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Abstract. In this paper using the upper bound limit analysis method, the stability of soil slope, uniformly 

surcharged at the crest was investigated. According to the soil behavior at the failure state, a continuous failure 

criterion nonlinear function of confining stress, and soil initial density was considered. The stress field along the slip 

surface is entered into the limit analysis formulation according to the Airy stress function. The ultimate uniformly 

distributed load was obtained by optimizing the virtual work equation. The effects of different parameters such as 

slope angle, soil unit weight, and initial density have been investigated. Considering the nonlinear effects of confining 

stresses has led to a reduction in the ultimate load. This reduction is more obvious in slopes with lower angles. 

According to the proposed formulation, with increasing soil density, the ultimate load of the slope stability has 

increased.  The results for different slope angles were compared with those obtained from the limit equilibrium-based 

methods. The ultimate loads of the proposed method are in some cases lower and in some cases more than the results 

of different methods based on limit equilibrium. 
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1. Introduction 

The construction of footing on the crest of a slope has a significant effect on its stability. In the 

technical literature, there are many studies dedicated to loading on the slopes, slope stability, and 

bearing capacity of footing near the slope. In general, the analytical approaches to this problem can be 

divided into three categories of limit equilibrium (Vo and Russell, 2017; Shukla and Jakka, 2018; 

Hajiazizi et al., 2018; Mirzazadeh and Hajiazizi, 2020; Hu et al., 2022; Tozato et al., 2022), method of 

characteristics and limit analysis (Mofidi et al., 2014; Tang et al., 2015; Qin and Chain, 2018; Zhou et 

al., 2018; Froutan Kalourazi et al., 2019, Guanhua, 2023; Zhou and Qin, 2023). In addition, several 

experimental studies (e. g. Hajiazizi and Nasiri, 2019; Razali et al., 2023; Thomas et al., 2023)  have 

been performed in this field. 

The stability of surcharged slopes using the limit analysis technique was studied by several authors 

(e. g. Mofidi Rouchi, 2014; Tang et al., 2015; Haghbin and Ghazavi, 2016; Vo and Russell, 2017; Qin 

and Chin, 2017, 2018; Aminpour et al., 2017, 2018; Aminpour and Maleki, 2022). Tang et al. (2015) 

presented some practical charts for assessing the slope stability in different loading conditions taking 

into account the effect of pore water pressure. Vo and Russell (2017) studied the slope stability of 

nonhomogeneous unsaturated slopes subjected to uniform loading using the limit equilibrium 

technique. Qin and Chain (2017, 2018) discretized the log-spiral failure wedge into vertical slices and 

calculated the ultimate load applied to the slope. Using the limit analysis technique, Aminpour et al. 

(2017, 2018) investigated the effect of surcharge on the behavior of soil slopes under various seismic 

conditions and soil reinforcement. Aminpour and Maleki (2022) estimated the bearing capacity of strip 

footing on the slope by using finite element limit analysis technique considering nonlinear continuous 

failure criterion with a non-associated flow rule. Tran et al. (2019) investigated the stability of the slope 

with the foundation during rainfall using a finite difference program. Komasi and Beiranvand (2022) 

investigated the Stability Analysis of earth dam under drawdown conditions. In this study, the finite 

element method was used to study the seepage from the body of the earth dam.  
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The majority of the above-mentioned studies are based on Mohr-Coulomb (MC) failure criterion. In 

the limit analysis technique, upon using the MC criterion, the stress fields do not affect the rate of 

dissipated energy. In this case, the rate of internal work will only depend on cohesion and will be 

obtained by multiplying cohesion by the tangential component of the velocity vector (Chen, 1975).  

A considerable number of studies show that almost all geomaterials obey nonlinear failure criteria. 

On this basis, different non-linear failure surfaces have been proposed and applied for stability analysis 

in geotechnical problems (e. g. Maleki et al., 2000; Liu and Carter, 2003; Baker, 2004; Sun and Song, 

2016; Wu et al., 2017).  

In the present research, using the upper bound limit analysis, the ultimate uniformly distributed load 

adjacent to a slope is investigated. Instead of the non-continuous MC criterion, the continuous criterion 

of CJS (Maleki et al., 2000) has been used. In this criterion, the failure state is a nonlinear function of 

confining pressure and material density. The stress components along the slip surface are determined 

based on chosen Airy function. To find the critical condition, the virtual work is subjected to 

unconstrained nonlinear optimization  in the MATLAB program. Finally, the results are compared with 

those of the slices methods. 

