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ABSTRACT: Concrete is a commonly used construction material due to its favourable 

engineering properties, such as high compressive strength, good durability, and resistance 

to corrosion. Accurate predictions of the compressive strength of this material 

significantly reduce the time and effort required by laboratory tests. The current paper 

aims to compare the performance of prominent machine learning-based approaches used 

for predicting the compressive strength of concrete. In addition, 11 historical datasets, 

collected from the literature, are used. The diversity of the input features, the data 

dimensionality, and the number of instances can be helpful to evaluate the generalization 

capability of the employed machine learning models. Repetitive data sampling processes, 

consisting of 20 independent runs, are carried out to obtain the machine learning models’ 

performances. Through experiments, it can be shown that the gradient boosting machines 

attain the best performance. Notably, the extreme gradient boosting machine has achieved 

the best outcome in five historical datasets. 
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1. Introduction 

 

Concrete has been commonly used in 

construction due to it is favorable 

engineering properties such as high 

compressive strength, good durability, 

resistance to corrosion, etc. (Chung et al., 

2021). Basically, a concrete mix consists of 

four primary constituents: fine aggregate, 

coarse aggregate, cement, and water. These 

constituents can be easily accessed in the 

local market. These advantages allow 

concrete to be widely used in various forms 

of construction projects around the globe. 

Moreover, in recent years, many studies 

have found that supplementary materials 
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like Fly Ash (FA) (Gomaa et al., 2021), 

Ground Granulated Blast-furnace Slag 

(GGBS) (Kandiri et al., 2020), silica fume 

(Kang et al., 2021), and many other 

industrial/agricultural waste or by-products 

can be blended into concrete to meliorate its 

mechanical properties. Han et al. (2020), 

pointed out that the inclusion of those 

supplementary materials into concrete 

offers significant environmental benefits 

and also enhances the longevity and 

resiliency of concrete structures. Among 

various concrete properties, the 

Compressive Strength (CS) is apparently 

the most critical since this index directly 

governs the structural safety and must be 
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specified to determine the performance of 

concrete structures throughout their 

lifecycles (Zhao et al., 2022).  

When designing concrete mixes, one 

significant challenge is to select appropriate 

materials to achieve a targeted compressive 

strength. Therefore, it is of immense 

advantage to possess reliable predictive 

models that can yield accurate estimation of 

the CS based on the amount or proportion 

of the concrete components. These models 

can help to come up with meaningful 

predictions that can help to reduce the time 

and cost required for making and testing 

samples. Historical data plays a crucial role 

in constructing robust prediction models. 

Recent studies with extensive data 

collection and model performance 

comparison have demonstrated the 

advantages of advanced Machine Learning 

(ML) models over conventional statistical 

regression analysis-based models (Ben 

Chaabene et al., 2020). Accordingly, 

various ML-based models have been 

proposed in the literature. Artificial Neural 

Network (ANN) and Genetic Programming 

(GP) was used in Chopra et al. (2016) to 

predict the CS at 28, 56, and 91 days. One 

advantage of the GP is its capability of 

constructing predictive formulas used for 

the CS prediction. However, using the 

collected dataset, the authors found that 

ANN is preferable to the GP with respect to 

predictive accuracy. 

ANN was also utilized by Hocine (2018) 

to estimate the CS of limestone filler 

concrete and High-Performance Concrete 

(HPC), respectively. Although ANN-based 

models are capable nonlinear regressors, 

their performance substantially depends on 

the training algorithms. Current training 

methods of ANNs rely on stochastic 

gradient descent-based algorithms that are 

susceptible to being trapped in sub-optimal 

solutions. Gene expression programming 

was used by Shahmansouri et al. (2020) to 

estimate ground granulated blast-furnace 

slag blended concrete. Using a dataset 

consisting of 351 specimens, the authors 

successfully constructed predictive 

formulas with high degrees of data fitting. 

Zhang and Aslani (2021) proposed a data-

driven approach based on a back-

propagation neural network incorporating 

ultrasonic pulse velocity for estimating the 

CS of lightweight aggregate concretes. 

Nguyen et al. (2021) developed 

predictive models based on Support Vector 

Machine regressor (SVM), ANN, Gradient 

Boosting Machine (GBM), and Extreme 

Gradient Boosting (XGBoost) for 

estimating the CS of HPC. The authors 

found that GBR and XGBoost perform 

better than SVM and ANN. Nevertheless, 

this paper did not explore the capability of 

XGBoost in predicting the CS of other 

widely-used concretes (e.g., self-

compacting concrete and class F fly ash-

blended concrete). An intelligent approach 

that hybridizes a genetic algorithm and a 

backpropagation neural network was 

proposed by Zhang et al. (2021) for 

predicting the CS of rubberized concrete. 

