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ABSTRACT: Travel time reliability affects the behavior of passengers in private or 

public transportation and can be seen as an important factor in the context of freight 

transportation. The main cause of travel time oscillation, known as travel time reliability, 

is congestion. Congestion is classified into two categories: recurring and nonrecurring. 

Recurring congestion, which is the topic of this study, is formed when supply surpasses 

capacity. Peak periods are good examples of recurring congestion. In this paper, by 

utilizing different bagging regressor methods, the effect of speed flow reduction, 

compared to Free Flow Speed (FFS) in terms of congestion was studied on the Planning 

Time Index (PTI) on a section of Interstate 64 in the United States (US). Then, by 

analyzing PTI changes based on congestion variation, it was revealed that when speed 

reduction surpasses 10%, travel time leaves its reliability. Also, when the congestion is 

somewhere around 0.7 to 0.75, the unreliability becomes severe. These findings were 

directly extracted from scatter plots drawn by bagging and bootstrapping samples which 

were used to improve the accuracy of PTI prediction. 

 

Keywords: Bagging Regressor, Congestion, Machine Learning, Peak Period, Planning 

Time Index (PTI), Travel Time Reliability. 

  
 

1. Introduction 

 

The term Travel Time Reliability (TTR) 

refers to the travel time fluctuations for the 

same trip from day to day. The same trip is 

implied on a trip that is done for the same 

purpose, the same origin, and destination, 

within the same time of day, and by the 

same mode and route. Large variability 
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implies that travel time is unreliable, and 

this unpredictability causes travelers and 

shippers to have a challenge with planning 

their travel. The main cause of unreliability 

in travel time is congestion. With the 

occurrence of congestion, it could be 

expected that travel times become more 

variable, hence less reliable (National 
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2013). 

Congestion can be studied in two 

categories: recurring and non-recurring. 

Recurring congestion is predictable and 

occurs when supply surpasses capacity, 

whereas the latter refers to conditions where 

an unexpected event occurs, such as 

crashes, inclement weather, work zones, 

and so on (Mahmassani et al., 2014). 

Studies have revealed that the average 

congestion level is continuing to grow in 

cities and regarding the points mentioned 

earlier, TTR is a key part of the congestion 

problem. Travelers try to lessen the 

negative effect of their tardiness by 

assigning additional time beyond typical 

travel time to ensure they arrive on time. 

Unfortunately, this extra time is associated 

with extra costs, which has not been 

considered in previous transportation 

analyses (Zegeer et al., 2014). 

Due to its importance, reliability has 

been the subject of many studies. Different 

researchers have attempted to depict the 

context of reliability by utilizing different 

methods, including linear regression, 

simulation, Machine Learning (ML) 

methods, and so on. This study is an attempt 

to provide further insight into the effect of 

recurring congestion (morning and evening 

peak periods) on TTR measurement, that is 

Planning Time Index (PTI). What has made 

this study unique, is utilizing bagging 

regressors. The advantage of these 

regressors will be described in detail in the 

methodology section. The body of the paper 

is organized as follows: the rest of this 

section analyzes conducted studies in the 

field of TTR from initial points, dating back 

to 1968, to the present studies. In the second 

section, the material and methods will be 

described and further information on 

dataset will be represented. Section three 

discusses modeling procedure and by 

utilizing scatter plots, depicts how 

congestion can affect PTI. Finally, the 

conclusion in Section 4 is represented.  

The initial step of research in the field of 

congestion and travel time reliability started 

with Gaver Jr )1968)’s study which looked 

at the policy choices that occur when both 

tardiness and an undesirable early departure 

are penalized. Connectivity reliability and 

travel time reliability were then introduced 

by Iida (1999) to address core ideas, 

unsolved challenges, and future prospects 

of road network reliability analysis. The 

fact that reducing travel time uncertainty is 

as important as saving time, was pointed out 

by Chen et al. (2002). 

Later on, researchers attempted to 

calculate and asses travel time reliability 

and its effect on different aspects of 

transportation systems’ behavior. The 

importance of travel time reliability as a 

decisive factor affecting travelers' route 

choice decisions was studied by Liu et al. 

