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Abstract 

Concrete is a commonly used construction material due to its favorable engineering properties, 

such as high compressive strength, good durability, and resistance to corrosion. Accurate 

predictions of the compressive strength of this material significantly reduce the time and effort 

required by laboratory tests. The current paper aims to compare the performance of prominent 

machine learning-based approaches used for predicting the compressive strength of concrete. In 

addition, 11 historical datasets, collected from the literature, are used. The diversity of the input 

features, the data dimensionality, and the number of instances can be helpful to evaluate the 

generalization capability of the employed machine learning models. Repetitive data sampling 

processes, consisting of 20 independent runs, are carried out to obtain the machine learning 

models’ performances. Through experiments, it can be shown that the gradient boosting machines 
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attain the best performance. Notably, the extreme gradient boosting machine has achieved the best 

outcome in five historical datasets. 

 

Keywords: Concrete Compressive Strength; Gradient-Boosting Machine; Machine Learning; 

Regression Models; Comparative Study. 

 

1. Introduction 
Concrete has been commonly used in construction due to its favorable engineering properties 

such as high compressive strength, good durability, resistance to corrosion, etc. (Chung et al. 

2021). Basically, a concrete mix consists of four primary constituents: fine aggregate, coarse 

aggregate, cement, and water. These constituents can be easily accessed in the local market. These 

advantages allow concrete to be widely used in various forms of construction projects around the 

globe. Moreover, in recent years, many studies have found that supplementary materials like fly 

ash (PFA) (Gomaa et al. 2021), blast furnace slag (GGBS) (Kandiri et al. 2020), silica fume (Kang 

et al. 2021), and many other industrial/agricultural waste or by-products can be blended into 

concrete to meliorate its mechanical properties. Han et al. (2020) points out that the inclusion of 

those supplementary materials into concrete offers significant environmental benefits and also 

enhances the longevity and resiliency of concrete structures. 

Among various concrete properties, the compressive strength (CS) is apparently the most 

critical since this index directly governs the structural safety and must be specified to determine 

the performance of concrete structures throughout their lifecycles (Zhao et al. 2022). When 

designing concrete mixes, one significant challenge is to select appropriate materials to achieve a 

targeted compressive strength. Therefore, it is of immense advantage to possess reliable predictive 

models that can yield accurate estimation of the CS based on the amount or proportion of the 

concrete components. These models can help to come up with meaningful predictions that can help 

to reduce the time and cost required for making and testing samples. 

Historical data plays a crucial role in constructing robust prediction models. Recent studies 

with extensive data collection and model performance comparison have demonstrated the 

advantages of advanced ML models over conventional statistical regression analysis-based models 

(Ben Chaabene et al. 2020). Accordingly, various ML-based models have been proposed in the 

literature. Artificial Neural Network (ANN) and Genetic Programming (GP) was used in (Chopra 

et al. 2016) to predict the CS at 28, 56, and 91 days. One advantage of the GP is its capability of 

constructing predictive formulas used for the CS prediction. However, using the collected dataset, 

the authors find that ANN is preferable to the GP with respect to predictive accuracy. 

ANN was also utilized in (Hocine 2018) to estimate the CS of limestone filler concrete and 

high-performance concrete (HPC), respectively. Although ANN-based models are capable 

nonlinear regressors, their performance substantially depends on the training algorithms. Current 

training methods of ANNs rely on stochastic gradient descent-based algorithms that are susceptible 

to being trapped in sub-optimal solutions. Gene expression programming was used in 

(Shahmansouri et al. 2020) to estimate ground granulated blast-furnace slag blended concrete. 

Using a dataset consisting of 351 specimens, the authors successfully constructed predictive 

formulas with high degrees of data fitting. 

Zhang and Aslani (2021) proposed a data-driven approach based on a back-propagation neural 

network incorporating ultrasonic pulse velocity for estimating the CS of lightweight aggregate 

concretes. Nguyen et al. (2021) develops predictive models based on support vector machine 

regressor (SVM), ANN, gradient boosting machine (GBM), and extreme gradient boosting 
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(XGBoost) for estimating the CS of HPC. The authors find that GBR and XGBoost perform better 

than SVM and ANN. Nevertheless, this paper has not explored the capability of XGBoost in 

predicting the CS of other widely-used concretes (e.g., self-compacting concrete and class F fly 

ash-blended concrete). An intelligent approach that hybridizes a genetic algorithm and a 

backpropagation neural network is proposed in (Zhang et al. 2021) for predicting the CS of 

rubberized concrete. 

