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ABSTRACT: In this paper using the upper bound limit analysis method, the stability of 

soil slope, uniformly surcharged at the crest is investigated. According to the soil behavior 

at the failure state, a continuous failure criterion nonlinear function of confining stress, 

and soil initial density is considered. The stress field along the slip surface is entered into 

the limit analysis formulation according to the Airy stress function. The ultimate 

uniformly distributed load is obtained by optimizing the virtual work equation. The 

effects of different parameters such as slope angle, soil unit weight, and initial density are 

investigated. Considering the nonlinear effects of confining stresses leads to a reduction 

in the ultimate load. This reduction is more obvious in slopes with lower angles. 

According to the proposed formulation, with increasing soil density, the ultimate load of 

the slope stability is increased.  The results for different slope angles are compared with 

those obtained from the limit equilibrium-based methods. The ultimate loads of the 

proposed method are in some cases lower and in some cases more than the results of 

different methods based on limit equilibrium. 

 

Keywords: Airy Stress Function, Nonlinear Failure Criterion, Slope Stability, Upper 

Bound Limit Analysis Method. 

  
 

1. Introduction 

 

The construction of footing on the crest of a 

slope has a significant effect on its stability. 

In the technical literature, there are many 

studies dedicated to loading on the slopes, 

slope stability, and bearing capacity of 

footing near the slope. In general, the 

analytical approaches to this problem can be 

divided into three categories of limit 

equilibrium (Vo and Russell, 2017; Shukla 

and Jakka, 2018; Hajiazizi et al., 2018; 

Mirzazadeh and Hajiazizi, 2020; Hu et al., 
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2022; Tozato et al., 2022), method of 

characteristics and limit analysis (Mofidi et 

al., 2014; Tang et al., 2015; Qin and Chain, 

2018; Zhou et al., 2018; Froutan Kalourazi 

et al., 2019, Guanhua, 2023; Zhou and Qin, 

2023). In addition, several experimental 

studies (e.g. Hajiazizi and Nasiri, 2019; 

Razali et al., 2023; Thomas et al., 2023)  

have been performed in this field. 

The stability of surcharged slopes using 

the limit analysis technique was studied by 

several researchers (e.g. Mofidi Rouchi, 

2014; Tang et al., 2015; Haghbin and 
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Ghazavi, 2016; Vo and Russell, 2017; Qin 

and Chin, 2017, 2018; Aminpour et al., 

2017, 2018; Aminpour and Maleki, 2022). 

Tang et al. (2015) presented some practical 

charts for assessing the slope stability in 

different loading conditions taking into 

account the effect of pore water pressure. 

Vo and Russell (2017) studied the slope 

stability of nonhomogeneous unsaturated 

slopes subjected to uniform loading using 

the limit equilibrium technique. Qin and 

Chain (2017, 2018) discretized the log-

spiral failure wedge into vertical slices and 

calculated the ultimate load applied to the 

slope.  

Using the limit analysis technique, 

Aminpour et al. (2017, 2018) investigated 

the effect of surcharge on the behavior of 

soil slopes under various seismic conditions 

and soil reinforcement. Aminpour and 

Maleki (2022) estimated the bearing 

capacity of strip footing on the slope by 

using finite element limit analysis technique 

considering nonlinear continuous failure 

criterion with a non-associated flow rule. 

Tran et al. (2019) investigated the stability 

of the slope with the foundation during 

rainfall using a finite difference program. 

Komasi and Beiranvand (2022) investigated 

the stability analysis of earth dam under 

drawdown conditions. In this study, the 

finite element method was used to study the 

seepage from the body of the earth dam.  

The majority of the above-mentioned 

studies are based on Mohr-Coulomb (MC) 

failure criterion. In the limit analysis 

technique, upon using the MC criterion, the 

stress fields do not affect the rate of 

dissipated energy. In this case, the rate of 

internal work will only depend on cohesion 

and will be obtained by multiplying 

cohesion by the tangential component of the 

velocity vector (Chen, 1975).  

A considerable number of studies show 

that almost all geomaterials obey nonlinear 

failure criteria. On this basis, different non-

linear failure surfaces have been proposed 

and applied for stability analysis in 

geotechnical problems (e.g. Maleki et al., 

2000; Liu and Carter, 2003; Baker, 2004; 

Sun and Song, 2016; Wu et al., 2017).  

In the present research, using the upper 

bound limit analysis, the ultimate uniformly 

distributed load adjacent to a slope is 

investigated. Instead of the non-continuous 

MC criterion, the continuous criterion of 

CJS (Maleki et al., 2000) is used. In this 

criterion, the failure state is a nonlinear 

function of confining pressure and material 

density. The stress components along the 

slip surface are determined based on chosen 

Airy function. To find the critical condition, 

the virtual work is subjected to 

unconstrained nonlinear optimization  in the 

MATLAB program. Finally, the results are 

compared with those of the slices methods. 