2. The log-spiral rotational failure mechanism 

The slope undergoes a shear failure with a rotational log-spiral failure mechanism due to building 

loading (Fig. 1). In this study, for simplicity and by ignoring the stiffness of the building, the load of 

the building is replaced by an infinite uniformly distributed load. The soil wedge will fail around point 

O with an angular velocity of �̇�. The equation of log-spiral failure surface can be written as Eq. (1). In 

this equation, 𝑅(𝛩)  is the radius of an arbitrary angle 𝛩 and 𝑢(𝛩) is the velocity that depends on 𝑅(𝛩) 

and can be obtained from Eq. (2). 

(1) 𝑅(Θ) = 𝑅0 exp(𝛩 − 𝛩0) 

(2) 𝑢(𝛩) = 𝑅�̇� = 𝑅0 𝑒𝑥𝑝(𝛩 − 𝛩0)�̇� 

 

3. Stress field in the soil mass in polar coordinates 
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In the upper bond solution, the plastic deformation rate is related to the stress components through the 

flow rule (휀�̇�𝑗
𝑝
= 𝜆 𝜕𝑓/𝜕𝜎𝑖𝑗). Therefore, the stress components in the slip log spiral bond of the failure 

mechanism must be known as a function of coordinate variables. By considering perfectly plastic 

behavior for material, stress components in the plastic state remain constant. The stress components in 

this state can be considered as components obtained at the beginning of yielding. At this point, 

kinematic and equilibrium equations accompanied by isotropic linear elasticity constitutive equations, 

lead to a solution for determining the stress components. In the theory of elasticity, the stresses applied 

to the soil mass can be expressed by Eq. (3) using the Airy stress function. In this equation, 𝜑(𝑟, 𝜃) is 

the Airy stress function in polar coordinates. It is assumed that the body force is derivable from a scalar 

potential �̂�. In the polar coordinates, �̂� can be expressed by Eq. (4).  

{
 
 

 
 𝜎𝑟𝑟 = 𝜎𝑟𝑟(𝑟, 𝜃) =

1

𝑟

𝜕𝜑

𝜕𝑟
+
1

𝑟2

𝜕2𝜑

𝜕𝜃2
+ 𝑉

𝜎𝜃𝜃 = 𝜎𝜃𝜃(𝑟, 𝜃) =
𝜕2𝜑

𝜕𝑟2
+ 𝑉

𝜎𝑟𝜃 = 𝜏𝑟𝜃 = 𝜏𝑟𝜃(𝑟, 𝜃) = −
𝜕

𝜕𝑟
(
1

𝑟

𝜕𝜑

𝜕𝜃
)

 

(3) 

�̂� = 𝛾 𝑟sin𝜃 (4) 

The Airy stress function is written in polar coordinated (Sadd, 2009) as follows: 

𝜑(𝑟, 𝜃) = 𝑟2(𝑐1 + 𝑐2𝜃 + 𝑐3 𝑠𝑖𝑛2𝜃 + 𝑐4 𝑐𝑜𝑠2𝜃) (5) 

Substituting Eq. (5) into Eq. (3), the stress components in polar coordinates can be obtained as following 

expressions: 

{

𝜎𝑟𝑟 = 2𝑐1 + 2𝑐2𝜃 + 2𝑐3sin2𝜃 + 2𝑐4cos2𝜃 − 4𝑐3sin2𝜃 − 4𝑐4cos2𝜃 + 𝛾 𝑟sin𝜃

𝜎𝜃𝜃 = 2𝑐1 + 2𝑐2𝜃 + 2𝑐3sin2𝜃 + 2𝑐4cos2𝜃 + 𝛾 𝑟sin𝜃

𝜎𝑟𝜃 = −𝑐2 − 2𝑐3cos2𝜃 + 2𝑐4sin2𝜃

 (6) 

Initially, the center of polar coordinates is considered at the edge of the slope. The geometry of the 

problem in polar coordinate, center of rotation, and slip surface are shown in Fig. 2. Boundary 
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conditions on the ground surface and along the slope are expressed in Eq. (7) where L is the length of 

failure wedge on the ground surface. 