GBM was also used in (Rathakrishnan et al. 2022) to model the CS of concrete mixes blended 

with ground granulated blast‑furnace slag. Ensemble learning models based on Adaptive boosting 

machine, GBM, XGBoost, and random forest were proposed in (Li and Song 2022). The mixtures 

include admixtures such as fly ash and silica fume. The authors observed good performance of 

GBM that achieved a coefficient of determination (R2) up to 0.96. Naser et al. (2022) applied 

Multivariate Adaptive Regression Splines (MARS) for estimating the CS of green concrete; 

MARS obtained the most desired performance (with R2 = 0.89) which is better than that of SVM 

and random forest. A study in (Hoang 2022) reported superior performances of neural computing 

models and XGBoost over other data-driven approaches for predicting the CS of self-consolidating 

concrete; however, the predictive capabilities of MARS and piecewise linear regression models 

have not been investigated.  

In general, recent reviews and comparative works (Ben Chaabene et al. 2020; Khambra and 

Shukla 2021; Mirrashid and Naderpour 2020) point out an increasing trend of using advanced data-

driven tools in estimating this crucial mechanical property of concrete. However, the inclusion of 

various mineral additions, supplementary materials, and admixtures increases the complexity of 

the concrete. Thus, it is beneficial for the research community and practitioners to obtain 

information regarding the predictive capability of prominent ML models in estimating the CS of 

samples stored in various historical databases. 

The current paper aims to compare the capabilities of prominent ML models, including 

XGBoost, GBM, SVM, MARS, GP, ANN, and sequential piecewise linear regression (SPLR). 

The selections of the first six models are based on reviewing recent works on ML-based CS 

prediction (Naser et al. 2022; Nguyen et al. 2021; Tanyildizi and Çevik 2010; Ullah et al. 2022; 

Zhang and Aslani 2021). In addition, the SPLR model has been shown to be a capable nonlinear 

regressor (Hoang 2019); however, its performance in modeling the CS has not yet been 

investigated. Furthermore, 11 historical datasets, gathered from previous experimental works, are 

employed to train and test the ML models. Repeated data sampling processes, consisting of 20 

runs, are performed to obtain statistical criteria that express the performance of the models. 

The current study aims to report the prediction results of the employed ML models in 

estimating the CS of concretes in multiple datasets. The outcomes of this paper may serve as initial 

guidance for researchers in selecting appropriate ML models for the task of interest. Since data 

samples are crucial for constructing reliable ML models, the scope of the paper is limited to the 

datasets that are openly accessed via data repositories or reported in reliable sources such as 

academic journal articles. Accordingly, the current work contributes to the body of knowledge in 

the following aspects: 

(i) This study investigates the performances of a wide range of ML models, including the 

powerful methods of gradient boosting machines, for predicting the CS of concretes. 

(ii) Although XGBoost has shown outstanding performances in modeling the mechanical 

properties of HPC, its capability in estimating the CS of other concretes (e.g., self-

compacting concrete, class F fly ash-blended concrete, rubberized concrete) has not 

been fully explored. 
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(iii) Datasets representing diverse types of concrete are gathered from previous works to 

construct and test the ML approaches. 

(iv) Through experiments, it can be shown that the gradient boosting machines cannot attain 

the best performance in all datasets. Nevertheless, SVM, MARS, and GP may 

outperform the gradient-boosting-based models in predicting the CS of certain types of 

concrete. 

 

2. The employed machine learning models 
2.1 Extreme gradient boosting machine (XGBoost) 

XGBoost (Chen and Guestrin 2016) is an improved version of the standard the gradient 

boosting algorithm (Friedman 2002). This method is essentially an ensemble of boosted regression 

trees. The training process of the ML method is fast since it can be executed in parallel (Zhang et 

al. 2019). Let 
i i{(x , y )}D =  be a collected dataset including n samples and d predictor variables. 

The XGBoost employs Z additive functions for estimating the target variable of the CS as follows: 
1

i i

0

ˆ (x ) (x )
Z

z

z

y f
−

=

= =           
(1) 

where 
zf F  is the space of tree-based regressors. ŷ  represents the estimated CS value. 

The objective function used in the model training phase is given by: 
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where l is a loss function which calculates the deviation between the predicted (yi) and the actual 

variable ( ˆ
iy ) of the concrete CS at an iteration t. (f)  denotes a function that regularizes the 

model complexity. 

The regularization function (f)  is stated as follows: 
1
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where   is the minimum reduction coefficient and   denotes the regularization parameter. T 

represents the number of leaves in a classification tree and w is the weights associated with the 

leaves. 