 

2. The Log-Spiral Rotational Failure 

Mechanism 

 

The slope undergoes a shear failure with a 

rotational log-spiral failure mechanism due 

to building loading (Figure 1). In this study, 

for simplicity and by ignoring the stiffness 

of the building, the load of the building is 

replaced by an infinite uniformly 

distributed load. The soil wedge will fail 

around point O with an angular velocity 

of 𝛺̇. The equation of log-spiral failure 

surface can be written as Eq. (1), in which, 

𝑅(𝛩): is the radius of an arbitrary angle 𝛩 

and 𝑢(𝛩): is the velocity that depends on 

𝑅(𝛩) and can be obtained from Eq. (2). 

 
𝑅(Θ) = 𝑅0 exp(𝛩 − 𝛩0) (1) 

𝑢(𝛩) = 𝑅𝛺̇ = 𝑅0 𝑒𝑥𝑝(𝛩 − 𝛩0)𝛺̇ (2) 

 

3. Stress Field in the Soil Mass in Polar 

Coordinates 

 

In the upper bond solution, the plastic 

deformation rate is related to the stress 

components through the flow rule (𝜀𝑖̇𝑗
𝑝
=

𝜆 𝜕𝑓/𝜕𝜎𝑖𝑗). Therefore, the stress 

components in the slip log spiral bond of the 

failure mechanism must be known as a 

function of coordinate variables. By 

considering perfectly plastic behavior for 

material, stress components in the plastic 

state remain constant. The stress 
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components in this state can be considered 

as components obtained at the beginning of 

yielding. At this point, kinematic and 

equilibrium equations accompanied by 

isotropic linear elasticity constitutive 

equations, lead to a solution for determining 

the stress components.  

In the theory of elasticity, the stresses 

applied to the soil mass can be expressed by 

Eq. (3) using the Airy stress function. In this 

equation, 𝜑(𝑟, 𝜃) is the Airy stress function 

in polar coordinates. It is assumed that the 

body force is derivable from a scalar 

potential 𝑉̂. In the polar coordinates, 𝑉̂ can 

be expressed by Eq. (4).  

 

{
 
 

 
 𝜎𝑟𝑟 = 𝜎𝑟𝑟(𝑟, 𝜃) =

1

𝑟

𝜕𝜑

𝜕𝑟
+
1

𝑟2

𝜕2𝜑

𝜕𝜃2
+ 𝑉

𝜎𝜃𝜃 = 𝜎𝜃𝜃(𝑟, 𝜃) =
𝜕2𝜑

𝜕𝑟2
+ 𝑉

𝜎𝑟𝜃 = 𝜏𝑟𝜃 = 𝜏𝑟𝜃(𝑟, 𝜃) = −
𝜕

𝜕𝑟
(
1

𝑟

𝜕𝜑

𝜕𝜃
)

 

 (3) 

𝑉̂ = 𝛾 𝑟sin𝜃 (4) 

 

The Airy stress function is written in polar 

coordinated (Sadd, 2009) as follows. 

 
𝜑(𝑟, 𝜃) = 𝑟2(𝑐1 + 𝑐2𝜃 + 𝑐3 𝑠𝑖𝑛2𝜃

+ 𝑐4 𝑐𝑜𝑠2𝜃) 
(5) 

 

Substituting Eq. (5) into Eq. (3), the stress 

components in polar coordinates can be 

obtained as following expressions. 

 

𝜎𝑟𝑟 = 2𝑐1 + 2𝑐2𝜃 + 2𝑐3sin2𝜃

+ 2𝑐4cos2𝜃 
−4𝑐3sin2𝜃 − 4𝑐4cos2𝜃 + 𝛾 𝑟sin𝜃 

𝜎𝜃𝜃 = 2𝑐1 + 2𝑐2𝜃 + 2𝑐3sin2𝜃

+ 2𝑐4cos2𝜃 + 𝛾 𝑟sin𝜃 

𝜎𝑟𝜃 = −𝑐2 − 2𝑐3cos2𝜃 + 2𝑐4sin2𝜃          
(6) 

 

Initially, the center of polar coordinates 

is considered at the edge of the slope. The 

geometry of the problem in polar 

coordinate, center of rotation, and slip 

surface are shown in Figure 2. 

Boundary conditions on the ground 

surface and along the slope are expressed in 

Eq. (7) where L: is the length of failure 

wedge on the ground surface. 