{
𝜃 = 0:       {

𝜎𝑟𝜃 = 0   ⇒     −𝑐2 − 2𝑐3 = 0

𝜎𝜃𝜃 = 𝑞   ⇒    2𝑐1 + 2𝑐4 = 𝑞 

𝜃 = 𝜔:       {
𝜎𝑟𝜃 = 0   ⇒   −𝑐2 − 2𝑐3cos2𝜔 + 2𝑐4sin2𝜔 = 0 

𝜎𝜃𝜃 = 0   ⇒    2𝑐1 + 2𝑐2𝜔 + 2𝑐3sin2𝜔 + 2𝑐4cos2𝜔 + 𝛾 𝑟sin𝜔

𝜔 = 𝜋 − 𝛽;    𝑟 = 𝑟0exp(𝜃 − 𝜃0) = 𝐿exp(𝜃)

 

(7) 

Finally, solving the above equations, the constants of the Airy stress function are obtained as follows: 

{
 
 
 

 
 
 𝑐1 =

𝑞

2
− 𝑐4

𝑐2 = −2𝑐3

𝑐3 = −
𝑞 + 𝛾 𝑟sin𝜔

2(1 + cos2𝜔) −
2sin2𝜔

1 − cos2𝜔
(2𝜔 − sin2𝜔)

×
sin2𝜔

1 − cos2𝜔

𝑐4 =
𝑞 + 𝛾 𝑟sin𝜔

2(1 + cos2𝜔) −
2sin2𝜔

1 − cos2𝜔
(2𝜔 − sin2𝜔)

 

(8) 

 

4. Nonlinear failure criteria 

The Mohr-Coulomb failure criterion has been widely used in upper-bound solutions of geotechnical 

problems. Mohr-Coulomb criterion, for a given internal friction angle, considers a linear relationship 

between shear strength and normal stress. Besides, the effect of density has not been automatically 

provided so that, for a given problem, the internal friction angle must be identified based on medium 

density. However, based on experimental observation, the failure state in soils is a nonlinear function 

of confining pressure as well as soil density. Besides, a lack of intermediate principal stress in Mohr-

Coulomb led to discontinuity of the failure surface relative to the stress components. 

In the present work, the failure surface equation of the CJS elastoplastic constitutive model is used 

as the failure criterion for identifying upper bond solution. This model has been originally proposed for 

predicting the stress-strain behavior of granular soils (Cambou et al., 1989). The failure surface of the 

CJS model was then extended based on experimental observations in order to improve its prediction 

(Maleki et al., 2000). The general form of CJS failure surface for granular materials is given by:  
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𝑓(𝜎) = 𝑠𝐼𝐼ℎ(𝜃) − 𝑅𝑚𝐼1 = 0 (9) 

In which, 𝑠𝐼𝐼 = √𝑠𝑖𝑗 𝑠𝑖𝑗 represents the second invariant of the deviatoric stress tensor of 𝑠𝑖𝑗 with  

𝑠𝑖𝑗 = 𝜎𝑖𝑗 −
𝜎𝑘𝑘

3
𝛿𝑖𝑗,  𝐼1 = 𝜎𝑘𝑘 is the first invariant of the stress tensor, Rm illustrates the mean radius of 

the failure surface and the function h( ) controls the geometrical form of failure surface about 

hydrostatic axis in stresses space with the following expression: 

ℎ(𝜃) = (1 − 𝛾 𝑐𝑜𝑠 3 𝜃)
1
6⁄ = [1 − √54𝛾

𝑑𝑒𝑡(𝑠𝑖𝑗)

𝑠𝐼𝐼
3 ]

1
6⁄

 (10) 

In Eq. 10,   is Lode’s angle and    is a constant parameter of the model. The choice of  depends 

on material behavior at the failure state. As seen from Fig. 3 (a), for = a circular form of failure surface 

is achieved in the deviatoric stresses plane, however, choosing a value greater than zero for   leads to 

an asymmetric form of failure surface about the hydrostatic axis.   In the present study, by considering 

= a simplified form of the failure surface of the CJS model with the following expression was used.  

𝑓(𝜎) = 𝑠𝐼𝐼 − 𝑅𝑚𝐼1 = 0 (11) 

Based on the experimental observations, the shear strength of the granular soils at the peak state 

depends on the confining stress and soil density. In the CJS failure surface, these issues have been well 

described in the framework of critical state soil mechanics. The mean radius of the failure surface Rm in 

Eq. (11), is a function of stress level and soil density and varies between a maximum initial value (Rmi) 

corresponding to peak resistance to a minimum value (Rcritical) related to the critical state resistance.  