 

2.2 Gradient boosting machine (GBM) 

GBM iteratively aggregates an ensemble of regressors to attain a powerful learner with 

enhanced fitting accuracy. This ML method can be viewed as a numerical optimization approach 

that establishes an additive model that reduces the value of a loss function (Friedman 2001). For 

regression problems, the commonly used loss function is the mean squared error (Touzani et al. 

2018). Hence, the GBM model iteratively incorporates a new regression tree into an ensemble 

iteratively; the goal is to minimize the loss function. Via the process of fitting regressors to the 

prediction errors, the performance of an ensemble is enhanced in regions where it did not well fit 

the data. The GBM model operates by fitting a decision tree fk at kth iteration using the residual of 

the previous iteration rk-1. Accordingly, the updated model f(x) is computed as follows: 

)()()( xfxfxf k+=           (4) 

Subsequently, the residual rk is updated as follows: 

)(1 xfrr k

kk −= −            (5) 
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2.3 Support vector machine (SVM) 

SVM (Drucker et al. 1996) utilizes a margin of tolerance (ε) for fitting a nonlinear function 

that describes the functional relationship between the mechanical parameter of concrete and the 

concrete mix’s constituents. This ML model minimizes the training error and searches for a 

hyperplane that has a maximal margin. Additionally, the kernel function is used to cope with 

nonlinearity. In detail, the kernel function has the role of mapping the input data from the original 

space to a high-dimensional space. In this new space, a linear regression model is trained to fit the 

collected dataset. 

 The training phase of a SVM model constructs a model f(x) that minimizes the structural risk 

in the feature space; f(x) can be expressed as follows: 

bxwxf T += )()(            (6) 

where )(x denotes the aforementioned nonlinear mapping; w and b are the parameters of a SVM 

model. 

The w and b are used to specify a SVM model. The training phase of a SVM model is 

equivalent to the following constrained optimization problems: 

Min. 
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where C denotes the complexity coefficient; i and *

i are the slack variables (Drucker et al. 1996); 

i = 1, 2, …, N and N is the number of records in the training set.  

 

 

 

2.4 Multivariate adaptive regression splines (MARS) 

MARS, proposed in (Friedman 1991), constructs a nonlinear mapping relationship by dividing 

the learning space into regions of independent variables. In addition, this ML model employs 

piecewise linear functions and an adaptive training approach for model construction. A MARS 

model can be understood as a set of basis functions that describe the relationship between predictor 

variables and the CS. A basis function can be expressed as follows: 

),0max()( xCxbm −= or ),0max()( Cxxbm −=      (8) 

where bm is a basis function; x is an influencing factor of the CS of concrete; C is a tuning parameter 

that governs the process of separating x into regions. 

Using the concept of the basis function, the general model can be expressed as follows:  


=

+=
M

m

mm xbxf
1
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where M ,...,, 10 denote the parameters of MARS; f(x) yields the predicted outcomes of the CS. 

M represents the number of the model’s parameters. 

 

2.5 Genetic programming (GP) 
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GP (Koza 1994) is a ML approach inspired by real-world biological systems. This ML method 

is capable of generating mathematical equations (also called programs) to describe the behaviors 

of nonlinear systems. Thus, this method can be used to construct predictive equations used for 

estimating the CS. This ML method does not require any assumptions about the prior form of the 

mapping relationships. The structures of the predictive models, expressed in the form of equations, 

as well as their parameters, are learned by GP. The basic operations of a GP model are described 

as follows (Koza 1994; Searson 2015): (1) the generation of a set of random programs (2) the 

assessment of programs with a specified fitness function; (3) the generation of new programs based 

on the processes of reproduction, mutation, and crossover; (4) the processes of self-adaptation and 

fitness-based evaluation; and (5) the selection of the best program via fitness comparison. 

 

2.6 Artificial neural network (ANN) 

ANN is essentially an interconnected network of individual neurons (Haykin 2008). This ML 

method is capable of simulating the processes of learning and generalization in the human brain. 

There is a nonlinear activation function in each neuron; this function is used to process the input 

signals. To construct an ANN-based CS prediction model, a historical dataset is first collected. 

Subsequently, the back-propagation framework (Rumelhart et al. 1986) coupled with an optimizer 

is employed to fit the parameters of an ANN. An ANN is typically specified by its weight matrices: 

the matrix W1 that connects the input layer to the hidden layer and the matrix W2 that represents 

the link between the hidden layer and the output layer. In addition, there are vectors of bias 

associated with each layer. 

The ANN model used for estimating the CS can be stated as follows: 

)()( 1122 xWbWbxf ++=          (10) 

where x is the matrix of input variables;  denotes the activation function. b1 and b2 are vectors of 

bias. 