 

 

 
Fig. 1. The rotational failure mechanism with a surcharge due to uniform loading adjacent to the slope 
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Fig. 2. Cartesian and polar coordinates considered in the present research 

 

 
𝜃 = 0, 

𝜎𝑟𝜃 = 0   ⇒     −𝑐2 − 2𝑐3 = 0 

𝜎𝜃𝜃 = 𝑞   ⇒    2𝑐1 + 2𝑐4 = 𝑞 

 

 

 
𝜃 = 𝜔, 

 

𝜎𝑟𝜃 = 0   ⇒   −𝑐2 − 2𝑐3cos2𝜔 
+2𝑐4sin2𝜔 = 0                                   

𝜎𝜃𝜃 = 0   ⇒    2𝑐1 + 2𝑐2𝜔 + 
2𝑐3sin2𝜔 + 2𝑐4cos2𝜔 + 𝛾 𝑟sin𝜔

= 0 
𝜔 = 𝜋 − 𝛽,   𝑟 = 𝑟0exp(𝜃 − 𝜃0) =
𝐿exp(𝜃)                                                    (7) 

 

Finally, solving the above equations, the 

constants of the Airy stress function are 

obtained as follows. 

 

𝑐1 =
𝑞

2
− 𝑐4,               𝑐2 = −2𝑐3 

𝑐3 = 

−
𝑞 + 𝛾 𝑟sin𝜔

2(1 + cos2𝜔) −
2sin2𝜔
1 − cos2𝜔 (2𝜔 − sin2𝜔)

 

×
sin2𝜔

1 − cos2𝜔
 

𝑐4 =                                                                                                       
𝑞 + 𝛾 𝑟sin𝜔

2(1 + cos2𝜔) −
2sin2𝜔

1 − cos2𝜔
(2𝜔 − sin2𝜔)

 

 (8) 

 

4. Nonlinear Failure Criteria 

 

The Mohr-Coulomb failure criterion has 

been widely used in upper-bound solutions 

of geotechnical problems. Mohr-Coulomb 

criterion, for a given internal friction angle, 

considers a linear relationship between 

shear strength and normal stress. Besides, 

the effect of density has not been 

automatically provided so that, for a given 

problem, the internal friction angle must be 

identified based on medium density. 

However, based on experimental 

observation, the failure state in soils is a 

nonlinear function of confining pressure as 

well as soil density. Besides, lack of 

intermediate principal stress in Mohr-

Coulomb led to discontinuity of the failure 

surface relative to the stress components. 

In the present study, the failure surface 

equation of the CJS elastoplastic 

constitutive model is used as the failure 

criterion for identifying upper bond 

solution. This model has been originally 

proposed for predicting the stress-strain 

behavior of granular soils (Cambou et al., 

1989). The failure surface of the CJS model 

was then extended based on experimental 

observations in order to improve its 

prediction (Maleki et al., 2000). The general 

form of CJS failure surface for granular 

materials is given by:  

 
𝑓(𝜎) = 𝑠𝐼𝐼ℎ(𝜃) − 𝑅𝑚𝐼1 = 0 (9) 
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in which, 𝑠𝐼𝐼 = √𝑠𝑖𝑗 𝑠𝑖𝑗: represents the 

second invariant of the deviatoric stress 

tensor of 𝑠𝑖𝑗 with  𝑠𝑖𝑗 = 𝜎𝑖𝑗 −
𝜎𝑘𝑘

3
𝛿𝑖𝑗,  𝐼1 =

𝜎𝑘𝑘: is the first invariant of the stress tensor, 

Rm: illustrates the mean radius of the failure 

surface and the function h( ): controls the 

geometrical form of failure surface about 

hydrostatic axis in stresses space with the 

following expression. 

 

ℎ(𝜃) = (1 − 𝛾 𝑐𝑜𝑠 3 𝜃)
1
6⁄

= [1

− √54𝛾
𝑑𝑒𝑡(𝑠𝑖𝑗)

𝑠𝐼𝐼
3 ]

1
6⁄

 

(10) 

 

where : is Lode’s angle and  : is a constant 

parameter of the model. The choice of  

depends on material behavior at the failure 

state.  

As seen from Figure 3a, for  =  a 

circular form of failure surface is achieved 

in the deviatoric stresses plane, however, 

choosing a value greater than zero for   

leads to an asymmetric form of failure 

surface about the hydrostatic axis. In the 

present study, by considering  = , a 

simplified form of the failure surface of the 

CJS model with the following expression 

was used.  

 
𝑓(𝜎) = 𝑠𝐼𝐼 − 𝑅𝑚𝐼1 = 0 (11) 

 

Based on the experimental observations, 

the shear strength of the granular soils at the 

peak state depends on the confining stress 

and soil density. In the CJS failure surface, 

these issues have been well described in the 

framework of critical state soil mechanics. 

The mean radius of the failure surface Rm in 

Eq. (11), is a function of stress level and soil 

density and varies between a maximum 

initial value (Rmi) corresponding to peak 

resistance to a minimum value (Rcritical) 

related to the critical state resistance.  