(2004). Emam and Al-Deek (2006) created 

a novel approach for calculating travel time 

reliability using real-world traffic data from 

Florida's I-4 corridor. Lyman and Bertini 

(2008) predicted the reliability of travel 

time on a specific corridor by using the 

archived Intelligent Transportation System 

(ITS) data and investigating use of the 

measured travel time reliability indices for 

enhancing real-time transportation. To 

examine travel time reliability in New York 

City, three travel time reliability metrics 

were used by Yazici et al. (2012) to assess 

the influence of New York City's urban grid 

network on travel time. Wang et al. (2017) 

established a system for estimating highway 

vehicle travel time reliability for 

transportation planning utilizing probe GPS 

data. Also, Zheng et al. (2018) concluded 

that travelers' route and departure time 

decisions are influenced by the expected 

travel time and its reliability. In addition to 

the study of Liu et al. (2004), Li et al. (2019) 

investigated travel time reliability as a 

critical element influencing passenger 

behaviors. They used the Lempel-Ziv 

algorithm to make their study unique. 

Moghaddam et al. (2019) looked at how 

travelers perceive and respond to travel time 

information and its reliability in terms of 

route choice behavior, as measured by a 

driving simulator and a stated preference 

(SP) survey. 
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As another wave of modeling in the field 

of travel time reliability, researchers 

focused on congestion and factors that 

could cause it. Hojati et al. (2016) defined 

the Extra Buffer Time Index (EBTI) to 

quantify traffic incidents' effects on 

motorways TTR. The type of incident and 

the time it takes for travelers to arrive at 

their destination were factors that might 

also impact EBTI. Samal and Das (2020) 

intended to investigate and assess the 

possibility of modeling congestion metrics 

under diverse traffic scenarios in the Patia 

region. Gu et al. (2020) performed a review 

of studies on transportation network 

performance under perturbations to address 

reliability, vulnerability, and resilience in 

networks. They determined that although 

these notions differ in terms of focus, 

measurement, and application, their 

outcomes are not different. Zhang and Chen 

(2019) developed an integrated data mining 

framework based on decision tree and 

quantile regression approaches to identify 

periods with varying traffic characteristics 

and evaluate the impact of rain and snow 

events on both congestion and system 

reliability. 

As the importance of TTR became more 

and more, many studies attempted to utilize 

novel approaches to address previous 

concerns and problems. Relying on the 

Cornish-Fisher expansion, Zang et al. 

(2018) used the travel time percentile 

function and provided a closed-form, 

adaptable, and high-quality technique that 

was sufficiently adaptive to predict the 

percentile function of various Travel Time 

Distributions (TTDs). Ghader et al. (2019) 

utilized Cumulative Prospect Theory (CPT) 

to study how travel mode choice is affected 

by travel time reliability. Their main focus 

was on mode choice, but their model could 

be extended to other choice dimensions. 

Chen and Fan (2019) provided a systematic 

framework for assessing TTR on highway 

segments in Charlotte, North Carolina. The 

numerical findings clearly demonstrated 

that TTR patterns in each case were unique, 

as well as on various days of the week and 

weather conditions. The principal focus of 

Saedi et al. (2020) was to enhance the 

estimation of network travel time reliability 

by utilizing network partitioning. The 

results of Chen and Fan (2020) are 

noteworthy because they provided a 

systematic framework to evaluate TTD on 

various types of highway segments 

throughout a corridor. They realized that the 

Burr distribution could give the highest 

acceptance rate when different Times Of 

Day (TOD) and Days Of Week (DOW) 

were considered. Zhu et al. (2021) provided 

numerous categories of perceived 

information based on a generalized 

Bayesian traffic model to simulate travelers' 

daily route choice behavior in terms of 

travel time reliability. Zhang, et al. (2021) 

investigated statistical approaches for 

clustering Cumulative Distribution 

Functions (CDFs) of travel times at the 

segment level into an optimum number of 

homogenous clusters that could include all 

essential information about distributions. 

Hoseinzadeh et al. (2021) combined 

crowdsourced data from Waze to develop 

an algorithm for the hourly measurement of 

Level Of Service (LOS). Afandizadeh 

Zargari et al. (2023) evaluated the effect of 

recurrent congestion on travel time 

reliability on a 1.467-mile section of the I-

64 highway in Virginia. They proposed 

Grey Models (GM) and Random Forest 

Regression (RFR) as evaluation tools. Chen 

et al. (2022) developed a Collaborative 

Intelligent Transportation System (CITS) to 

estimate present and future travel times. 

The findings indicated that the K-Nearest 

Neighbor (KNN) model could deliver the 

most accurate short-term forecasts. Also, 

Udayanga et al. (2022) recommended using 

crowdsourced travel time data from Google 

distance matrix Application Programming 

Interface (API) as a feasible approach to 

combine traffic congestion monitoring in 

their study. Meng et al. (2022) investigated 

the performance of the Support Vector 

Machine (SVM) in predicting short-term 

travel times. 