GBM was also used by Rathakrishnan et al. 

(2022) to model the CS of concrete mixes 

blended with ground granulated 

blast‑furnace slag.  

Ensemble learning models based on 

adaptive boosting machine, GBM, 

XGBoost, and random forest were proposed 

by Li and Song (2022). The mixtures 

included admixtures such as fly ash and 

silica fume. The authors observed good 

performance of GBM that achieved a 

coefficient of determination (R2) up to 0.96. 

Naser et al. (2022) applied Multivariate 

Adaptive Regression Splines (MARS) for 

estimating the CS of green concrete; MARS 

obtained the most desired performance 

(with R2 = 0.89) which is better than that of 

SVM and random forest. 

Hoang (2022) reported superior 

performances of neural computing models 

and XGBoost over other data-driven 

approaches for predicting the CS of self-

consolidating concrete; however, the 

predictive capabilities of MARS and 

piecewise linear regression models were not 

investigated. In general, recent reviews and 

comparative works (Ben Chaabene et al., 
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2020; Khambra and Shukla, 2021; 

Mirrashid and Naderpour, 2020) pointed 

out an increasing trend of using advanced 

data-driven tools in estimating this crucial 

mechanical property of concrete. However, 

the inclusion of various mineral additions, 

supplementary materials, and admixtures 

increases the complexity of the concrete. 

Thus, it is beneficial for the research 

community and practitioners to obtain 

information regarding the predictive 

capability of prominent ML models in 

estimating the CS of samples stored in 

various historical databases. 

The current paper aims to compare the 

capabilities of prominent ML models, 

including XGBoost, GBM, SVM, MARS, 

GP, ANN and Sequential Piecewise Linear 

Regression (SPLR). The selections of the 

first six models are based on reviewing 

recent works on ML-based CS prediction 

(Naser et al., 2022; Nguyen et al., 2021; 

Tanyildizi and Çevik, 2010; Ullah et al., 

2022; Zhang and Aslani, 2021). In addition, 

the SPLR model has been shown to be a 

capable nonlinear regressor (Hoang, 2019); 

however, its performance in modeling the 

CS has not yet been investigated. 

 Furthermore, 11 historical datasets, 

gathered from previous experimental 

works, are employed to train and test the 

ML models. Repeated data sampling 

processes, consisting of 20 runs, are 

performed to obtain statistical criteria that 

express the performance of the models. The 

current study aims to report the prediction 

results of the employed ML models in 

estimating the CS of concretes in multiple 

datasets.  

The outcomes of this paper may serve as 

initial guidance for researchers in selecting 

appropriate ML models for the task of 

interest. Since data samples are crucial for 

constructing reliable ML models, the scope 

of the paper is limited to the datasets that are 

openly accessed via data repositories or 

reported in reliable sources such as 

academic journal articles. Accordingly, the 

current work contributes to the body of 

knowledge in the following aspects:  

i) This study investigates the 

performances of a wide range of ML 

models, including the powerful methods of 

gradient boosting machines, for predicting 

the CS of concretes.  

ii) Although XGBoost has shown 

outstanding performances in modeling the 

mechanical properties of HPC, its capability 

in estimating the CS of other concretes (e.g., 

self-compacting concrete, class F fly ash-

blended concrete, rubberized concrete) has 

not been fully explored.  

iii) Datasets representing diverse types 

of concrete are gathered from previous 

works to construct and test the ML 

approaches.  

iv) Through experiments, it can be 

shown that the gradient boosting machines 

cannot attain the best performance in all 

datasets. Nevertheless, SVM, MARS, and 

GP may outperform the gradient-boosting-

based models in predicting the CS of certain 

types of concrete.   

 

2. The Employed Machine Learning 

Models 

 

2.1. Extreme Gradient Boosting 

Machine (XGBoost) 

The XGBoost (Chen and Guestrin, 

2016) is an improved version of the 

standard the gradient boosting algorithm. 

This method is essentially an ensemble of 

boosted regression trees. the model training 

phase of the ML method is fast since it can 

be executed in parallel (Zhang et al., 2019).  

Let D = {(xi .  yi)} be a collected dataset 

including n samples and d predictor 

variables. The XGBoost employs Z additive 

functions for estimating the target variable 

of the CS as follows: 
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where 
zf F : is the space of classification 

trees and ŷ : is the estimated CS value.  