 
𝑅𝑚 = 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 + (𝑅𝑚𝑖 − 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙)(1

−
𝐼1
3𝑝𝑐

)𝛼 
(12) 

 

The critical state pressure pc depends on 

the soil density through an exponential 

relationship (Maleki et al., 2000). 

According to the experimental observations 

concerning the stress-strain behavior of 

granular soils at peak and post-peak states 𝛼 

has been fixed equal to 1.5 (Bathayian and 

maleki, 2018). A typical soil stress-strain 

curve is shown in Figure 3b. The maximum 

and critical state mean radii (Rmi and Rcritical) 

of the failure surface, are related to point A 

(peak state) and point B (critical state) 

respectively. The manner of determination 

of CJS criterion parameters has been given 

in Maleki et al. (2000).  Intersecting CJS 

and Mohr-Coulomb criteria in 

axisymmetric triaxial conditions results in 

the direct relationships for Rmi and Rcritical in 

terms of internal friction angle at peak and 

critical states, respectively, which are 

presented in Appendix A.2 (Eqs. (A2-1 and 

A2-2)). 
 

  
(a) (b) 

Fig. 3. a) CJS failure surface in deviatoric stress space; and b) Schematic deviator stress-strain behavior of soil 
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5. Internal Power Dissipation 

 

Based on the upper bound limit analysis 

theorem and virtual work equation, by 

setting the rate of external work equal to the 

rate of internal Power dissipation, obtained 

loads in this field will not be smaller than 

the actual failure loads. The mathematical 

form of the virtual work equation can be 

written as follows. 

 

∬𝜎𝑖𝑗
𝑉̄

𝜀𝑖̇𝑗𝑑𝑉 =∬𝑏𝑖
𝑉

𝑢𝑖𝑑𝑉

+∬ 𝑇𝑖
𝑆𝑡

𝑢𝑖𝑑𝑆𝑡 
(13) 

 

where 𝜎𝑖𝑗: is the state of stress and 𝜀𝑖̇𝑗: is the 

rate of plastic strain. The internal power 

dissipation is equal to the product of the 

stress tensor and plastic strain rate. Ti: is the 

unknown distributed load on the boundaries 

St and bi: is the body force on the volume V 

and ui: is the incipient velocity in the 

selected mechanism. The stress components 

are identified depending on the failure 

mechanism geometry and considered Airy 

function. The second invariant of the 

deviatoric stress tensor of the CJS failure 

criterion in plane strain conditions are 

defined as follows. 

 

𝑠𝐼𝐼 = √𝑠𝑖𝑗𝑠𝑖𝑗

= √𝑠11
2 + 𝑠22

2 + 𝑠33
2 + 2𝑠12

2

= √𝑠𝑟𝑟
2 + 𝑠𝜃𝜃

2 + 𝑠33
2 + 2𝑠𝑟𝜃

2 𝜎3

= 𝜐(𝜎𝑟𝑟 + 𝜎𝜃𝜃)𝐼1 = 𝜎𝑟𝑟 + 𝜎𝜃𝜃 + 𝜎3 

(14) 

 

The CJS failure surface in SII-I1 

coordinates has a nonlinear form  as 

illustrated in Figure 4. In this figure, the 

shear strain rate, 𝑒̇𝐼𝐼, versus volumetric 

strain rate, 𝜀𝑉̇, is also shown. Based on the 

normality rule, the dilation angle of 𝜉 can be 

expressed in terms of stress state by 

differentiation of failure surface as follows.  

 

𝑑𝑠𝐼𝐼
𝑑𝐼1

= 𝑡𝑎𝑛 𝜉 = (𝑅𝑚𝑖

− 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) (1

−
𝐼1
3𝑝𝑐

)
𝛼

(
𝛼

3𝑝𝑐
(1

−
𝐼1
3𝑝𝑐

)
𝛼−2

(𝐼1) − 1)

+ 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

(15) 

 

According to Figure 5, if t: is the 

thickness of the region including 

discontinuity of velocity, the shear strain 

can be obtained by dividing the tangential 

velocity by this thickness. Therefore, the 

increment of dissipated internal energy in 

the unit area of discontinuous surfaces is 

defined as Eq. (16).  

 

𝑑𝐷̇ = (𝑠𝐼𝐼𝑒̇𝐼𝐼 − 𝐼1𝜀𝑣̇)(𝑡 × 1 × 1) (16) 

 

 Based on Figure 4 and the expression of 

the dilation angle, the increment of 

dissipated internal energy is defined as 

follows. 

 

The dissipated internal energy is adopted 

based on a center coordinate at the edge of 

the slope (local coordinates). In order to 

establish the virtual work equation, the 

dissipated energy has to be defined based on 

the center of the global coordinates at the 

rotational log-spiral outside of the slope. 