Delving deep into the chronological 
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trajectory of the literature review reveals 

that travel time reliability was just a simple 

notion in the beginning, but as time went on, 

researchers concluded that TTR affects 

various parts of the transportation system. 

The tools for addressing these concerns 

were basic but became more complicated 

later. 

 

2. Materials and Methods 

 

To talk about bagging regressors, first, a 

background about ensemble methods is 

needed, then different branches of ensemble 

methods will be briefly discussed. 

Afterwards, bagging methods will be 

illustrated and finally, supplementary 

explanations about bagging regressor will 

be represented. 

Ensemble methods aim to increase 

generalizability/robustness over a single 

estimator by combining the predictions of 

numerous base estimators created using a 

specific learning methodology. Typically, 

two groups of ensemble approaches are 

distinguished: averaging and boosting 

methods. The core argument behind 

averaging approaches is to create numerous 

independent estimators, then average their 

estimations. Because its variance is 

decreased, the composite estimator is 

generally better than the individual single-

base estimators. Unlike the first method, the 

latter produces sequential base estimators, 

and the composite estimator's bias is 

reduced. This method merges numerous 

weak models into a powerful ensemble. 

Examples of averaging methods are 

bagging methods and forest of randomized 

trees. Also, AdaBoost and gradient tree 

boosting are examples of boosting methods. 

The interested reader is referred to the cited 

references for a detailed description of the 

methods (Zhou, 2012) 

Bagging methods are a class of 

algorithms in which numerous samples of 

black-box estimators are built on random 

subsets of the original training set, and then 

their individual estimations are aggregated 

to generate a final prediction. These 

techniques are used to lessen the variation 

of a base estimator by including 

randomization into its development 

mechanism and then constructing an 

ensemble from it. Under many 

circumstances, bagging methods are a fairly 

straightforward approach to improve 

compared to a single model without 

changing the underlying base algorithm. 

Bagging approaches perform best with 

strong and complicated models because 

they reduce overfitting. Please refer to 

Kadiyala and Kumar (2018) for further 

information.  

As an ensemble estimator, a bagging 

regressor fits base regressors of the main 

database and then aggregates their 

individual forecasts (through voting or 

averaging) to generate a final prediction. A 

meta-estimator of this type is often used to 

minimize the variance of a black-box 

estimator by incorporating randomization 

into its building mechanism and then 

constructing an ensemble from it 

(Pedregosa et al., 2011). The parameters of 

the bagging regressor are as follows: base 

estimator (the base estimator that fits on 

subsets of the dataset which are created 

randomly), number of estimators (number 

of base estimators in the ensemble), 

maximum samples (number of samples 

which are drawn to train base estimators), 

maximum features (number of features to 

train base estimator), bootstrap (how 

samples are drawn, with or without 

replacement), bootstrap features (if features 

are extracted with replacement.), out-of-

bag score (determines whether out-of-bag 

samples are utilized for estimating the 

generalization error), warm start, number of 

jobs, random state, and verbose. The 

utilized methods in this study are Bagging 

regressor with:  

• Stochastic Gradient Descent (SGD) base 

estimator (Mazloumi et al., 2022) 

•  Passive Aggressive base estimator 

(Mastelini et al., 2022) 

• Ridge base estimator (Abdulhafedh, 

2022) 

• Linear base estimator (Shabbir et al., 
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2022) 

• Support Vector Regression (SVR) 

(Kernel = Radial Basis Function (RBF)) 

base estimator (Ara et al., 2020) 

• Support Vector Regression (SVR), 

(Kernel = Polynomial (Poly)) base 

estimator (Ara et al., 2020) 

• RANdom SAmple Consensus 

(RANSAC) base estimator (Almejrb et 

al., 2022) 

• Decision Tree (DT) base estimator 

(Abdulhafedh, 2022) 

• Theil-Sen base estimator (Szafranski and 

Duan, 2022) 

• Gradient Boosting (GB) base estimator 

(Khan et al., 2022) 

• Random Forest (RF) base estimator 

(Zhan et al., 2021) 

• Polynomial (Poly) base estimator 

(Adhistian and Wibowo, 2022) 

• Support Vector Regression (SVR), 

(Kernel = linear) base estimator (Sarang, 

2023) 

• Bayesian ridge base estimator (Gacto et 

al., 2019) 

• Quantile base estimator (Kang and 

Hansen, 2021) 

For more information, you can also refer 

to “sklearn ensemble module” in Python. In 

SVR models, the type of kernel function has 

been written in parentheses. 