The objective function used in the model 

training phase is given by Eq. (2). 
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where l: is a loss function which calculates 

the difference between the predicted (yi) and 

the actual variable (𝛾̂𝑖) of the concrete CS at 

an iteration t. 𝛺(𝑓): denotes a function that 

regularizes the model complexity. The 

regularization function 𝛺(𝑓) is stated as 

follows: 
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where 𝛾: is the minimum reduction 

coefficient, 𝜆: denotes the regularization 

parameter, T: represents the number of 

leaves in a classification tree and w: is the 

weights associated with the leaves. 

 

2.2. Gradient Boosting Machine (GBM) 

The GBM iteratively combines a set of 

weak learners (e.g. trees) to attain a robust 

learner with enhanced fitting accuracy. This 

ML method can be viewed as a numerical 

optimization approach that establishes an 

additive model that minimizes a loss 

function (Friedman, 2001). For regression 

problems, the commonly used loss function 

is the mean squared error.  

Hence, the GBM iteratively adds a new 

regression tree iteratively that helps reduce 

the used loss function. Via the process of 

fitting decision trees to the residuals, the 

overall ensemble model is enhanced in the 

regions where it did not well fit the data. 

The GBM operates by fitting a decision tree 

fk at kth iteration using the residual of the 

previous iteration rk-1.  

Accordingly, the updated model f(x) is 

computed as follows: 
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subsequently, the residual rk is updated as 

follows: 
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2.3. Support Vector Machine (SVM) 

The SVM (Drucker et al., 1996) utilizes 

a margin of tolerance (ε) for fitting a 

nonlinear function that describes the 

mapping relationship between the CS and 

the concrete mix’s constituents. This ML 

model minimizes the training error and 

concurrently searches for a hyper-plane that 

has a maximal margin. Additionally, the 

kernel function is used to cope with 

nonlinearity.  

In detail, the kernel function has the role 

of mapping the data from its original input 

space to a high-dimensional space. In such 

high-dimensional space, a linear regression 

model can be established. 

The training phase of a SVM model 

constructs a linear model f(x) that minimizes 

the structural risk in the feature space: 
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where 𝜙(𝑥): denotes to a nonlinear 

mapping from the input space to the high-

dimensional feature space; w and b: are the 

model parameters which are used to specify 

a SVM model. To compute them, the 

following constrained optimization 

problem needs to be solved: 
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where C: denotes the complexity 

coefficient; i and *

i : are the slack 

variables (Drucker et al., 1996); i = 1, 2, …, 

N and N is the number of data samples.  

 

2.4. Multivariate Adaptive Regression 

Splines (MARS) 

MARS (Friedman, 1991) constructs a 

nonlinear mapping relationship by dividing 

the high-dimensional learning space into 

sub-ranges of prediction variables. In 
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addition, this ML model employs piecewise 

linear functions and an adaptive training 

approach for model construction. A MARS 

model can be understood as a set of simple 

basis functions which describe the 

relationship between predictor variables 

and the CS. 

A basis function can be expressed as 

follows: 

 

𝑏𝑚(𝑥) = 𝑚𝑎𝑥( 0, 𝐶 − 𝑥) 

                or 

𝑏𝑚(𝑥) = 𝑚𝑎𝑥( 0, 𝑥 − 𝐶) 

(8) 

   

where bm: is a basis function; x: denotes an 

input variable; C: is a threshold parameter 

used to divide the original range of x into 

sub-ranges.  

Using the concept of the basis function, 

the general model can be expressed as 

follows:  
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where 
M ,...,, 10

: denote weighting 

coefficients of the model, f(x): yields the 

output of the CS and M: represents the 

number of weighting coefficients. 

 

2.5. Genetic Programming (GP) 

The GP (Koza, 1994) is a ML approach 

inspired by real-world biological systems. 

This ML method is capable of generating 

mathematical equations (also called 

programs) to describe the behaviors of 

nonlinear systems. Thus, this method can be 

used to construct predictive equations used 

for estimating the CS without any 

assumptions about the prior form of the 

mapping relationships. GP is able to evolve 

both the model structure and its parameters 

according to the collected dataset.  

The basic operations of a GP model are 

described as follows (Koza, 1994; Searson 

2015): 1) The generation of a random 

population of programs; 2) The evaluation 

of programs with a specified fitness 

function; 3) The generation of new 

programs based on the processes of 

reproduction, mutation, and crossover; 4) 

The process of self-tuning and comparison 

of fitness; and 5) the selection of best 

program through evolutionary competition.  
       