(12) 𝑅𝑚 = 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 + (𝑅𝑚𝑖 − 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙)(1 −
𝐼1
3𝑝𝑐

)𝛼 

The critical state pressure pc depends on the soil density through an exponential relationship (Maleki 

et al., 2000). According to the experimental observations concerning the stress-strain behavior of 

granular soils at peak and post-peak states 𝛼 has been fixed equal to 1.5 (Bathayian and maleki, 2018). 

A typical soil stress-strain curve is shown in Fig. 3(b). The maximum and critical state mean radii (Rmi 

and Rcritical) of the failure surface, are related to point A (peak state) and point B (critical state) 
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respectively. The manner of determination of CJS criterion parameters has been given in Maleki et al. 

(2000).  Intersecting CJS and Mohr-Coulomb criteria in axisymmetric triaxial conditions results in the 

direct relationships for Rmi and Rcritical in terms of internal friction angle at peak and critical states 

respectively which are presented in the appendix. 

5. Internal Power dissipation 

Based on the upper bound limit analysis theorem and virtual work equation, by setting the rate of 

external work equal to the rate of internal Power dissipation, obtained loads in this field will not be 

smaller than the actual failure loads. The mathematical form of the virtual work equation can be written 

as: 

(13) ∬𝜎𝑖𝑗
�̄�

휀�̇�𝑗𝑑𝑉 =∬𝑏𝑖
𝑉

𝑢𝑖𝑑𝑉 +∬ 𝑇𝑖
𝑆𝑡

𝑢𝑖𝑑𝑆𝑡 

Where 𝝈𝒊𝒋 is the state of stress and �̇�𝒊𝒋 is the rate of plastic strain. The internal power dissipation is 

equal to the product of the stress tensor and plastic strain rate. Ti is the unknown distributed load on the 

boundaries St and bi is the body force on the volume V and ui is the incipient velocity in the selected 

mechanism. The stress components are identified depending on the failure mechanism geometry and 

considered Airy function. The second invariant of the deviatoric stress tensor of the CJS failure criterion 

in plane strain conditions are defined as follows: 

𝑠𝐼𝐼 = √𝑠𝑖𝑗𝑠𝑖𝑗 = √𝑠11
2 + 𝑠22

2 + 𝑠33
2 + 2𝑠12

2 = √𝑠𝑟𝑟
2 + 𝑠𝜃𝜃

2 + 𝑠33
2 + 2𝑠𝑟𝜃

2 𝜎3 = 𝜐(𝜎𝑟𝑟 + 𝜎𝜃𝜃)𝐼1

= 𝜎𝑟𝑟 + 𝜎𝜃𝜃 + 𝜎3 

(14) 

The CJS failure surface in SII-I1 coordinates has a nonlinear form  as illustrated in Fig. 4. In this 

figure, the shear strain rate, �̇�𝐼𝐼, versus volumetric strain rate,휀�̇�, is also shown. Based on the normality 

rule, the dilation angle of 𝜉 can be expressed in terms of stress state by differentiation of failure surface 

as follows:  

𝑑𝑠𝐼𝐼
𝑑𝐼1

= 𝑡𝑎𝑛 𝜉 = (𝑅𝑚𝑖 − 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) (1 −
𝐼1
3𝑝𝑐

)
𝛼

(
𝛼

3𝑝𝑐
(1 −

𝐼1
3𝑝𝑐

)
𝛼−2

(𝐼1) − 1) + 𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (15) 
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According to Fig. 5, if t is the thickness of the region including discontinuity of velocity, the shear 

strain can be obtained by dividing the tangential velocity by this thickness. Therefore, the increment of 

dissipated internal energy in the unit area of discontinuous surfaces is defined as Eq. (16):  

𝑑�̇� = (𝑠𝐼𝐼�̇�𝐼𝐼 − 𝐼1휀�̇�)(𝑡 × 1 × 1) (16) 

According to Fig. 4 and the expression of the dilation angle, the increment of dissipated internal 

energy is defined as follows: 

{
휀�̇� = tan𝜉 �̇�𝐼𝐼
𝑑�̇� = (𝑠𝐼𝐼 − 𝐼1tan𝜉) �̇�𝐼𝐼  (𝑡 × 1 × 1) = (𝑠𝐼𝐼 − 𝐼1tan𝜉) (𝛿𝑢)

 (17) 

The dissipated internal energy is adopted based on a center coordinate at the edge of the slope (local 

coordinates). In order to establish the virtual work equation, the dissipated energy has to be defined 

based on the center of the global coordinates at the rotational log-spiral outside of the slope. The local 

coordinates (𝑥1, 𝑥2, 𝑟, 𝜃), as well as the global coordinates (𝑋1, 𝑋2, 𝑅, 𝛩) are shown in Fig. 6. The 

transformation matrix is expressed as the following form: 