The dataset of this paper is composed of 

two elements, namely the Travel Time 

Reliability (TTR) metric and congestion 

indices. As the dependent variable, 

congestion is defined as the ratio of traffic 

speed over a one-hour period to the free 

flow speed. This definition for congestion 

was directly extracted from INRIX. INRIX 

was also used to obtain the TTR and 

congestion statistics. 

Every day, billions of data points are 

used by INRIX to gather anonymized data 

on traffic congestion, traffic incidents, and 

weather-related road conditions. The data 

has multiple sources, including connected 

cars and mobile devices, cameras and 

sensors on the road, major events that are 

expected to impact traffic, and other 

sources. This analysis is conducted by the 

company to comprehend mobility trends. 

To put it another way, INRIX offers cutting-

edge solutions for real-time traffic. The 

interested reader can refer to INRIX’s 

website for further information.  

To calculate congestion, INRIX uses a 

multi-step process. First, the Space Mean 

Speed (SMS) is calculated for the desired 

segment. In fact, SMS is the mean speed of 

all cars crossing a specific segment of road 

over a given period. Then, this speed is 

divided by free flow speed to calculate the 

congestion of that segment for the specific 

period.   

Also, the Planning Time Index (PTI), 

defined as the ratio of the 95th percentile of 

travel time to the free-flow travel time, is 

the independent variable (Lyman and 

Bertini, 2008). To extract PTI, INRIX 

builds a statistical distribution by the travel 

time data of vehicles passing a specific 

segment. Then, the 95th percentile of this 

distribution will be divided to travel time of 

free flow, which can be easily calculated, 

and PTI will be extracted.  

The data collection period ranges from 

February 1, 2018, to October 31, 2018, for 

273 days, and only considers workdays. 

Every day is split into 24 equal sections. 

Analyzing the trend of mean congestion 

values using the two-tailed comparing mean 

has proven that there are two peak periods 

in a day, namely morning peak and evening 

peak. The morning peak is from 7 a.m. until 

9 a.m. and the evening peak starts at 15 and 

ends at 18. Each observation represents the 

average amount of congestion (the ratio of 

flow speed in one hour to free flow speed) 

and PTI of vehicles that have passed 

through the 1.467-mile segment during one 

hour. Also, it should be pointed out that all 

passing vehicles, regardless of their type 

(the information is gathered anonymously 

from cars, trucks, and many other types of 

vehicles) were considered. Furthermore, the 

number of observations (samples) that have 

been analyzed in this research for various 

days are as follows (The numbers in the 

parenthesis represent morning and evening 

peaks, respectively): Monday (78,117), 
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Tuesday (74,111), Wednesday (76,114), 

Thursday (78,117), Friday (76,114). Table 

1 summarizes the statistical features of 

morning and evening peaks. As a case 

study, in this paper, a road segment along 

the I-64 freeway in Chesapeake, Virginia 

was analyzed, which is the same as 

Afandizadeh Zargari et al. (2023) dataset in 

their research. This segment contains 3 

sections whose lengths are 1.467, 0.036, 

and 0.777 miles, respectively. The focus is 

on the first segment, which is shown in 

Figure 1. 

 

3. Results and Discussion 

 

To better explain the advantages of using 

bagging regressors, the results of modeling, 

including coefficient of determination, 

Mean Squared Error (MSE), and the 

stability ratio, are represented in Tables 2 to 

6. Coefficient of determination, 𝑅2, 

explains the variability of factors that would 

be caused by its relationship to another 

factor, and MSE assesses the average 

squared difference between the observed 

and predicted values. Coefficient of 

determination and MSE (consequently  

RMSE) are among well-known measures 

for quantifying the quality of an estimator 

and numerus studies have taken the 

advantage of such measures, e.g. Nohekhan 

et al. (2022). Stability ratio, or simply, ratio, 

is the ratio of train set coefficient of 

determination to test set coefficient of 

determination and is a numerical criterion to 

show whether the model has overfitting or 

underfitting. 

 
Table 1. Summary of PTI and congestion statistics 

M
et

ri
cs

 

Peaks Time periods 

Statistics 

Min Q1 Median Q3 Max Average 

P
T

I 

Morning 
7:00-8:00 1.0 1.1 2.1 3.4 20.3 2.9 

8:00-9:00 1.0 1 1.4 2.8 20.3 2.4 

Evening 

15:00-16:00 1.0 1.4 2.3 2.7 8.7 2.2 

16:00-17:00 1.0 2.2 2.8 3.4 12.2 3.0 

17:00-18:00 1.0 1.3 2.4 3.2 20.3 2.6 

C
o

n
g

es
ti

o
n

 ×
 

1
0

0
 

Morning 
7:00-8:00 10.1 44.1 76 98.4 100.0 69.8 

8:00-9:00 9.0 61.1 92.9 100 100.0 79.0 

Evening 

15:00-16:00 16.3 55.2 71.7 95 100.0 72.2 

16:00-17:00 16.2 39.1 46.9 69.3 100.0 54.6 

17:00-18:00 7.1 43.5 60.6 95.3 100.0 65.5 

 

 
Fig. 1. Location of the sample segment (Source: Google Maps and Virginia shape files) 
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The ideal value for this ratio is one. 