In the case of nonlinear function approximation, the Mean Square Error (MSE) loss function 

is often employed. Additionally, the sigmoid activation function can be used (Bishop 2011). The 

adaptive moment estimation (Adam) (Kingma and Ba 2015) is the state-of-the-art optimizer 

employed for training the ANN model. The Adam is an effective optimizer that relies on 

information about the first-order gradient of an objective function. To train an ANN-based model, 

the objective function is MSE. This algorithm harnesses the information obtained from the average 

of the second moments of the gradients to enhance the performance of the optimization process. 

 

2.7 Sequential piecewise linear regression (SPLR) 

A piecewise linear regression model (PLRM) is a ML approach that uses individual linear 

models to fit a portion of the training data. The transition location between separated domains of 

input features is often called a breakpoint or a knot (Breiman 1993; Ryan and Porth 2007). The 

appropriate value of a knot is estimated from the training dataset. SPLR, described in (Hoang 

2019), employs a sequential algorithm to compute the knots of a PLRM. The training process of 

the SPLR relies on a set of hinge functions (Breiman 1993). This function basically separates the 

training data into separate domains in which individual linear models can be used to fit the dataset 

locally. 

 A SPLR model having one predictor variable X and one break point b is given by: 

11 12 21

22

max(0, ( )) max(0, ( )) max(0, )

max(0, )

oY sign X b sign b X X b

b X

   



= + − + − + −

+ −     (11) 
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where β0, β11, and β12 denote the bias parameters; β21 and β22 represent the slope parameters of the 

two linear models separated by a knot. 

A general SPLR model used for estimating the CS values is expressed as follows: 

,

1 1

( )
dVD

d v d

d v

Y LF X
= =

=
          

(12) 

where d is the index of the independent variables (e.g. the components of a concrete mix); D is 

number of predictor variables; v denotes the index of the hinge function of the dth independent 

variable; Vd represents the number of hinge functions of the dth independent variable. 

 

3. The collected datasets 
To assess the capability of the employed ML models, this study has selected 11 historical 

datasets compiled by the previous works. In these datasets, the number of features ranges from 4 

to 10. The number of data samples is from 70 to 1030. The selected datasets include normal 

concrete (Al-Jamimi et al. 2022), high-strength concrete (Al-Shamiri et al. 2019), self-compacting 

concrete (Kovačević et al. 2022), lightweight concrete (Tanyildizi and Çevik 2010; Ullah et al. 

2022), and high-performance concrete (Videla and Gaedicke 2004; Yeh 1998). In addition, 

concrete with the alternative binder of ground granulated blast-furnace slag (GGBS) 

(Shahmansouri et al. 2020) and the alternative aggregate of rubber (Gesoğlu et al. 2009) are also 

considered. The diversity of the features and the number of data instances can be helpful to reveal 

the overall predictive capability of the ML approaches.  

 

 

 

 

 

 

 

Table 1. The employed datasets 

Dataset 
Number of 

input features 

Number 

of samples 
Description Reference 

1 7 108 
Plain and blended cement 

concretes 

(Al-Jamimi et al. 

2022) 

2 5 324 High-strength concrete 
(Al-Shamiri et al. 

2019) 

3 8 70 Rubberized concretes 
(Gesoğlu et al. 

2009) 

4 7 262 
Self-Compacting Concrete with  

Class F Fly Ash 

(Kovačević et al. 

2022) 

5 8 144 
Concrete containing fly ash and 

silica fume 
(Pala et al. 2007) 

6 5 117 

Concrete containing ground 

granulated blast-furnace slag 

(GGBS) 

(Shahmansouri et 

al. 2020) 

7 6 96 
Lightweight concrete containing 

silica fume 

(Tanyildizi and 

Çevik 2010) 
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8 4 191 Lightweight foamed concrete (Ullah et al. 2022) 

9 10 195 

Portland Blast-Furnace Slag 

Cement High-Performance 

Concrete 

(Videla and 

Gaedicke 2004) 

10 8 1030 High performance concrete (Yeh 1998) 

11 10 323 
Concrete with manufactured 

sand 
(Zhao et al. 2017) 

 

The compiled datasets are summarized in Table 1, which provides information regarding the 

number of features, number of samples, descriptions, and sources of the data. Table 2 provides an 

overview of the variables in each dataset. Furthermore, the frequency of the predictor variables is 

provided in Fig. 1. It is noted that to standardize the range of the variables, this study relied on the 

Z-score normalization approach. The Z-score normalization equation is given by: 

X

XO
Z

X
X



−
=           (13)  

where 
ZX and OX  are the standardized and original variables (e.g., components of a concrete 

mixture), respectively. 
X  and 

X  represent the mean and standard deviation of the independent 

and response variables, respectively. 

