 9.67 21.10 

Van-Der-Waals Mu 1.17 0.79 0.72 0.24 
 λm 59.03 95.68 1064.7 94.31 
 A 6.89 3.27 0.013 -0.04 
 R2 12.69 25.12 9.35 14.67 

 

 

 

Fig. 6 Fitting hyperelastic models to all sample weft experimental findings 



 

 
 

The Mooney-Rivlin model secures the second-highest 

R-squared value for three samples, thus suggesting 

that the Mooney-Rivlin model is also a good fit for the 

experimental data but might outperform the Neo-

Hookean model. On the other hand, the Ogden, 

Arruda-Boyce, and Van-der-Waals models exhibit 

lower R-squared values and do not align with the data 

as effectively as the Neo-Hookean or Mooney-Rivlin 

models. 

Analyzing these results is crucial for 

comprehending the mechanical behavior of the 

material in various orientations. This comprehension 

is pivotal for enhancing material design and 

performance in specific applications. Therefore, 

conducting material characterization tests under 

diverse loading conditions is vital to acquiring precise 

and reliable data. These findings can provide valuable 

insights into the material's behavior and support the 

development of new, innovative materials tailored to 

diverse engineering applications. 

Notably, among the tested samples, samples 3 

and 4 in each orientation exhibit the lowest error 

rates during calibration, as depicted in Figures 5 and 

6. These observations underscore the suitability of 

the Neo-Hookean and Yeoh models, particularly the 

reduced polynomial N3 variant, for effectively 

characterizing the behavior of the geotextile samples 

in both the warp and weft directions. 

By adhering to specific foundational hypotheses 

in experimentation, it has been possible to effectively 

demonstrate the similarity of geotextile samples to 

the original material and facilitate the calibration of 

various hyperelastic material models in warp and 

weft directions. The hyperelastic material models 

considered in this study encompass the Mooney-

Rivlin, Ogden, Arruda-Boyce, Neo-Hookean, Yeoh, 

and Van-der-Waals models. 

The Mooney-Rivlin model calculates strain 

energy density using the principal strain invariants, 

while the Ogden model considers three principal 

stretches. These models have proven invaluable for 

accurately characterizing the mechanical behavior of 

the geotextile samples in various orientations. 

When modeling hyperelastic materials, it's 

common to utilize a scalar-valued energy function 

contingent on the right Cauchy-Green deformation 

tensor. Nonetheless, invariants or stretches are 

frequently more convenient for practical 

implementation in finite element analysis (FEA) 

codes. This paper presents the successful calibration 

of material models through Abaqus code test results 

and numerical simulations. 

The behavior of geosynthetics over time, as 

discussed in reference (Luo et al.,2019) is defined by 

creep and relaxation curves. Consequently, it is 

essential to account for the influence of time when 

assessing material performance. One method for 

modeling time-dependent materials involves 

employing exponential basis functions within a Prony 

series. When subjected to prolonged stress, materials 

enduring continuous stress can undergo cracking and 

relaxation.  

The paper primarily concentrates on applying 

Finite Element Analysis (FEA) in stretching tests, 

particularly in the context of hyperelastic models. The 

paper encompasses a range of facets, including the 

calibration and simulation of these models within the 

FEA framework. 

 

5. Stretching Tests Simulation 

 
This section is dedicated to stretching tests 
conducted using hyperelastic models calibrated 
through finite element analysis (FEA) (Luo et 
al.,2019). One of the prominent challenges in FEA 
simulations involves establishing the shape of the 
part(s) to be simulated, configuring loading and 
boundary conditions, and specifying material 
properties. The examples showcased in this section 
illustrate that stress calculations obtained from FEA 
simulations can anticipate material behavior, 
enhance strength ratios, and streamline the design of 
intricate components.



 

 
 

 

Fig. 7: Abaqus model for weft stretch simulation based on experimental data 

 

Fig. 8 Examination of FEA predictions (Abaqus): simulation of frame stretching based on experience. 



 

 
 

Figure 8 depicts an Abaqus model employed for a 
weft stretch simulation, utilizing hyperelastic models 
previously calibrated in Section 3.3. The finite 
element model in Figure 7 represents a stretching 
test conducted on a geotextile sample. The 
hyperelastic material model, tailored for the weft 
direction, effectively approximates the sample's 
behavior under the prescribed boundary conditions. 
One end of the sample experiences a 50 mm enforced 
displacement in the stretching direction (Ux), while 
the other is clamped. The model comprises 320 
hybrid brick elements (C3D8H) for the sample and 
two bilinear rigid quadrilateral elements (R3D4) for 
the clamps. It's worth noting that the gripping step 
must be iterated 500 times to accurately capture the 
sample's behavior. 