The local coordinates (𝑥1, 𝑥2, 𝑟, 𝜃), as well 

as the global coordinates (𝑋1, 𝑋2, 𝑅, 𝛩) are 

shown in Figure 6. The transformation 

matrix is expressed as the following form. 

 

(
cos(𝑅, 𝑟) cos(𝑅, 𝜃)

cos(𝜃, 𝑟) cos(Θ, 𝜃)
)

= (
cos𝜂 sin𝜂

sin𝜂 −cos𝜂
) 

(18) 

 

As shown in Figure 6, the angle 𝜂: is 

defined as 𝜃 − 𝛩  by extending the radius, r. 

According to this figure, the relationship 

𝜀𝑣̇ = tan𝜉 𝑒̇𝐼𝐼  
𝑑𝐷̇ = (𝑠𝐼𝐼 − 𝐼1tan𝜉)𝑒̇𝐼𝐼  (𝑡 × 1 × 1)     
= (𝑠𝐼𝐼 − 𝐼1tan𝜉) (𝛿𝑢) 

(17) 
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between the polar angles of two coordinate 

systems can be obtained as shown in Eqs. 

(19) and (20), respectively. The r0 is equal 

to the length of failed soil mass on the 

ground, L.  
 

𝑅sinΘ = 𝑅0sinΘ0 + 𝑟sin𝜃  
→  exp(Θ − Θ0)sinΘ =  

sinΘ0 +
𝑟0
𝑅0
exp(𝜃)sin𝜃  

𝑅0cosΘ0 − 𝑅cosΘ + 𝑟cos𝜃 = 𝐿 (19) 

→ exp(Θ − Θ0)cosΘ =  

cosΘ0 +
𝑟0
𝑅0
exp(𝜃)cos𝜃 −

𝐿

𝑅0
 

 

  
𝛩 = 

𝑡𝑎𝑛−1(
𝑠𝑖𝑛𝛩0 +

𝑟0
𝑅0
𝑒𝑥𝑝( 𝜃) 𝑠𝑖𝑛 𝜃

𝑐𝑜𝑠𝛩0 +
𝑟0
𝑅0
𝑒𝑥𝑝( 𝜃) 𝑐𝑜𝑠 𝜃 −

𝐿
𝑅0

)𝜂 

= 𝜃 − 𝛩 (20) 

By transforming the local coordinates to 

the global coordinates, the limit stresses in 

global coordinates are identified for 

establishing the virtual work equation. 
 

(
𝜎𝑅𝑅 𝜎𝑅𝛩
𝜎𝑅𝛩 𝜎𝛩𝛩

) =  

(
𝑐𝑜𝑠 𝜂 𝑠𝑖𝑛 𝜂
𝑠𝑖𝑛 𝜂 − 𝑐𝑜𝑠 𝜂

)× (
𝜎𝑟𝑟 𝜎𝑟𝜃
𝜎𝑟𝜃 𝜎𝜃𝜃

)× 
(21) 

(
𝑐𝑜𝑠 𝜂 𝑠𝑖𝑛 𝜂
𝑠𝑖𝑛 𝜂 − 𝑐𝑜𝑠 𝜂

)
𝑇

 
 

 

or, 
 

𝜎𝑅𝑅 = 𝜎𝑟𝑟cos
2𝜂 + 𝜎𝜃𝜃sin

2𝜂  

+𝜎𝑟𝜃sin2𝜂  

𝜎ΘΘ = 𝜎𝑟𝑟sin
2𝜂 + 𝜎𝜃𝜃cos

2𝜂  

−𝜎𝑟𝜃sin2𝜂 (22) 

𝜎𝑅Θ = 0.5𝜎𝑟𝑟sin2𝜂 − 0.5𝜎𝜃𝜃sin2𝜂  

+𝜎𝑟𝜃(sin
2𝜂 − cos2𝜂)  

 

The stress invariants are also expressed 

as follows. 

 

𝑠𝐼𝐼 = √𝑠𝑅𝑅
2 + 𝑠ΘΘ

2 + 𝑠33
2 + 2𝑠𝑅Θ

2  
 

𝐼1 = 𝜎𝑅𝑅 + 𝜎ΘΘ + 𝜎33   
𝜎33 = 𝜐  (𝜎𝑅𝑅 + 𝜎ΘΘ) 

 

𝑠𝑅𝑅 =
2𝜎𝑅𝑅 − 𝜎ΘΘ − 𝜎33

3
 

 

𝑠ΘΘ =
2𝜎ΘΘ − 𝜎𝑅𝑅 − 𝜎33

3
 

(23) 

𝑠33 =
2𝜎33 − 𝜎𝑅𝑅 − 𝜎ΘΘ

3
 

 

𝑠𝑅Θ = 𝜎𝑅Θ −
𝜎𝑅𝑅 + 𝜎ΘΘ + 𝜎33

3
 

 

 

The rate of total dissipated energy is 

obtained by integrating the increments of 

dissipated energy along the log-spiral slip 

surface. 
 