 

 

 

 

 

 

 

 

 

Table 2. The predictor variables 

Input variables 
 

Note 
Dataset 

1 2 3 4 5 6 7 8 9 10 11 

Water content  X1 x x x x x o o o x x x 

Cement content  X2 x x x x x o x x x x o 

Water to cement ratio X3 o o o o o o x x o o x 

Water to binder ratio X4 o o o o o o o o o o x 

Silica fume content   X5 x o x o x x x o x o o 

Fly ash content X6 x o o x x o o o o x o 

Coarse aggregate content X7 x x x x x o o o x x o 

Fine Aggregate content X8 x x x x x o o x x x o 

Superplasticizer 

content 
X9 o x x x o o x o x x o 

Crump rubber content X10 o o x o o o o o o o o 

Tire chips content X11 o o x o o o o o o o o 

High-rate water reducing agent content X12 o o o o x o o o x o o 

NAOH concentration X13 o o o o o x o o o o o 
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Natural zeolite content X14 o o o o o x o o o o o 

Ground granulated blast-furnace slag content X15 o o o o o x o o o o o 

Temperature X16 o o o o o o x o o o o 

Pumice aggregate X17 o o o o o o x o o o o 

Foam X18 o o o o o o o x o o o 

Entrapped air content X19 o o o o o o o o x o o 

Blast Furnace Slag X20 o o o o o o o o o x o 

Compressive strength of cement X21 o o o o o o o o o o x 

Tensile strength of cement X22 o o o o o o o o o o x 

Dmax of crushed stone X23 o o o o o o o o o o x 

Stone powder content in sand X24 o o o o o o o o o o x 

Fineness modulus of sand X25 o o o o o o o o o o x 

Sand ratio X26 o o o o o o o o o o x 

Slump X27 o o o o o o o o x o o 

Concrete age X28 x o o x x x o o x x x 

Note: The symbols ‘o’ and ‘x’ denote an inclusion and exclusion of a variable, respectively. 

 

 
Fig. 1 The frequency of the predictor variables 

 

4. Experimental results and discussion 
The performance of the ML models with respect to the datasets of concrete strength samples 

is reported in this section of the article. For each dataset, 90% of the samples are used for training 

the prediction models; 10% of the dataset is used for testing the models’ predictive capability. To 

evaluate the ML models, the root mean square error (RMSE), mean absolute percentage error 

(MAPE), and coefficient of determination (R2) are computed. The equations used to calculate those 

indices are presented in the following manner: 
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where ti and yi are the experimental and estimated CS of the ith sample, respectively. N denotes the 

number of samples. t  is the mean of the actual CS.  

The RMSE measures the deviations between the experimental and estimated CS values. It is 

actually the square root of the second sample moment of the deviations between estimated and 

actual values. This index aims to aggregate the magnitudes of the residuals in predictions for 

various data points into a single measurement, indicating the prediction error of a CS prediction 

model. The RSME is always non-negative and a RMSE of 0 implies a perfect fit to the collected 

data. Generally, the lower the RMSE is, the better the ML model is. However, since the RMSE is 

scale-dependent, it is only valid to compare models fitting one dataset. The MAPE expresses the 

relative error of the model prediction. Similar to the RMSE, a small value of the MAPE indicates 

a good ML model. In addition, the R2 represents the proportion of the variation in the CS of 

concrete that can be captured by the ML models (Mendenhall and Sincich 2011). A R2 = 1 

demonstrates a perfect regression model. Generally, the higher the R2is, the better the ML model 

is. 

In this study, the XGBoost model is constructed with the built-in functions provided by the 

Python library of (XGBoost 2021). The GBM, SVM, and ANN models are built with the Scikit-

Learn library (Pedregosa et al. 2011). The MARS and GP are developed using the MATLAB 

toolboxes provided in (Jekabsons 2016) and (Searson 2015), respectively. The SPLR model is 

constructed in MATLAB by the author. It is noted that the five-fold cross validation processes 

(Wong and Yeh 2020) were employed to set the free parameters of the ML models. 