2.6. Artificial Neural Network (ANN) 

The ANN is essentially an 

interconnected network of individual 

neurons (Haykin, 2008). This ML method is 

capable of simulating the information 

processing and knowledge generalization in 

the human brain. Each neuron uses a 

nonlinear activation function to process its 

input signal. To construct an ANN-based 

CS prediction model, a historical dataset is 

first collected. Subsequently, the back-

propagation framework (Rumelhart et al., 

1986) coupled with an optimizer is 

employed to fit the model’s parameters 

including the weight matrix of the hidden 

layer (W1), the weight matrix of the output 

layer (W2), the bias vector of the hidden 

layer (b1), and the bias vector of the output 

layer (b2). The ANN model used for 

estimating the CS can be stated as follows: 

 
)()( 1122 xWbWbxf ++=   (10) 

 

where x: is the matrix of input variables; σ: 

denotes the activation function.  

In the case of nonlinear function 

approximation, the Mean Square Error 

(MSE) loss function is often employed. 

Additionally, the sigmoid activation 

function can be used. The adaptive moment 

estimation (Adam) (Kingma and Ba, 2015) 

is the state-of-the-art optimizer employed 

for training the ANN model.  

The Adam is an effective first-order 

gradient-based optimization of stochastic 

objective functions. This algorithm 

harnesses the information obtained from the 

average of the second moments of the 

gradients to enhance the performance of the 

optimization process.  

A Piecewise Linear Regression Model 

(PLRM) is a data modeling method that 

uses Individual linear models to fit a subset 

of the training data. The transition location 
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between separated domains of input 

features is often called a breakpoint or a 

knot (Breiman, 1993).  

The appropriate value of a knot is 

estimated from the training dataset. SPLR, 

described by Hoang (2019), employs a 

sequential algorithm to compute the knots 

of a PLRM. The model training phase of the 

SPLR relies on a set of hinge hydrophobic 

characteristics functions (Breiman, 1993). 

This function basically separates the 

training data into separate domains in which 

individual linear models can be used to fit 

the dataset locally.  A SPLR model with one 

predictor variable X and one break point or 

knot b is given by: 

 
Y = β0 + β11max (0, sign (X – b)) + 

       β12max (0, sign (b – X)) +   

       β21max (0, X – b) + 

       β22max (0, b – X)
 

(11) 

 
where β0, β11 and β12: denote the bias 

parameters, β21 and β22: represent the slope 

parameters of the two linear models 

separated by a knot.  A general SPLR model 

used for estimating the CS values is 

expressed as follows:  
 

,
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where d: is the index of predictor variables 

(e.g. the components of a concrete mix), D: 

is number of predictor variables, v: denotes 

the index of the hinge function of the dth   

predictor variable, Vd: represents the 

number of hinge functions of the dth 

explanatory variable.  

 

3. The Collected Datasets 

 

To assess the capability of the employed 

ML models, this study has selected 11 

historical datasets compiled by the previous 

works. In these datasets, the number of 

features ranges from 4 to 10. The number of 

data samples is from 70 to 1030. The 

selected datasets include normal concrete 

(Al-Jamimi et al., 2022), high-strength 

concrete (Al-Shamiri et al., 2019), self-

compacting concrete (Kovacevic et al., 

2022), lightweight concrete (Tanyildizi and 

Çevik 2010; Ullah et al., 2022), and high-

performance concrete (Videla and Gaedicke 

2004; Yeh 1998). In addition, concrete with 

the alternative binder of GGBS 

(Shahmansouri et al., 2020) and the 

alternative aggregate of rubber (Gesoglu et 

al., 2009) are also considered. The diversity 

of the features and the number of data  

instances can be helpful to reveal the overall 

predictive capability of the ML approaches. 

The compiled datasets are summarized in 

Table 1 that provides information regarding 

the number of features, number of samples, 

descriptions, and the sources of the data. 

 
 

Table 1. The employed datasets 

Dataset 
Number of 

input features 

Number of 

samples 
Description Reference 

1 7 108 Plain and blended cement concretes Al-Jamimi et al. (2022) 

2 5 324 High-strength concrete Al-Shamiri et al. (2019) 

3 8 70 Rubberized concretes Gesoglu et al. (2009) 

4 7 262 
Self-Compacting Concrete with class F fly 

ash 
Kovačević et al. (2022) 

5 8 144 Concrete containing fly ash and silica fume Pala et al. (2007) 

6 5 117 Concrete containing GGBS 
Shahmansouri et al. 