𝐷̇ = ∫ (𝑠𝐼𝐼 − 𝐼1 𝑡𝑎𝑛 𝜉)(𝛿𝑢)
𝛩ℎ

𝛩0

𝑅𝑑𝛩 
 

= ∫ 𝑅0
2(𝑠𝐼𝐼 − 𝐼1 𝑡𝑎𝑛 𝜉)

𝛩ℎ

𝛩0

 
 

× 𝑒𝑥𝑝[2(𝛩 − 𝛩0)] 𝛺̇𝑑𝛩 (24) 

= ∫ 𝑅0
2(𝑠𝐼𝐼 − 𝐼1 𝑡𝑎𝑛 𝜉)

𝛩ℎ

𝛩0

 
 

× 𝑒𝑥𝑝[2(𝛩 − 𝛩0)] 𝛺̇
𝑑𝛩

𝑑𝜃
𝑑𝜃 

 

 

where the shear velocity is based on the 

global coordinates. The stresses are also 

transformed from the local coordinates to 

the global coordinates. 

 

 
Fig. 4. CJS failure line in SII-I1 coordinates 
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Fig. 5. Differential discontinuity in the slip surface 

 

 
Fig. 6. Coordinate transformation and polar stress components applied at the failure state 

 

6. The Ultimate Load 

 

The rate of external work due to the weight 

of the failure wedge can be obtained from 

Eq. (25). In this equation, the functions f1, 

f2, and f3 are defined in Appendix A.1 (Eqs. 

(A1-1 and A1-2)) (Chen, 1975). The rate of 

work done by the uniform surcharge 

adjacent to the slope is obtained from Eq. 

(26) by multiplying the moment of 

surcharge by the rotational velocity. 

 

𝑊̇ = 𝛾𝑅0
3𝛺̇(𝑓1 − 𝑓2 − 𝑓3) (25) 

𝑄̇ = 𝑞𝐿 (𝑅0 𝑐𝑜𝑠 𝛩0 −
𝐿

2
) 𝛺̇ (26) 

 

At the onset of failure, the dissipated 

internal energy is equal to the rate of 

external work. By minimizing the virtual 

work equation, the ultimate uniform load, q, 

is obtained. It has to be noted that the rate of 

external work done by surcharge and 

dissipated energy is obtained based on the 

unknown, q. 
 

𝑚𝑖𝑛   𝐷̇ − 𝑊̇ − 𝑄̇  𝑜𝑛(𝛩0, 𝛩ℎ, 𝑞) (27) 

 

The virtual work equation is subjected to 

unconstrained nonlinear optimization. For 

this purpose, numerical methods such as 

fminsearch or fminunc optimization in the 

MATLAB program or repetitive loops on 

the 𝛩0, 𝛩ℎ angle, and surcharge can be used. 

Therefore, by writing codes in MATLAB 
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programming language, the minimum 

ultimate uniform load can be obtained. 

 

7. Results of the Proposed Formulation 

 

In order to analyze the formulation and 

extract the uniform load, a 4 m slope with 

geotechnical properties listed in Table 1 

was assumed. The values of Rmi and Rcritical 

were identified regarding internal friction 

angles at peak and critical states based on 

the relationships presented in the Appendix. 

It should be noted that, for simplicity in the 

optimization process, pc was fixed as a 

constant parameter of pc0.    

In the presented formulation, an infinite 

uniform surcharge was considered. So, the 

length of the failure surface on the ground 

was not predefined. This length can be 

deduced as one result of optimization of Eq. 

(27). Table 2 shows different values of the 

length of failure surface, start and end 

angles around the center of rotation, and 

ultimate load on different slopes for  

nonlinear CJS method and variable Rm.  

The nonlinear dependence of the failure 

state of soils on confining pressure has been 

well introduced in the formulation of the 

CJS failure criterion, so increasing 

confining pressure leads to a decrease in the 

rate of shear strength augmentation.  Figure 

7 shows the variations of the ultimate load 

in terms of slope angle for different 

maximum surface failure radii. In this 

analysis, the nonlinear CJS method has 

been used and, with the constant parameters 

in Table 1, the maximum failure radius has 

been changed. As can be observed in this 

figure, as the failure surface radius is 

increased, the ultimate load is also 

increased for all values of slope angles. 

Besides, for a given failure surface radius, 

while the slope angle is increased, the 

ultimate load is augmented. The rate of 

decrease in the ultimate load due to an 

increase in slope angle augments with an 

increase in the failure surface radius. 