(
cos(𝑅, 𝑟) cos(𝑅, 𝜃)

cos(𝜃, 𝑟) cos(Θ, 𝜃)
) = (

cos𝜂 sin𝜂

sin𝜂 −cos𝜂
) 

(18) 

As shown in Fig. 6, the angle 𝜂   is defined as 𝜃 − 𝛩  by extending the radius, r. According to this 

figure, the relationship between the polar angles of two coordinate systems can be obtained as shown 

in Eqs. (19) and (20), respectively. The r0 is equal to the length of failed soil mass on the ground, L.  

{

𝑅sinΘ = 𝑅0sinΘ0 + 𝑟sin𝜃 →  exp(Θ − Θ0)sinΘ = sinΘ0 +
𝑟0

𝑅0
exp(𝜃)sin𝜃

𝑅0cosΘ0 − 𝑅cosΘ + 𝑟cos𝜃 = 𝐿 → exp(Θ − Θ0)cosΘ = cosΘ0 +
𝑟0

𝑅0
exp(𝜃)cos𝜃 −

𝐿

𝑅0

 
(19) 

𝛩 = 𝑡𝑎𝑛−1(
𝑠𝑖𝑛 𝛩0 +

𝑟0
𝑅0
𝑒𝑥𝑝( 𝜃) 𝑠𝑖𝑛 𝜃

𝑐𝑜𝑠 𝛩0 +
𝑟0
𝑅0
𝑒𝑥𝑝( 𝜃) 𝑐𝑜𝑠 𝜃 −

𝐿
𝑅0

)𝜂 = 𝜃 − 𝛩 

 

 

(20) 
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By transforming the local coordinates to the global coordinates, the limit stresses in global coordinates 

are identified for establishing the virtual work equation. 

(
𝜎𝑅𝑅 𝜎𝑅𝛩
𝜎𝑅𝛩 𝜎𝛩𝛩

) = (
𝑐𝑜𝑠 𝜂 𝑠𝑖𝑛 𝜂
𝑠𝑖𝑛 𝜂 − 𝑐𝑜𝑠 𝜂

) (
𝜎𝑟𝑟 𝜎𝑟𝜃
𝜎𝑟𝜃 𝜎𝜃𝜃

) (
𝑐𝑜𝑠 𝜂 𝑠𝑖𝑛 𝜂
𝑠𝑖𝑛 𝜂 − 𝑐𝑜𝑠 𝜂

)
𝑇

 (21) 

Or, 

{

𝜎𝑅𝑅 = 𝜎𝑟𝑟cos
2𝜂 + 𝜎𝜃𝜃sin

2𝜂 + 𝜎𝑟𝜃sin2𝜂

𝜎ΘΘ = 𝜎𝑟𝑟sin
2𝜂 + 𝜎𝜃𝜃cos

2𝜂 − 𝜎𝑟𝜃sin2𝜂

𝜎𝑅Θ = 0.5𝜎𝑟𝑟sin2𝜂 − 0.5𝜎𝜃𝜃sin2𝜂 + 𝜎𝑟𝜃(sin
2𝜂 − cos2𝜂)

 
(22) 

The stress invariants are also expressed as follows: 

𝑠𝐼𝐼 == √𝑠𝑅𝑅
2 + 𝑠ΘΘ

2 + 𝑠33
2 + 2𝑠𝑅Θ

2

𝐼1 = 𝜎𝑅𝑅 + 𝜎ΘΘ + 𝜎33;     𝜎33 = 𝜐  (𝜎𝑅𝑅 + 𝜎ΘΘ)

{
𝑠𝑅𝑅 =

2𝜎𝑅𝑅 − 𝜎ΘΘ − 𝜎33
3

;   𝑠ΘΘ =
2𝜎ΘΘ − 𝜎𝑅𝑅 − 𝜎33

3
 

 𝑠33 =
2𝜎33 − 𝜎𝑅𝑅 − 𝜎ΘΘ

3
;   𝑠𝑅Θ = 𝜎𝑅Θ −

𝜎𝑅𝑅 + 𝜎ΘΘ + 𝜎33
3

 

(23) 

The rate of total dissipated energy is obtained by integrating the increments of dissipated energy 

along the log-spiral slip surface. 