(2020) 

7 6 96 
Lightweight concrete containing silica 

fume 

Tanyildizi and Cevik 

(2010) 

8 4 191 Lightweight foamed concrete Ullah et al. (2022) 

9 10 195 
Portland blast-furnace slag cement high-

performance concrete 

Videla and Gaedicke 

(2004) 

10 8 1030 High performance concrete Yeh (1998) 

11 10 323 Concrete with manufactured sand Zhao et al. (2017) 



Civil Engineering Infrastructures Journal 2024, 57(2): 247-265 253 

 

Table 2 provides an overview of the CS 

is influencing factors used in each dataset. 

Furthermore, the frequency of the predictor 

variables is demonstrated in Figure 1. It is 

noted that to standardize the range of the 

variables, this study relied on the Z-score 

normalization method. The Z-score 

normalization equation is given by: 

 

X

XO
Z

X
X



−
=  (13) 

 

where d: is the index of predictor variables 

(e.g. the components of a concrete mix), D: 

is number of predictor variables, v: denotes 

the index of the hinge function of the dth 

predictor variable, Vd: represents the 

number of hinge functions of the dth 

explanatory variable.  

 
Table 2. The employed datasets 

Input variables Note 
Dataset 

1 2 3 4 5 6 7 8 9 10 11 

Water content  X1 x x x x x o o o x x x 
Cement content  X2 x x x x x o x x x x o 
Water to cement ratio X3 o o o o o o x x o o x 
Water to binder ratio X4 o o o o o o o o o o x 
Silica fume content   X5 x o x o x x x o x o o 
Fly ash content X6 x o o x x o o o o x o 
Coarse aggregate content X7 x x x x x o o o x x o 
Fine aggregate content X8 x x x x x o o x x x o 
Superplasticizer content X9 o x x x o o x o x x o 
Crump rubber content X10 o o x o o o o o o o o 
Tire chips content X11 o o x o o o o o o o o 
High-rate water reducing agent content X12 o o o o x o o o x o o 
NAOH concentration X13 o o o o o x o o o o o 
Natural zeolite content X14 o o o o o x o o o o o 
Ground granulated blast-furnace slag content X15 o o o o o x o o o o o 
Temperature X16 o o o o o o x o o o o 
Pumice aggregate X17 o o o o o o x o o o o 
Foam X18 o o o o o o o x o o o 
Entrapped air content X19 o o o o o o o o x o o 
Blast furnace slag X20 o o o o o o o o o x o 
Compressive strength of cement X21 o o o o o o o o o o x 
Tensile strength of cement X22 o o o o o o o o o o x 
Dmax of crushed stone X23 o o o o o o o o o o x 
Stone powder content in sand X24 o o o o o o o o o o x 
Fineness modulus of sand X25 o o o o o o o o o o x 
Sand ratio X26 o o o o o o o o o o x 
Slump X27 o o o o o o o o x o o 
Concrete age X28 x o o x x x o o x x x 

4. Experimental Results and Discussion   

 

The performance of the ML models with 

respect to the datasets of concrete strength 

samples is reported in this section of the 

article. For each dataset, 90% of the 

samples are used for training the prediction   

models; 10% of the dataset is used for 

testing the models predictive capability. To 

evaluate the ML models, the Root Mean 

Square Error (RMSE), Mean Absolute 

Percentage Error (MAPE) and coefficient 

of determination (R2) are computed. The 

equations used to calculate those indices are 

presented in the following manner: 
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where ti and yi: are the experimental and 

estimated CS of the ith sample, respectively, 

N: denotes the number of samples, t : is 

the mean of the actual CS. the RMSE 

measures the deviations between the 

experimental and estimated CS values.   

It is actually the square root of the 

second sample moment of the deviations 

between estimated and actual values. This 

index aims to aggregate the magnitudes of 

the residuals in predictions for various data 

points into a single measurement, indicating 

the prediction error of a CS prediction 

model. The RSME is always non-negative 

and a RMSE of 0 implies a perfect fit to the 

collected data. Generally, the lower the 

RMSE is, the better the ML model is. 

However, since the RMSE is scale-

dependent, it is only valid to compare 

models fitting one dataset. The MAPE 

expresses the relative error of the model 

prediction. Similar to the RMSE, a small 

value of the MAPE indicates a good ML 

model. In addition, the R2 represents the 

proportion of the variation in the CS of 

concrete that can be captured by the ML 

models (Mendenhall and Sincich, 2011).  