When the ratio equals one, it means that the 

performance of the train set and test set is 

the same, in terms of coefficient of 

determination. When overfitting occurs, 

this ratio becomes bigger than one, and in 

the case of underfitting, this ratio is less than 

one. An in-depth review of the mentioned 

metrics can be found in Arias-Castro 

(2022).  

To opt for the prior model, three metrics 

will be used: coefficient of determination, 

MSE, and ratio.  The closer the coefficient 

of determination is to one, the better the 

model is (in both training set and test set). 

Also, the prior model has less error, so 

models with less MSE should be 

considered. Furthermore, overfitting and 

underfitting, which are common issues in 

machine learning models, are monitored 

through the stability ratio. Akaike 

Information Criterion (AIC), and Bayesian 

Information Criterion (BIC) are two 

statistical metrics that could be utilized to 

estimate the quality of each model, relative 

to each of the other models. AIC is simply 

used as a metric to compare the 

performance of models. The model with the 

lowest AIC offers the best fit. The absolute 

value of the AIC value is not important. For 

further information about these two metrics, 

please see Hastie et al. (2009).  

As explicitly stated by Chakrabarti and 

Ghosh (2011), “The Bayesian Information 

Criterion (BIC) is more useful in selecting a 

correct model while the AIC is more 

appropriate in finding the best model for 

predicting future observations” since the 

purpose of this study is to predict 

fluctuations of PTI as congestion changes, 

AIC will be used for selecting prior model.  

For Mondays, as the results of Tables 2a 

and 2b reveal, AIC suggests that the 

bagging regressor with the gradient 

boosting as the base estimator is the prior 

model in both morning and evening peaks. 

The results of modeling for Tuesdays are 

shown in Tables 3a and 3b. As it can be 

seen, in both morning and evening peaks, 

gradient boosting regressor has the best set 

of metrics and is opted for the modeling 

process. The same story goes true for 

morning and evening peaks of Wednesdays. 

Gradient boosting has shown the most 

satisfying performance metrics for both 

peaks and was chosen as the prior model of 

this day. 

For Thursdays, as the results of Tables 

5a and 5b reveal, gradient boosting is the 

prior choice for both peaks and will be 

included in the sensitivity analysis stage. 

Finally, the gradient boosting regressor is 

the prior model of both peaks for Fridays. 

Surprisingly, the results show that gradient 

boosting is the top model of all days in both 

peaks. 

As the main method of this study (the 

prior model) is an ML method, sensitivity 

plots are very useful tools to visualize how 

congestion influences PTI. Scatter plots are 

simple and have made interpretation and 

usability easy for everyone. After choosing 

the prior models of different days and 

peaks, this section is assigned to depict the 

sensitivity analysis plot. This step will 

depict how speed reduction (hence 

congestion reduction) will affect PTI. The 

intensity of increase is somehow different. 

This paper uses bagging and bootstrapping 

to improve the model results and more 

accurately predict the PTI. To do so, by 

using different training sets, hundreds of 

models were randomly produced by 

bootstrapping from the original dataset to 

produce these plots. 

 

Table 2. Modeling results for Mondays-morning peak 

Models 
Training Validation 

Stability 
R2 MSE AIC R2 MSE AIC 

SVR (Kernel = RBF) 0.55 2.46 -100.2 0.72 0.81 -27.09 0.76 

SVR (Kernel = linear) 0.53 2.54 -100.2 0.69 0.91 -27.09 0.77 

RANSAC regressor 0.6 2.19 -104.2 0.77 0.69 -31.09 0.78 

Decision tree regressor 0.59 2.21 -100.2 0.76 0.71 -27.09 0.78 

TheilSen regressor 0.62 2.07 -110.2 0.78 0.64 -37.09 0.79 
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Passive aggressive regressor 0.64 1.96 -94.2 0.8 0.6 -21.09 0.8 