�̇� = ∫ (𝑠𝐼𝐼 − 𝐼1 𝑡𝑎𝑛 𝜉)(𝛿𝑢)
𝛩ℎ

𝛩0

𝑅𝑑𝛩 = ∫ 𝑅0
2(𝑠𝐼𝐼 − 𝐼1 𝑡𝑎𝑛 𝜉) 𝑒𝑥𝑝[2(𝛩 − 𝛩0)]

𝛩ℎ

𝛩0

�̇�𝑑𝛩

= ∫ 𝑅0
2(𝑠𝐼𝐼 − 𝐼1 𝑡𝑎𝑛 𝜉) 𝑒𝑥𝑝[2(𝛩 − 𝛩0)]

𝛩ℎ

𝛩0

�̇�
𝑑𝛩

𝑑𝜃
𝑑𝜃 

 

(24) 

In Eq. (24), the shear velocity is based on the global coordinates. The stresses are also transformed from 

the local coordinates to the global coordinates. 

6. The ultimate load 

The rate of external work due to the weight of the failure wedge can be obtained from Eq. (25). In 

this equation, the functions f1, f2, and f3 are defined in Appendix (Chen, 1975). The rate of work done 
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by the uniform surcharge adjacent to the slope is obtained from Eq. (26) by multiplying the moment of 

surcharge by the rotational velocity. 

�̇� = 𝛾𝑅0
3�̇�(𝑓1 − 𝑓2 − 𝑓3) (25) 

�̇� = 𝑞𝐿 (𝑅0 𝑐𝑜𝑠 𝛩0 −
𝐿

2
) �̇� (26) 

At the onset of failure, the dissipated internal energy is equal to the rate of external work. By 

minimizing the virtual work equation, the ultimate uniform load, q, is obtained. It has to be noted that 

the rate of external work done by surcharge and dissipated energy is obtained based on the unknown, 

q. 

 𝑚𝑖𝑛   �̇� − �̇� − �̇�  𝑜𝑛(𝛩0, 𝛩ℎ, 𝑞) (27) 

The virtual work equation is subjected to unconstrained nonlinear optimization. For this purpose, 

numerical methods such as fminsearch or fminunc optimization in the MATLAB program or repetitive 

loops on the 𝛩0, 𝛩ℎ angle, and surcharge can be used. Therefore, by writing codes in a programming 

language, the minimum ultimate uniform load can be obtained. 

7. Results of the proposed formulation 

In order to analyze the formulation and extract the uniform load, a 4m slope with geotechnical 

properties listed in Table 1 is assumed. The values of Rmi and Rcritical were identified regarding internal 

friction angles at peak and critical states based on the relationships presented in the Appendix. It should 

be noted that, for simplicity in the optimization process, pc was fixed as a constant parameter of pc0.    

In the presented formulation, an infinite uniform surcharge was considered. So, the length of the 

failure surface on the ground was not predefined. This length can be deduced as one result of 

optimization of Eq. (27). Table 2 shows different values of the length of failure surface, start and end 

angles around the center of rotation, and ultimate load on different slopes for  nonlinear CJS method and 

variable Rm.  

The nonlinear dependence of the failure state of soils on confining pressure has been well introduced 

in the formulation of the CJS failure criterion, so increasing confining pressure leads to a decrease in 
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the rate of shear strength augmentation.  Fig. 7 shows the variations of the ultimate load in terms of slope 

angle for different maximum surface failure radii. In this analysis, the nonlinear CJS method has been 

used and, with the constant parameters in Table 1, the maximum failure radius has been changed. As 

can be observed in this figure, as the failure surface radius is increased, the ultimate load is also 

increased for all values of slope angles. Besides, for a given failure surface radius, while the slope angle 

is increased, the ultimate load is augmented. The rate of decrease in the ultimate load due to an increase 

in slope angle augments with an increase in the failure surface radius. 

 In order to study the effect of confining pressure on ultimate load, we assumed a constant mean 

radius of the failure surface equal to its maximum value, Rmi, and compared the results with the case in 

which the radius is variable. As can be observed in Fig. 8, for the fixed radius, the ultimate load is 

always greater than when the variable radius is used. For the slope angle equal to 30 degrees, a smaller 

difference in results is observed. The analysis with constant Rm is related to the upper bond solution in 

which shear strength varies as a linear function of stress level. It should be noted that the majority of 

existing works concerning the upper bond solution of slope stability have used Mohr-Coulomb or 

Drocker-Prager criteria. The results of the analysis with constant Rm presented in Fig. 8 are similar to 

the upper bond solution of surcharged slopes stability based on the Drocker-Prager criterion because 

parameter 𝛾 in the CJS criterion is assumed to be zero.  