A R2=1 demonstrates a perfect 

regression model. Generally, the higher the 

R2 is, the better the ML model is. In this 

study, the XGBoost model is constructed 

with the built-in functions provided in 

(XGBoost, 2021). The GBM, SVM, and 

ANN models are built with the Scikit-Learn 

library (Pedregosa et al., 2011). The MARS 

and GP are developed using the MATLAB 

toolboxes provided by Jekabsons (2016) 

and Searson (2015), respectively. The 

SPLR model is constructed in MATLAB by 

the author. It is noted that the five-fold cross 

validation processes (Wong and Yeh, 2020) 

were employed to set the free parameters of 

the ML models. The performances of the 

employed ML models in each dataset are 

presented in Tables 3 and 4. In Table 3, the 

model accuracy is presented in terms of the 

average RMSE obtained from the testing 

phase.  

As can be observed from the 

experimental results the XGBoost model 

has achieved the best performances in 5 out 

of 11 datasets. The GBM model is the 

second best model with 5 times being the 1st 

rank. 

The SVM model has been ranked as the 

best model twice. Meanwhile, each of the 

MARS and GP models attains the best 

outcome in one dataset. The model ranking 

is further demonstrated by Figure 2. Table 3   

reports the average computation time of 

each model with respect to different 

datasets. It can be seen that the XGBoost’s 

training phases are fast, with the average 

training time ranging from 0.03 to 0.06 s. 
 

 
Fig. 1. The frequency of the predictor variables      
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Table 3. Prediction performance of the models in terms of RMSE 

Data 
 Models 
 XGBoost GBM SVM MARS GP ANN SPLR 

1  1.57 1.78 1.33 1.58 1.24 1.97 2.45 

2  0.31 0.47 0.92 0.93 1.55 1.62 2.02 

3  2.61 2.34 1.2 1.36 1.92 1.96 2.27 

4  5.74 5.21 7.11 7.52 8.09 8.15 6.35 

5  2.78 2.91 6.02 3.07 3.9 6.01 5.6 

6  2.85 2.72 2.24 3.08 3.09 3.67 3.45 

7  2.33 2.24 2.43 2.15 2.24 2.85 2.5 

8  3.54 3.14 4.51 5.28 5.77 4.52 5.04 

9  3.6 3.6 12.02 4.12 4.27 6.72 4.23 

10  4.14 4.19 5.26 6.21 6.48 5.93 6.33 

11  2.58 2.63 4.74 2.99 5.44 5.47 4.96 

  

Table 4. Computational time (s) 

Data 
Concrete strength prediction models 

XGBoost GBM SVM MARS GP ANN SPLR 

1 0.03 0.03 0.01 0.12 96.38 0.04 0.05 

2 0.03 0.08 0.14 11.33 222.92 0.08 0.05 

3 0.03 0.04 0.01 0.10 1.70 0.05 0.06 

4 0.04 0.13 0.04 21.15 227.53 0.14 0.70 

5 0.03 0.04 0.01 3.80 101.20 0.04 0.03 

6 0.03 0.02 0.02 1.50 103.18 0.21 0.06 

7 0.03 0.01 0.01 0.06 101.44 0.07 0.08 

8 0.04 0.02 0.01 0.13 103.64 0.11 0.03 

9 0.03 0.03 0.01 0.66 100.40 0.15 0.75 

10 0.06 0.20 0.15 7.30 968.45 0.40 0.29 

11 0.03 0.10 0.02 10.87 19.00 0.17 0.14 

 

       
Fig. 2. The number of times that the model achieves the 1st rank    

           

On the contrary, the GP requires much 

longer computational cost for model 

training; its training time can go up to 968  s 

in the Dataset 10. It is understandable 

because the training phase of the XGBoost 

model can be carried out in parallel. 

Meanwhile, the evolutionary operations 

performed by the GP's populations require 

much higher computational cost to 

accomplish. In addition, the detailed 

performance of the best model as sociated 

with each dataset is presented in Tables 5 

and 6. As can be seen from the experimental 

results, the ML models are able to fit the 

datasets to a high degree. These results 

clearly demonstrate the capability of the 

ML models in CS prediction of various 

types of concrete. In general, the MAPE of 

the CS estimations can be as low as 2.48% 

in the case of the XGBoost used for 



256  Hoang and Tran 

 

predicting the high-strength concrete 

samples provided in the Dataset 2 (Al-

Shamiri et al., 2019). The R2 values in all 

datasets are higher than 0.90 which 

indicates a sufficient degree of variance 

explanation. Additionally, in 8 out of 11 

datasets, the R2 is greater than or equal to 

0.95. The SVM model used for predicting 

the CS of rubberized concrete achieves the 

R2 of roughly 1 which indicates a nearly 

perfect fit. Herein, the red straight line 

represents a perfect fit. The scatter plots 

providing the overview of the data fitting 

results are presented in Figure 3.   