SGD regressor 0.58 2.28 -84.2 0.71 0.84 -11.09 0.81 

Ridge 0.62 2.06 -104.2 0.76 0.7 -31.09 0.82 

Linear regression 0.68 1.73 -94.2 0.83 0.49 -21.09 0.82 

Quantile regressor 0.66 1.87 -96.2 0.8 0.6 -23.09 0.82 

Bayesian ridge 0.65 1.88 -112.2 0.79 0.61 -39.09 0.83 

SVR (kernel = poly, degree = 2) 0.79 1.12 -88.2 0.86 0.41 -15.09 0.92 

Polynomial regression 0.88 0.64 -100.2 0.87 0.39 -27.09 1.02 

Gradient boosting regressor 0.87 0.73 -112.2 0.84 0.48 -39.09 1.03 

Random forest regressor 0.92 0.42 -80.2 0.87 0.4 -7.09 1.07 

Quantile regressor 0.7 0.42 -187.77 0.76 0.28 -62.91 0.91 

Passive aggressive regressor 0.69 0.44 -185.77 0.74 0.3 -60.91 0.93 

ridge 0.67 0.45 -195.77 0.72 0.33 -70.91 0.94 

Bayesian ridge 0.69 0.43 -203.77 0.74 0.3 -78.91 0.94 

TheilSen regressor 0.66 0.47 -201.77 0.68 0.37 -76.91 0.98 

RANSAC regressor 0.66 0.47 -195.77 0.67 0.37 -70.91 0.98 

Decision tree regressor 0.66 0.48 -191.77 0.66 0.39 -66.91 0.99 

SVR (Kernel = linear) 0.59 0.56 -191.77 0.58 0.48 -66.91 1.02 

SVR (Kernel = RBF) 0.63 0.52 -191.77 0.62 0.44 -66.91 1.02 

Linear regression 0.75 0.35 -185.77 0.72 0.32 -60.91 1.04 

Gradient boosting regressor 0.88 0.17 -203.77 0.82 0.21 -78.91 1.08 

SGD regressor 0.44 0.77 -175.77 0.4 0.69 -50.91 1.11 

SVR (Kernel = poly, degree = 2) 0.89 0.15 -179.77 0.79 0.24 -54.91 1.12 

Random forest regressor 0.95 0.07 -171.77 0.79 0.24 -46.91 1.2 

Polynomial regression 0.96 0.05 -191.77 0.75 0.29 -66.91 1.28 
 

Table 3. Modeling results for Tuesdays-morning peak 

Models 
Training Validation 

Stability  R2 MSE AIC R2 MSE AIC 

SVR (Kernel = linear) 0.52 2.62 -95.5 0.66 1.45 -19.46 0.8 

SGD regressor 0.62 2.11 -79.5 0.71 1.21 -3.46 0.86 

SVR (Kernel = RBF) 0.55 2.46 -95.5 0.64 1.53 -19.46 0.87 

ridge 0.66 1.87 -99.5 0.76 1.01 -23.46 0.87 

Passive aggressive regressor 0.66 1.85 -89.5 0.76 1 -13.46 0.87 

TheilSen regressor 0.64 1.98 -105.5 0.74 1.11 -29.46 0.87 

RANSAC regressor 0.62 2.08 -99.5 0.72 1.2 -23.46 0.87 

Quantile regressor 0.69 1.73 -91.5 0.78 0.93 -15.46 0.88 

Bayesian ridge 0.68 1.77 -107.5 0.76 1 -31.46 0.89 

Decision tree regressor 0.71 1.58 -95.5 0.78 0.92 -19.46 0.91 

Linear regression 0.84 0.91 -89.5 0.82 0.76 -13.46 1.02 

Gradient boosting regressor 0.97 0.18 -107.5 0.79 0.88 -31.46 1.22 

SVR (Kernel = poly, degree = 2) 0.96 0.21 -83.5 0.78 0.91 -7.46 1.23 

Random forest regressor 0.99 0.06 -75.5 0.77 0.97 0.54 1.29 

Polynomial regression 0.98 0.1 -95.5 0.76 1 -19.46 1.29 

Bayesian ridge 0.66 0.64 -203.04 0.53 1.23 -71.54 1.25 

Quantile regressor 0.66 0.63 -187.04 0.52 1.24 -55.54 1.26 

Random forest regressor 0.97 0.05 -171.04 0.77 0.6 -39.54 1.27 

ridge 0.64 0.68 -195.04 0.5 1.32 -63.54 1.28 

Linear regression 0.78 0.41 -185.04 0.6 1.05 -53.54 1.31 

SVR (Kernel = linear) 0.49 0.96 -191.04 0.37 1.64 -59.54 1.32 

Gradient boosting regressor 0.96 0.08 -203.04 0.72 0.73 -71.54 1.32 

SVR (Kernel = poly, degree = 2) 0.96 0.07 -179.04 0.72 0.73 -47.54 1.34 

TheilSen regressor 0.6 0.76 -201.04 0.44 1.45 -69.54 1.34 

RANSAC regressor 0.6 0.76 -195.04 0.44 1.46 -63.54 1.35 

SGD regressor 0.5 0.94 -175.04 0.37 1.65 -43.54 1.35 

SVR (kernel = RBF) 0.57 0.81 -191.04 0.42 1.53 -59.54 1.37 

Decision tree regressor 0.82 0.34 -191.04 0.59 1.06 -59.54 1.38 

Polynomial regression 0.97 0.05 -191.04 0.7 0.79 -59.54 1.4 

Passive aggressive regressor 0.5 0.95 -185.04 0.34 1.72 -53.54 1.45 
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Table 4. Modeling results for Wednesdays-morning peak 