The hyperelastic models, Yeoh and Neo-
Hookean, which have been calibrated as outlined in 
Table 3 and Figure 4, offer a stable and dependable 
analytical representation of the stress-strain 
relationship of the material. The numerical results 
closely align with the experimental data, 
demonstrating a solid agreement. Nevertheless, it's 
essential to acknowledge that viscous materials 
release energy during deformation, and the 
simulated test samples can influence the material's 
behavior. Despite this limitation, the uniaxial stress-
strain test provides ample insights into the behavior 
of geotextiles, and modeling can provide valuable 
information for integrating the material's properties 
into the design process. 

Recognizing that the energy dissipated during 

material deformation and using simulated test 

samples can modify the material's behavior is 

essential. Therefore, while the uniaxial stress-strain 

test offers valuable insights into the geotextile's 

behavior, simulation can further enhance the 

comprehension and utilization of its characteristics in 

the design process. However, it's essential to 

acknowledge that simulation results only encompass 

a portion of the material's behavior, and even minor 

movements can substantially influence pressure 

changes owing to quasi-incompressibility. 

Consequently, care must be exercised when 

employing simulation outcomes in the design of 

geotextiles. 

 

 

 

6. Conclusion 

 

Calibrating hyperelastic material models is pivotal for 

thoroughly comprehending how geotextiles react to 

stress, strain, and energy dissipation during 

deformation. In this study, the authors harnessed 

quasi-incompressibility and strain energy as 

fundamental components to fulfill this objective. 

Phenomenological models, frequently relying on 

invariants like polynomials, are extensively utilized in 

finite element codes for their integration. This 

research introduces a physically meaningful and 

mathematically rigorous method, offering a 

structured approach for selecting suitable geotextile 

constituent models. challenging to predict in civil 

engineering applications.  

Findings may only be universally applicable to 

some types of geotextiles. Despite these limitations, 

this study provides valuable. Moreover, the 

calibration of hyperelasticity models considers time-

dependent behaviors such as creep and relaxation, 

which are essential for assessing a material's 

performance under sustained stress conditions. With 

its contributions, this research facilitates the choice 

of suitable material models for finite element 

simulations, ultimately augmenting the precision of 

geotextile analysis. 

It's crucial to recognize that the models 

developed in this study were specifically customized 

to match uniaxial tension tests conducted in both the 

warp and weft directions. However, it's important to 

note that these insights into geotextile behavior. It 

lays a foundation for selecting polymers with 

interface material properties, which can be In our 

case, the scope of our study is limited to 

unidirectional testing of geotextiles. That means we 

are not considering other types of testing, such as 

biaxial or triaxial. 

Our findings may not apply to geotextiles 

subjected to forces in multiple directions. It is a 

relatively narrow scope, and we need help to 

generalize the behavior of geotextiles in other 

loading conditions. Our findings may not apply to 

geotextiles subjected to different loading conditions, 

such as compression, tension, or shear. We 

acknowledge the significance of extending the 

relevance of our findings to orientations other than 

warp and weft. To tackle this aspect, we plan to 



 

 
 

conduct supplementary experiments and analyses to 

assess geotextile behavior under diverse loading 

conditions comprehensively. 

 

7. Nomenclature. 

 
PET: Polyethylene terephthalate  
RMS: Root Mean Squared Error 

FEA: Finite Element Analysis 

SLS: The Linear Solid Model 

W : Strain Energy Potential 

λi:  Principal Stretches 

µi: Material Constant Related to Shear Modulus 

αi: Empirically Calculated Material Constant 

jel : Elastic Volume Ratio 

N : Polynomial Order of the Strain Energy 

Function 

Cij : Material Shear Behavior Constant 

Di: Constant for Incompressible Materials 

Δσe:  Represents the discrete increase in stress 

during phase I of deformation. 

Δσk: This variable represents the discrete increase 

in stress during phase II of deformation. 

Δεe: Corresponding to phase I, this variable 

represents the discrete increase in strain.**δ 

TU The nominal stress   

c10 The Neo-Hookean material parameter 

λ the stretch ratio 
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