Fig. 9 shows variations of the ultimate load versus the initial critical state stress for different slope 

angles. This parameter is related to the initial density of granular soil. The large values of initial critical 

state pressure correspond to the high values of relative density. By increasing the initial critical state 

stress, pc0, the ultimate load has been increased. According to Fig. 9, the maximum difference between 

the ultimate loads for the initial critical stresses of 200 and 2000 kPa is about 160 kPa on a slope of 30 

degrees. 

Variations of the ultimate load versus soil unit weight for different slope angles are shown in Fig. 

10. By increasing the soil unit weight, the ultimate load is increased. The rate of decrease in the ultimate 

load by increasing slope angle is maximum in the unit weight, 𝛾 = 20𝑘𝑁/𝑚3 compared to other 

conditions. By increasing the unit weight, the stresses and the effect of confining stress have increased. 
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In the following, the results of the proposed method are compared with the equilibrium method of 

GeoSlope software (2007). The GeoSlope software is a subset of the GeoStudio software and the slope 

stability analysis in this program is performed by studying the equilibrium of the vertical slices of the 

soil mass. In this regard, various methods of slices including the Ordinary method of the slice, Bishop’s 

method, Janbu’s generalized method, and Morgenstern-Price method are used .  

The factor of safety of a slope is defined as the ratio of the available shear strength of the soil to the 

minimum shear strength required to maintain stability. In the GeoSlope software, the shear strength of 

soils for effective stress analysis is governed by the Coulomb failure criterion. The proposed 

formulation is in the limit state and in this case, the factor of safety is equal to one. 

In Fig. 11, the performed model in the GeoSlope software is shown. The slope has, a height of 4 

meters and an angle of 30. Besides, a specific weight of 18 kN/m3, internal friction angle of 37 degrees, 

and zero cohesion was considered. The intensity of the surcharge in this figure is equivalent to the 

ultimate load extracted from the proposed formulation in Table 2. In this figure, the critical failure 

wedge and the center of its rotation are shown for the Morgenstern-Price method. The factor of safety 

in the Morgenstern-Price method is 0.946. 

Fig. 12 shows the comparison between the factors of  safety in various methods. The values obtained 

from the proposed method with the CJS failure criterion are among the values obtained from the various 

methods of slices based on the Mohr-Coulomb failure criterion. The results of different slices methods 

at a 30-degree slope are always less than the ultimate load value of the proposed method. However, 

with the decrease of the slope, the amount of ultimate load resulting from the different methods of slices 

has increased. At 20 degrees slope angle, the results of the Ordinary method and Janbu’s generalized 

method are lower than the proposed method and the results of Bishop’s method and Morgenstern-Price 

method are more than the proposed method. At 10 degrees slope angle, the results of slices methods are 

always more than the proposed method. The factor of safety at 10 degrees slope angle in the Ordinary 

method is 1.005 whivh is very close to the results obtained from the proposed method. 

8. Conclusions 
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In this paper using a continuous failure criterion as a nonlinear function of confining stress and soil 

density, formulation of the upper bound limit analysis method for estimating the ultimate uniform load 

adjacent to a slope  was presented. In order to estimate the rate of dissipated internal energy, the stress 

field along the slip surface was determined in polar coordinates based on the Airy stress function.  

In our analyses, taking into account the nonlinear effect of confining pressure has resulted in a 

decrease in the ultimate load. This reduction is more obvious in slopes with smaller angles. An increase 

in the radius of the soil failure criterion caused an increase in the ultimate load. This increase  is more 

significant in slopes with lower angles.  

With a set of failure state parameters, the ultimate load was affected by the change in soil initial 

density, so the increase of initial density leads to a rise in the ultimate load. Using the presented failure 

criterion has resulted in a more accurate estimation of the soil behavior.  

The results of the proposed method were compared with different slices methods based on the Mohr-

Coulomb failure criterion. The suggested limit analysis technique results in greater values for ultimate 

load at a 30˚ slope angle and smaller values at a 10˚ slope angle compared to different methods of slices. 

The analysis with a constant mean radius of the failure surface is related to the upper bond solution 

in which shear strength varies as a linear function of stress levels such as Mohr-Coulomb and Drocker-

Prager criteria. A considerable difference was observed between the results of analyses with constant 

and variable mean radii of the failure surface.  