Models 
Training Validation 

Stability 
R2 MSE AIC R2 MSE AIC 

SVR (Kernel = linear) 0.35 6.2 -93.94 0.74 0.6 -20.46 0.48 

SVR (Kernel = RBF) 0.41 5.68 -93.94 0.79 0.48 -20.46 0.51 

RANSAC regressor 0.45 5.24 -97.94 0.83 0.39 -24.46 0.55 

Decision tree regressor 0.49 4.88 -93.94 0.86 0.32 -20.46 0.57 

TheilSen regressor 0.49 4.94 -103.94 0.84 0.37 -30.46 0.58 

Passive aggressive regressor 0.52 4.63 -87.94 0.76 0.55 -14.46 0.68 

SGD regressor 0.55 4.32 -77.94 0.74 0.59 -4.46 0.74 

ridge 0.58 4 -97.94 0.55 1.03 -24.46 1.06 

Quantile regressor 0.59 3.95 -89.94 0.54 1.05 -16.46 1.09 

Random forest regressor 0.92 0.75 -73.94 0.82 0.41 -0.46 1.12 

Gradient boosting regressor 0.93 0.66 -105.94 0.81 0.43 -32.46 1.15 

Polynomial regression 0.96 0.35 -93.94 0.81 0.43 -20.46 1.19 

SVR (Kernel = poly, degree = 2) 0.88 1.12 -81.94 0.72 0.64 -8.46 1.23 

Bayesian ridge 0.59 3.95 -105.94 0.47 1.2 -32.46 1.24 

Linear regression 0.81 1.87 -87.94 0.77 0.31 -31.46 1.02 

SVR (Kernel = linear) 0.55 0.73 -184.96 0.67 0.44 -55.99 0.83 

SGD regressor 0.5 0.82 -168.96 0.59 0.54 -39.99 0.84 

ridge 0.64 0.58 -188.96 0.76 0.32 -59.99 0.85 

SVR (Kernel = RBF) 0.59 0.67 -184.96 0.69 0.41 -55.99 0.85 

TheilSen regressor 0.63 0.61 -194.96 0.74 0.35 -65.99 0.85 

RANSAC regressor 0.62 0.62 -188.96 0.73 0.36 -59.99 0.85 

Passive aggressive regressor 0.61 0.64 -178.96 0.71 0.39 -49.99 0.86 

Quantile regressor 0.68 0.53 -180.96 0.78 0.29 -51.99 0.87 

Bayesian ridge 0.68 0.53 -196.96 0.78 0.29 -67.99 0.87 

Decision tree regressor 0.72 0.46 -184.96 0.82 0.24 -55.99 0.88 

Linear regression 0.78 0.35 -178.96 0.74 0.34 -49.99 1.05 

SVR (Kernel = poly, degree = 2) 0.95 0.09 -172.96 0.74 0.35 -43.99 1.28 

Random forest regressor 0.97 0.05 -164.96 0.74 0.35 -35.99 1.32 

Gradient boosting regressor 0.95 0.07 -196.96 0.71 0.38 -67.99 1.34 

Polynomial regression 0.96 0.06 -184.96 0.68 0.42 -55.99 1.41 
 

Table 5. Modeling results for Thursdays-morning peak 

Models 
Training Validation 

Stability 
R2 MSE AIC R2 MSE AIC 

SVR (Kernel = linear) 0.33 7.02 -96.45 0.47 3.04 -17.14 0.7 

TheilSen regressor 0.45 5.78 -106.45 0.55 2.57 -27.14 0.82 

RANSAC regressor 0.43 5.97 -100.45 0.52 2.71 -21.14 0.82 

SVR (Kernel = RBF)) 0.39 6.37 -96.45 0.47 2.99 -17.14 0.82 

Passive aggressive regressor 0.51 5.12 -90.45 0.61 2.24 -11.14 0.84 

SGD regressor 0.54 4.79 -80.45 0.64 2.06 -1.14 0.85 

ridge 0.57 4.49 -100.45 0.63 2.08 -21.14 0.9 

Decision tree regressor 0.65 3.66 -96.45 0.69 1.75 -17.14 0.94 

Bayesian ridge 0.6 4.22 -108.45 0.59 2.32 -29.14 1.01 