The nearer the data points (denoted as 

black circles) to the red line, the better they 

are fitted by the ML models. The lines of 

±10% and ± 20% bounds are also added to 

inspect the magnitude of the models’ 

residuals. Most of the prediction errors lie 

within the ±20% bound. The Dataset 4 (self-

compacting concrete blended with class F 

fly ash), the Dataset 8 (lightweight foamed 

concrete), and the Dataset 10 (high-

performance concrete) have high 

proportions of data beyond the ±20% 

bound. One possible reason for this 

phenomenon is that the complexity of the 

mapping functions between the CS and its 

influencing factors hidden in those data is 

high.

 

Table 5. Performances of the best models (from Dataset 1 to Dataset 6) 

Dataset The best model Performance indices Mean Std. 

1 GP RSME 1.24 0.36 

  MAPE (%) 3.25 1.02 

    R2 0.97 0.03 

2 XGBoost RSME 1.55 0.16 

  MAPE (%) 2.48 0.35 

    R2 0.97 0.01 

3 SVM RSME 1.20 0.34 

  MAPE (%) 2.93 1.47 

    R2 1.00 0.00 

4 GBM RSME 5.21 0.88 

  MAPE (%) 12.34 2.45 

    R2 0.91 0.03 

5 XGBoost RSME 2.78 0.62 

  MAPE (%) 5.13 1.33 

    R2 0.98 0.01 

6 SVM RSME 2.24 0.67 

  MAPE (%) 2.72 0.78 

    R2 0.93 0.05 

    

Table 6. Performances of the best models (from Dataset 7 to Dataset 11) 

Dataset The best model Performance indices Mean Std. 

7 MARS RSME 2.15 0.39 

  MAPE (%) 8.28 2.85 

    R2 0.95 0.03 

8 GBM RSME 3.14 0.95 

  MAPE (%) 19.20 10.30 

    R2 0.94 0.05 

9 XGBoost RSME 3.60 0.63 

  MAPE (%) 4.90 1.03 

    R2 0.97 0.01 

9 GBM RSME 3.60 0.69 

  MAPE (%) 4.87 1.12 

    R2 0.97 0.01 

10 XGBoost RSME 4.14 0.44 

  MAPE (%) 9.97 1.14 

    R2 0.94 0.02 

11 XGBoost RSME 2.58 0.85 

  MAPE (%) 5.10 5.00 

    R2 0.97 0.02 
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Fig. 3. Line of best fit plots  

 
Table 7. Summary of the models’ rank 

Models 
Dataset 

1 2 3 4 5 6 7 8 9 10 11 

XGBoost 3 1 7 2 1 3 4 2 1 1 1 

GBM 5 2 6 1 2 2 2 1 1 2 2 

SVM 2 3 1 4 7 1 5 3 7 3 4 

MARS 4 4 2 5 3 4 1 6 3 5 3 

GP 1 5 3 6 4 5 3 7 5 7 6 

ANN 6 6 4 7 6 7 7 4 6 4 7 

SPLR 7 7 5 3 5 6 6 5 4 6 5 

 

Notably, the number of influencing 

factors used by the Dataset 8 is 4 which is 

quiet limited.  It is possible that the CS 

values of the lightweight foamed concrete 

samples are affected by other explanatory 

factors that are not yet covered by the 

current work. Datasets 1, 2, 3, 5, 6, and 9 

have the major proportion of the samples 

lying within the ±10% bound. This fact 

indicates a strong correlation between the 

estimated and the observed CS values. 

Table 7 and Figure 4 summarize the 

ranks of the ML models with respect to 

different datasets. Apparently, the XGBoost 

is the best model with five 1st ranks, two 2nd 

ranks and two 3rd ranks. The GBM model is 

the second best one with three 1st ranks and 

six 2nd ranks. The SVM  model succeeds the 

GBM model with two 1st ranks, one 2nd 

ranks, and three 3rd ranks. Each of the GP 

and MARS models achieves one 1st rank. 

However, MARS achieves the 2nd rank in 

one dataset. In addition, the highest rank of 

SPLR is the 3rd; the rank of the ANN model 

never goes higher than the 4th. 