 

 Appendix 

 

1. Determination of coefficients f1, f2 and f3 

The coefficients f1, f2, and f3 are the rate of external work done in log spiral OBC and two OAB and 

OAC triangles in Fig. 6, respectively (Chen, 1975). These coefficients can be written as the following 

equations. Also, according to the geometry shown in Fig. 6, the parameters L and R0 can be expressed 

based on h and o (Chen, 1975).  
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(26) 

{
  
 

  
 𝑓1(𝛩0, 𝛩ℎ) =

(3 𝑐𝑜𝑠 𝛩ℎ + 𝑠𝑖𝑛𝛩ℎ) 𝑒𝑥𝑝[3(𝛩ℎ − 𝛩0)] − 3 𝑐𝑜𝑠 𝛩0 − 𝑠𝑖𝑛𝛩0
30

𝑓2(𝛩0, 𝛩ℎ) =
1

6

𝐿

𝑅0
(2 𝑐𝑜𝑠 𝛩0 −

𝐿

𝑅0
) 𝑠𝑖𝑛𝛩0

𝑓3 =
1

6
𝑒𝑥𝑝(𝛩ℎ − 𝛩0) [𝑠𝑖𝑛(𝛩ℎ − 𝛩0) −

𝐿

𝑅0
𝑠𝑖𝑛𝛩ℎ] × {𝑐𝑜𝑠 𝛩0 −

𝐿

𝑅0
+ 𝑐𝑜𝑠 𝛩ℎ 𝑒𝑥𝑝(𝛩ℎ − 𝛩0)}

 

(27) 

{
 
 

 
 𝐿

𝑅0
=

1

𝑠𝑖𝑛𝛩ℎ

[𝑠𝑖𝑛(𝛩ℎ − 𝛩0) −
𝐻

𝑅0

𝑠𝑖𝑛(𝛽 + 𝛩ℎ)

𝑠𝑖𝑛 𝛽
]

𝐻

𝑅0
= 𝑠𝑖𝑛𝛩ℎ 𝑒𝑥𝑝(𝛩ℎ −𝛩0) − 𝑠𝑖𝑛 𝛩0

 

 

2. Relation between failure surface radius and soil internal friction angle 

By intersecting the two MC and CJS failure criteria, the following relationships exist between the 

maximum and critical state failure surfaces radii and the internal friction angle of the soil at peak and 

critical states (Maleki et al., 2000).  

(28) 𝑅𝑚𝑖 = 2√
2

3

𝑠𝑖𝑛 𝜑𝑝𝑒𝑎𝑘
3 − 𝑠𝑖𝑛 𝜑𝑝𝑒𝑎𝑘

 

𝑅𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 2√
2

3

𝑠𝑖𝑛 𝜑𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
3 − 𝑠𝑖𝑛 𝜑𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
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Fig. 1 The rotational failure mechanism with a surcharge due to uniform loading adjacent to the slope 
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Fig. 2 Cartesian and polar coordinates considered in the present research 
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Fig. 3 (a) CJS failure surface in deviatoric stress space and (b) Schematic deviator stress-strain behavior of soil 
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Fig. 4 CJS failure line in SII-I1 coordinates 
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Fig. 5 Differential discontinuity in the slip surface 
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Fig. 6 Coordinate transformation and polar stress components applied at the failure state 
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Fig. 7 Variations of the ultimate load versus angle of slope in different failure surface radii 
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Fig. 8 Comparison between the ultimate load in fixed and variable failure surface radius 
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Fig. 9 Effect of initial critical state stress on the ultimate load in terms of slope angle 
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Fig. 10 Variations of the ultimate load versus angle of slope in different unit weights 
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Fig. 11 Critical failure wedge and factor of safety in the GeoSlope software 
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Fig. 12 Comparison between the results of the present study with those of the slices methods 
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Table 1 Geotechnical properties of slope material 

 

 

 

 

Table 2 Optimization results obtained from the suggested method 
 

 

 

 

Pc0 (kPa) Rcritical Rmi critical (˚) peak (˚)   (kN/m3) 
1000 0.3503 0.4098 32 37 0.35 18 

qu (kPa) L (m) L/H  𝛩ℎ(
∘) 𝛩0(

∘) H (m) 𝛽(∘) 

501.93 1.05 0.262 155.6 77.6 4 10 

423.88 1.51 0.433 145.5 74.3 4 20 

340.08 2.43 0.607 138.8 71.9 4 30 