 

Table 3. Prediction performance of the models in terms of RMSE 

Data 
Models 

XGBoost GBM SVM MARS GP ANN SPLR 

1 1.57 1.78 1.33 1.58 1.24 1.97 2.45 

2 0.31 0.47 0.92 0.93 1.55 1.62 2.02 

3 2.61 2.34 1.2 1.36 1.92 1.96 2.27 

4 5.74 5.21 7.11 7.52 8.09 8.15 6.35 

5 2.78 2.91 6.02 3.07 3.9 6.01 5.6 

6 2.85 2.72 2.24 3.08 3.09 3.67 3.45 

7 2.33 2.24 2.43 2.15 2.24 2.85 2.5 

8 3.54 3.14 4.51 5.28 5.77 4.52 5.04 

9 3.6 3.6 12.02 4.12 4.27 6.72 4.23 

10 4.14 4.19 5.26 6.21 6.48 5.93 6.33 

11 2.58 2.63 4.74 2.99 5.44 5.47 4.96 

Note: Bold texts indicate the best outcomes. 

 

Table 4. Computational time (s) 

Data Concrete strength prediction models 
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XGBoost GBM SVM MARS GP ANN SPLR 

1 0.03 0.03 0.01 0.12 96.38 0.04 0.05 

2 0.03 0.08 0.14 11.33 222.92 0.08 0.05 

3 0.03 0.04 0.01 0.10 1.70 0.05 0.06 

4 0.04 0.13 0.04 21.15 227.53 0.14 0.70 

5 0.03 0.04 0.01 3.80 101.20 0.04 0.03 

6 0.03 0.02 0.02 1.50 103.18 0.21 0.06 

7 0.03 0.01 0.01 0.06 101.44 0.07 0.08 

8 0.04 0.02 0.01 0.13 103.64 0.11 0.03 

9 0.03 0.03 0.01 0.66 100.40 0.15 0.75 

10 0.06 0.20 0.15 7.30 968.45 0.40 0.29 

11 0.03 0.10 0.02 10.87 19.00 0.17 0.14 

 

The performances of the employed ML models in each dataset are presented in Table 3 and 

Table 4. In Table 3, the model accuracy is presented in terms of the average RMSE obtained from 

the testing phase. The bold figures indicate the best outcomes. As can be observed from the 

experimental results, the XGBoost model has achieved the best performances in 5 out of 11 

datasets. The GBM model is the second best model with 5 times being the 1st rank. The SVM 

model has been ranked as the best model twice. Meanwhile, each of the MARS and GP models 

attains the best outcome in one dataset. The model ranking is further demonstrated by Fig. 2. Table 

3 reports the average computation time of each model with respect to different datasets. It can be 

seen that the XGBoost’s training phases are fast, with the average training time ranging from 0.03 

to 0.06s. On the contrary, the GP requires much longer computational cost for model training; its 

training time can go up to 968s in the dataset 10. It is understandable because the training phase 

of the XGBoost model can be carried out in parallel. Meanwhile, the evolutionary operations 

performed by the GP’s populations require much higher computational cost to accomplish.  

 
Fig. 2 The number of times that the model achieves the 1st rank 

 

Table 5. Performances of the best models (from dataset 1 to dataset 6) 

Dataset The best model Performance indices Mean Std. 

1 GP RSME 1.24 0.36 

  MAPE (%) 3.25 1.02 

    R2 0.97 0.03 
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2 XGBoost RSME 1.55 0.16 

  MAPE (%) 2.48 0.35 

    R2 0.97 0.01 

3 SVM RSME 1.20 0.34 

  MAPE (%) 2.93 1.47 

    R2 1.00 0.00 

4 GBM RSME 5.21 0.88 

  MAPE (%) 12.34 2.45 

    R2 0.91 0.03 

5 XGBoost RSME 2.78 0.62 

  MAPE (%) 5.13 1.33 

    R2 0.98 0.01 

6 SVM RSME 2.24 0.67 

  MAPE (%) 2.72 0.78 

    R2 0.93 0.05 

 

Table 6. Performances of the best models (from dataset 7 to dataset 11) 

Dataset The best model Performance indices Mean Std. 

7 MARS RSME 2.15 0.39 

  MAPE (%) 8.28 2.85 

    R2 0.95 0.03 

8 GBM RSME 3.14 0.95 

  MAPE (%) 19.20 10.30 

    R2 0.94 0.05 

9 XGBoost RSME 3.60 0.63 

  MAPE (%) 4.90 1.03 

    R2 0.97 0.01 

9 GBM RSME 3.60 0.69 

  MAPE (%) 4.87 1.12 

    R2 0.97 0.01 

10 XGBoost RSME 4.14 0.44 

  MAPE (%) 9.97 1.14 

    R2 0.94 0.02 

11 XGBoost RSME 2.58 0.85 

  MAPE (%) 5.10 5.00 

    R2 0.97 0.02 

 