In order to study the effect of confining 

pressure on ultimate load, a constant mean 

radius of the failure surface equal to its 

maximum value, Rmi, was assumed and the 

results were compared with the case in 

which the radius is variable. As can be 

observed in Figure 8, for the fixed radius, 

the ultimate load is always greater than 

when the variable radius is used. For the 

slope angle equal to 30 degrees, a smaller 

difference in results is observed. The 

analysis with constant Rm is related to the 

upper bond solution in which shear strength 

varies as a linear function of stress level. It 

should be noted that the majority of existing 

works concerning the upper bond solution 

of slope stability have used Mohr-Coulomb 

or Drocker-Prager criteria. The results of 

the analysis with constant Rm presented in 

Figure 8 are similar to the upper bond 

solution of surcharged slopes stability based 

on the Drocker-Prager criterion because 

parameter 𝛾 in the CJS criterion is assumed 

to be zero.  

Figure 9 shows variations of the ultimate 

load versus the initial critical state stress for 

different slope angles. This parameter is 

related to the initial density of granular soil. 

The large values of initial critical state 

pressure correspond to the high values of 

relative density. By increasing the initial 

critical state stress, pc0, the ultimate load has 

been increased. According to Figure 9, the 

maximum difference between the ultimate 

loads for the initial critical stresses of 200 

and 2000 kPa is about 160 kPa on a slope of 

30 degrees. 

Variations of the ultimate load versus 

soil unit weight for different slope angles 

are shown in Figure 10. By increasing the 

soil unit weight, the ultimate load is 

increased. The rate of decrease in the 

ultimate load by increasing slope angle is 

maximum in the unit weight, 𝛾 = 20 kN/m3 

compared to other conditions. By increasing 

the unit weight, the stresses and the effect of 

confining stress have increased. 

In the following, the results of the 

proposed method are compared with the 

equilibrium method of GeoSlope software 

(2007). The GeoSlope software is a subset 

of the GeoStudio software and the slope 

stability analysis in this program is 
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performed by studying the equilibrium of 

the vertical slices of the soil mass. In this 

regard, various methods of slices including 

the Ordinary method of the slice, Bishop’s 

method, Janbu’s generalized method, and 

Morgenstern-Price method are used.  

The factor of safety of a slope is defined 

as the ratio of the available shear strength of 

the soil to the minimum shear strength 

required to maintain stability. In the 

GeoSlope software, the shear strength of 

soils for effective stress analysis is 

governed by the Coulomb failure criterion. 

The proposed formulation is in the limit 

state and in this case, the factor of safety is 

equal to one. 

In Figure 11, the performed model in the 

GeoSlope software is shown. The slope has, 

a height of 4 m and an angle of 30o. Besides, 

a specific weight of 18 kN/m3, internal 

friction angle of 37o, and zero cohesion was 

considered. The intensity of the surcharge 

in this figure is equivalent to the ultimate 

load extracted from the proposed 

formulation in Table 2. In this figure, the 

critical failure wedge and the center of its 

rotation are shown for the Morgenstern-

Price method. The factor of safety in the 

Morgenstern-Price method is 0.946. 

Figure 12 shows the comparison 

between the factors of  safety in various 

methods. The values obtained from the 

proposed method with the CJS failure 

criterion are among the values obtained 

from the various methods of slices based on 

the Mohr-Coulomb failure criterion. The 

results of different slices methods at a 30o 

slope are always less than the ultimate load 

value of the proposed method. However, 

with the decrease of the slope, the amount 

of ultimate load resulting from the different 

methods of slices has increased. At 20o 

slope angle, the results of the Ordinary 

method and Janbu’s generalized method are 

lower than the proposed method and the 

results of Bishop’s method and 

Morgenstern-Price method are more than 

the proposed method. At 10o slope angle, 

the results of slices methods are always 

more than the proposed method. The factor 

of safety at 10o slope angle in the Ordinary 

method is 1.005 which is very close to the 

results obtained from the proposed method. 

 

 
Fig. 7. Variations of the ultimate load versus angle of slope in different failure surface radii 

 

Table 1. Geotechnical properties of slope material 

Pc0 (kPa) Rcritical Rmi critical (˚) peak (˚)    (kN/m3) 

1000 0.3503 0.4098 32 37 0.35 18 

 
Table 2. Optimization results obtained from the suggested method 

qu (kPa) L (m) L/H  𝜣𝒉 (
∘) 𝜣𝟎 (

∘) H (m) 𝜷 (∘) 
501.93 1.05 0.262 155.6 77.6 4 10 

423.88 1.51 0.433 145.5 74.3 4 20 

340.08 2.43 0.607 138.8 71.9 4 30 
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Fig. 8. Comparison between the ultimate load in fixed and variable failure surface radius 

 

 
Fig. 9. Effect of initial critical state stress on the ultimate load in terms of slope angle 

 

 
Fig. 10. Variations of the ultimate load versus angle of slope in different unit weights 

 

 
Fig. 11. Critical failure wedge and factor of safety in the GeoSlope software 
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Fig. 12. Comparison between the results of the present study with those of the slices methods 

 

8. Conclusions 

 

In this paper using a continuous failure 

criterion as a nonlinear function of 

confining stress and soil density, 

formulation of the upper bound limit 

analysis method for estimating the ultimate 

uniform load adjacent to a slope  was 

presented. In order to estimate the rate of 

dissipated internal energy, the stress field 

along the slip surface was determined in 

polar coordinates based on the Airy stress 

function.  