Thus, the outcomes of this study are in 

line with the previous works of Nguyen et 

al. (2021) and Kang et al. (2021) which 

points out the advantage of the XGBoost 

and GBM models. However, the SVM, 

MARS and GP models can also be the 

models of choice in the tasks of predicting 

the CS of the rubberized concrete, concrete 

containing GGBS and lightweight concrete 

containing silica fume. More details 

regarding the performances of the ML 

models are reported in Appendix 1 

(boxplots of the model performance) and 

Appendix 2 (detailed model ranking). 

 

5. Concluding Remarks 

 

CS is considered the most important 

mechanical property of concrete. This index 

serves as a crucial indicator of the concrete 

quality. This study carried out a large-scale 

comparative study which investigates the 

performance of the prominent ML models 

used in estimating the CS of 11 historical 

datasets. The number of explanatory 

variables in these datasets ranged from 4 to 

10. The number of samples ranged from 70 

to 1030. 
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Fig. 4. Percentages of the model rankings 

 

XGBoost, GBM, SVM, MARS, GP, 

ANN and SPLR were employed and their 

performances were benchmarked with the 

indices of RMSE, MAPE and R2. Repetitive 

data sampling processes, consisting of 20 

independent runs, were used for reliably 

assessing the model predictive capability. 

Experimental results pointed out that 

the XGBoost model was achieved the most 

desired outcomes with 5 times of 1st rank. 

Its performance was followed by the GBM, 

SVM, MARS and GP. The highest rank that 

the SPRL achieves was 3rd and its 

performance was slightly better than that of 

ANN.  

In general, XGBoost and GBM are the 

models of choice when dealing with the task 

of CS estimation. However, SVM, MARS, 

and GP should also be attempted for 

estimating the CS of the rubberized 

concrete, concrete containing GGBS, and       

lightweight concrete containing silica fume. 

The prediction of the CS of diverse 

concrete types is a highly active research 

topic. Therefore, there are various datasets 

of concrete strength that are documented in 

the literature. In addition, researchers 

continuously compile, analyze, and report 

the testing records of the CS of concrete. 

Hence, due to the limited time frame of 

the current study, the selected datasets in the 

current work cannot be comprehensive and 

cover all relevant datasets. In addition to the 

selected ML models, many other advanced 

methods (e.g., sophisticated ensembles of 

decision trees, light gradient boosting 

machines, neural networks trained by novel 

metaheuristic algorithms, etc.) also have 

potential for the task of interest. 

      Accordingly, the current work can be 

extended in multiple ways such as:  

i) The investigation of other advanced 

ML methods such as deep learning 

regression (Zeng et al., 2022), hybrid 

ensemble learning (Cao et al., 2022), 

metaheuristic-trained ANN (Zhang et al., 

2021)  and ensemble deep neural networks 

(Barkhordari and Massone, 2022),  

ii) The collection of more experimental 

datasets used for model validation. 

iii) The applications of advanced feature 

selection for enhancing the model 

performance.  

 

6. Supplementary Material 

 

The datasets used to support the findings of 

this study are deposited in GitHub 

repository as follows: 
https://github.com/nhddtuedu/cs ml. 
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Fig. A1-1. Boxplots of the model performance 



Civil Engineering Infrastructures Journal 2024, 57(2): 247-266 265 

 

Appendix 2 

 

Models’ Ranking 
 

Table A2-1. Ranking of the models 

Dataset Models RMSE Ranking 

1 

GP 1.24 1 

SVM 1.33 2 

XGBoost 1.57 3 

MARS 1.58 4 

GBM 1.78 5 

ANN 1.97 6 

SPRL 2.45 7 

2 

XGBoost 0.31 1 

GBM 0.47 2 

SVM 0.92 3 

MARS 0.93 4 

GP 1.55 5 

ANN 1.62 6 

SPRL 2.02 7 

3 

SVM 1.20 1 

MARS 1.36 2 

GP 1.92 3 

ANN 1.96 4 

SPRL 2.27 5 

GBM 2.34 6 

XGBoost 2.61 7 

4 

GBM 5.21 1 

XGBoost 5.74 2 

SPRL 6.35 3 

SVM 7.11 4 

MARS 7.52 5 

GP 8.09 6 

ANN 8.15 7 

5 

XGBoost 2.78 1 

GBM 2.91 2 

MARS 3.07 3 

GP 3.9 4 

SPRL 5.6 5 

ANN 6.01 6 

SVM 6.02 7 

 

 