In addition, the detailed performance of the best model associated with each dataset is 

presented in Table 5 and Table 6. As can be seen from the experimental results, the ML models 

are able to fit the datasets to a high degree. These results clearly demonstrate the capability of the 

ML models in CS prediction of various types of concrete. In general, the MAPE of the CS 
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estimations can be as low as 2.48% in the case of the XGBoost used for predicting the high-strength 

concrete samples provided in the dataset 2 (Al-Shamiri et al. 2019). The R2 values in all datasets 

are higher than 0.90 which indicates a sufficient degree of variance explanation. Additionally, in 

8 out of 11 datasets, the R2 is greater than or equal to 0.95.  The SVM model used for predicting 

the CS of rubberized concrete achieves the R2 of roughly 1 which indicates a nearly perfect fit. 

The scatter plots providing the overview of the data fitting results are presented in Fig. 3. Herein, 

the red straight line represents a perfect fit. The nearer the data points (denoted as black circles) to 

the red line, the better they are fitted by the ML models. The lines of ±10% and ±20% bounds are 

also added to inspect the magnitude of the models’ residuals. 

Most of the prediction errors lie within the ±20% bound. The dataset 4 (self-compacting 

concrete blended with class F fly ash), the dataset 8 (lightweight foamed concrete), and the dataset 

10 (high-performance concrete) have high proportions of data beyond the ±20% bound. One 

possible reason for this phenomenon is that the complexity of the mapping functions between the 

CS and its influencing factors hidden in those data is high. Notably, the number of influencing 

factors used by the dataset 8 is 4 which is quiet limited. It is possible that the CS values of the 

lightweight foamed concrete samples are affected by other explanatory factors that are not yet 

covered by the current work. Datasets 1, 2, 3, 5, 6, and 9 have the major proportion of the samples 

lying within the ±10% bound; this fact indicates a strong correlation between the estimated and 

the observed CS values. 
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Fig. 3 Line of best fit plots  
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Fig. 3 Line of best fit plots (cont) 

 

 

 

 

 

 

 

Table 7. Summary of the models’ rank 

Models 
Dataset 

1 2 3 4 5 6 7 8 9 10 11 

XGBoost 3 1 7 2 1 3 4 2 1 1 1 

GBM 5 2 6 1 2 2 2 1 1 2 2 

SVM 2 3 1 4 7 1 5 3 7 3 4 

MARS 4 4 2 5 3 4 1 6 3 5 3 

GP 1 5 3 6 4 5 3 7 5 7 6 

ANN 6 6 4 7 6 7 7 4 6 4 7 

SPLR 7 7 5 3 5 6 6 5 4 6 5 
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Fig. 4 Percentages of the model rankings 

 

Table 7 and Fig. 4 summarize the ranks of the ML models with respect to different datasets. 

Apparently, the XGBoost is the best model with five 1st ranks, two 2nd ranks, and two 3rd ranks. 

The GBM model is the second best one with three 1st ranks and six 2nd ranks. The SVM model 

succeeds the GBM model with two 1st ranks, one 2nd ranks, and three 3rd ranks. Each of the GP 

and MARS models achieves one 1st rank. However, MARS achieves the 2nd rank in one dataset. 

In addition, the highest rank of SPLR is 3rd; the rank of the ANN model never goes higher than 

4th. Comparing the performances of these two models in other datasets, it can be concluded that 

the result of SPRL is slightly better than that of ANN. Thus, the outcomes of this study are in line 

with the previous works of (Nguyen et al. 2021) and (Kang et al. 2021) which points out the 

advantage of the XGBoost and GBM models. However, the SVM, MARS, and GP models can 

also be the models of choice in the tasks of predicting the CS of the rubberized concrete, concrete 

containing ground granulated blast-furnace slag (GGBS), and lightweight concrete containing 

silica fume. More detailed regarding the performances of the ML models are reported in Appendix 

1 (boxplots of the model performance) and Appendix 2 (detailed model ranking).  

 

5. Concluding remarks 
CS is considered the most important mechanical property of concrete. This index serves as a 

crucial indicator of the concrete quality. Reliable prediction of the CS can significantly assist 

construction material engineers and researchers in the task of concrete mixture design. This study 

carried out a large-scale comparative study which investigates the performance of the prominent 

ML models used in estimating the CS of 11 historical datasets. The number of explanatory 

variables in these datasets ranges from 4 to 10. The number of samples ranges from 70 to 1030. 

XGBoost, GBM, SVM, MARS, GP, ANN, and SPLR are employed and their performances are 

benchmarked with the indices of RMSE, MAPE, and R2. Repetitive data sampling processes, 

consisting of 20 independent runs, are used for reliably assessing the model predictive capability.  