Taking into account the nonlinear effect 

of confining pressure in the analyses, led to 

a decrease in the ultimate load. This 

reduction was more obvious in slopes with 

smaller angles. An increase in the radius of 

the soil failure criterion caused an increase 

in the ultimate load. This increase  was more 

significant in slopes with lower angles.  

With a set of failure state parameters, the 

ultimate load was affected by the change in 

soil initial density, so the increase of initial 

density led to a rise in the ultimate load. 

Using the presented failure criterion 

resulted in a more accurate estimation of the 

soil behavior.  

The results of the proposed method were 

compared with different slices methods 

based on the Mohr-Coulomb failure 

criterion. The suggested limit analysis 

technique results in greater values for 

ultimate load at a 30˚ slope angle and 

smaller values at a 10˚ slope angle 

compared to different methods of slices. 

The analysis with a constant mean radius 

of the failure surface is related to the upper 

bond solution in which shear strength varies 

as a linear function of stress levels such as 

Mohr-Coulomb and Drocker-Prager 

criteria. A considerable difference was 

observed between the results of analyses 

with constant and variable mean radii of the 

failure surface.  
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A. Appendix 

 

A.1. Determination of Coefficients f1, f2 

and f3 

The coefficients f1, f2, and f3 are the rate 

of external work done in log spiral OBC and 

two OAB and OAC triangles in Figure 6, 

respectively (Chen, 1975). These 

coefficients can be written as the following 

equations. Also, according to the geometry 

shown in Figure 6, the parameters L and R0 

can be expressed based on h and o (Chen, 

1975).  

 

𝑓1(𝛩0, 𝛩ℎ) =
1

30
((3 𝑐𝑜𝑠 𝛩ℎ + 𝑠𝑖𝑛 𝛩ℎ) 

× 𝑒𝑥𝑝[3(𝛩ℎ − 𝛩0)] − 3 𝑐𝑜𝑠 𝛩0 − 𝑠𝑖𝑛 𝛩0) 

𝑓2(𝛩0, 𝛩ℎ) =
1

6

𝐿

𝑅0
(2 𝑐𝑜𝑠 𝛩0 −

𝐿

𝑅0
) 𝑠𝑖𝑛 𝛩0 

𝑓3 =
1

6
𝑒𝑥𝑝(𝛩ℎ − 𝛩0) (A1-1) 

× (𝑠𝑖𝑛(𝛩ℎ − 𝛩0) −
𝐿

𝑅0
𝑠𝑖𝑛 𝛩ℎ) 

× (𝑐𝑜𝑠 𝛩0 −
𝐿

𝑅0
+ 𝑐𝑜𝑠𝛩ℎ 𝑒𝑥𝑝(𝛩ℎ − 𝛩0)) 

 
𝐿

𝑅0

=
1

𝑠𝑖𝑛 𝛩ℎ
[𝑠𝑖𝑛(𝛩ℎ − 𝛩0)

−
𝐻

𝑅0

𝑠𝑖𝑛(𝛽 + 𝛩ℎ)

𝑠𝑖𝑛 𝛽
] 

 

 

 

 
(A1-2) 

𝐻

𝑅0
= 𝑠𝑖𝑛𝛩ℎ 𝑒𝑥𝑝(𝛩ℎ − 𝛩0)

− 𝑠𝑖𝑛 𝛩0 

 

 

A.2. Relation between Failure Surface 

Radius and Soil Internal Friction Angle 

By intersecting the two MC and CJS 

failure criteria, the following relationships 

exist between the maximum and critical 

state failure surfaces radii and the internal 

friction angle of the soil at peak and critical 

states (Maleki et al., 2000).  

 

𝑅𝑚𝑖 = 2√
2

3

𝑠𝑖𝑛 𝜑𝑝𝑒𝑎𝑘

3 − 𝑠𝑖𝑛 𝜑𝑝𝑒𝑎𝑘
 (A2-1) 

𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 2√
2

3

𝑠𝑖𝑛 𝜑𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
3 − 𝑠𝑖𝑛 𝜑𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

 (A2-2) 
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