Experimental results point out that the XGBoost model has achieved the most desired 

outcomes with 5 times of 1st rank. Its performance is followed by the GBM, SVM, MARS, and 
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GP. The highest rank that the SPRL achieves is 3rd; its performance is slightly better than that of 

ANN. In general, XGBoost and GBM are the models of choice when dealing with the task of CS 

estimation. However, SVM, MARS, and GP should also be attempted for estimating the CS of the 

rubberized concrete, concrete containing ground granulated blast-furnace slag (GGBS), and 

lightweight concrete containing silica fume.  

The prediction of the CS of diverse concrete types is a highly active research topic. Therefore, 

there are various datasets of concrete strength that are documented in the literature. In addition, 

researchers continuously compile, analyze, and report the testing records of the CS of concrete. 

Hence, due to the limited time frame of the current study, the selected datasets in the current work 

cannot be comprehensive and cover all relevant datasets. In addition to the selected ML models, 

many other advanced methods (e.g., sophisticated ensembles of decision trees, light gradient 

boosting machines, neural networks trained by novel metaheuristic algorithms, etc.) also have 

potential for the task of interest. 

Accordingly, the current work can be extended in multiple ways: (i) the investigation of other 

advanced ML methods such as deep learning regression (Zeng et al. 2022), hybrid ensemble 

learning (Cao et al. 2022), metaheuristic-trained ANN (Zhang et al. 2021), and ensemble deep 

neural networks (Barkhordari and Massone 2022), (ii) the collection of more experimental datasets 

used for model validation, and (iii) the applications of advanced feature selection for enhancing 

the model performance. 

 

Supplementary material 

The datasets used to support the findings of this study are deposited in Github repository as 

follows: https://github.com/NHDDTUEDU/CS_ML. 

 
 
 
 
 
 
 
 
 
 
 
 

Appendix 1 
 Boxplots of the model performance 

https://github.com/NHDDTUEDU/CS_ML
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Appendix 2 
Models’ ranking 

Table A2. Ranking of the models 

Dataset Models RMSE Ranking 

1 

GP 1.24 1 

SVM 1.33 2 

XGBoost 1.57 3 

MARS 1.58 4 

GBM 1.78 5 

ANN 1.97 6 

SPRL 2.45 7 

2 

XGBoost 0.31 1 

GBM 0.47 2 

SVM 0.92 3 

MARS 0.93 4 

GP 1.55 5 

ANN 1.62 6 

SPRL 2.02 7 

3 

SVM 1.20 1 

MARS 1.36 2 

GP 1.92 3 

ANN 1.96 4 

SPRL 2.27 5 

GBM 2.34 6 

XGBoost 2.61 7 

4 

GBM 5.21 1 

XGBoost 5.74 2 

SPRL 6.35 3 

SVM 7.11 4 

MARS 7.52 5 

GP 8.09 6 

ANN 8.15 7 

5 

XGBoost 2.78 1 

GBM 2.91 2 

MARS 3.07 3 

GP 3.9 4 

SPRL 5.6 5 

ANN 6.01 6 

SVM 6.02 7 
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Table A2. (cont) 

Dataset Models RMSE Ranking 

6 

SVM 2.24 1 

GBM 2.72 2 

XGBoost 2.85 3 

MARS 3.08 4 

GP 3.09 5 

SPRL 3.45 6 

ANN 3.67 7 

7 

MARS 2.15 1 

GBM 2.24 2 

GP 2.24 3 

XGBoost 2.33 4 

SVM 2.43 5 

SPRL 2.50 6 

ANN 2.85 7 

8 

GBM 3.14 1 

XGBoost 3.54 2 

SVM 4.51 3 

ANN 4.52 4 

SPRL 5.04 5 

MARS 5.28 6 

GP 5.77 7 

9 

XGBoost 3.60 1 

GBM 3.60 2 

MARS 4.12 3 

SPRL 4.23 4 

GP 4.27 5 

ANN 6.72 6 

SVM 12.02 7 

10 

XGBoost 4.14 1 

GBM 4.19 2 

SVM 5.26 3 

ANN 5.93 4 

MARS 6.21 5 

SPRL 6.33 6 

GP 6.48 7 

 

 

 



 

24 
 

Table A2. (cont) 

Dataset Models RMSE Ranking 

11 

XGBoost 2.58 1 

GBM 2.63 2 

MARS 3.94 3 

SVM 4.74 4 

SPRL 4.96 5 

GP 5.44 6 

ANN 5.47 7 
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