SVR (Kernel = poly, degree = 2) 0.9 1.03 -84.45 0.79 1.18 -5.14 1.14 

Random forest regressor 0.97 0.34 -76.45 0.83 0.98 2.86 1.17 

Quantile regressor 0.6 4.18 -92.45 0.51 2.77 -13.14 1.17 

Gradient boosting regressor 0.98 0.22 -108.45 0.8 1.13 -29.14 1.22 

Polynomial regression 0.96 0.41 -96.45 0.77 1.32 -17.14 1.25 

Linear regression 0.8 2.07 -90.45 0.63 2.11 -11.14 1.28 

SVR (Kernel = linear) 0.2 5.11 -193.05 0.39 1.82 -62.21 0.53 

SVR (Kernel = RBF) 0.28 4.62 -193.05 0.47 1.56 -62.21 0.59 

TheilSen regressor 0.33 4.28 -203.05 0.55 1.32 -72.21 0.6 

SGD regressor 0.36 4.08 -177.05 0.6 1.19 -46.21 0.61 

RANSAC regressor 0.34 4.23 -197.05 0.56 1.31 -66.21 0.61 

Passive aggressive regressor 0.39 3.89 -187.05 0.63 1.08 -56.21 0.62 

ridge 0.41 3.76 -197.05 0.65 1.03 -66.21 0.64 

Decision tree regressor 0.56 2.8 -193.05 0.88 0.36 -62.21 0.64 
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Quantile regressor 0.44 3.6 -189.05 0.65 1.04 -58.21 0.68 

Bayesian ridge 0.44 3.57 -205.05 0.64 1.08 -74.21 0.7 

SVR (Kernel = poly, degree = 2) 0.89 0.71 -181.05 0.93 0.21 -50.21 0.96 

Gradient boosting regressor 0.96 0.27 -205.05 0.91 0.25 -74.21 1.05 

Random forest regressor 0.97 0.18 -173.05 0.92 0.24 -42.21 1.06 

Polynomial regression 0.99 0.08 -193.05 0.9 0.29 -62.21 1.09 

Linear regression 0.72 1.8 -187.05 0.57 1.29 -56.21 1.27 

 

Table 6. Modeling results for Fridays-morning peak 

Models 
Training Validation 

Stability 
R2 MSE AIC R2 MSE AIC 

SVR (Kernel = linear) 0.27 7.63 -119.87 0.91 0.04 -58.81 0.3 

RANSAC regressor 0.22 8.15 -123.87 0.65 0.14 -62.81 0.34 

SVR (Kernel = RBF) 0.31 7.3 -119.87 0.82 0.07 -58.81 0.37 

Passive aggressive regressor 0.43 6.03 -113.87 0.95 0.02 -52.81 0.45 

Decision tree regressor 0.42 6.15 -119.87 0.87 0.05 -58.81 0.48 

ridge 0.59 4.31 -123.87 0.77 0.09 -62.81 0.77 

SGD regressor 0.61 4.09 -103.87 0.64 0.14 -42.81 0.96 

SVR (kernel = poly, degree = 2) 0.92 0.89 -107.87 0.93 0.03 -46.81 0.98 

Gradient boosting regressor 0.97 0.31 -131.87 0.93 0.03 -70.81 1.05 

Random forest regressor 0.99 0.13 -99.87 0.94 0.02 -38.81 1.05 

Polynomial regression 0.99 0.15 -119.87 0.93 0.03 -58.81 1.06 

Linear regression 0.94 0.68 -113.87 0.44 0.22 -52.81 2.15 

TheilSen regressor 0.67 3.44 -129.87 0.19 0.32 -68.81 3.47 

Quantile regressor 0.65 3.66 -115.87 0.82 0.29 -52.81 0.89 

Bayesian ridge 0.69 3.22 -131.87 0.8 0.33 -52.81 0.92 

SVR (Kernel = linear) 0.59 0.9 -167.91 0.73 0.44 -46.48 0.8 

SVR (Kernel = RBF) 0.65 0.76 -167.91 0.78 0.36 -46.48 0.84 

SGD regressor 0.61 0.84 -151.91 0.73 0.44 -30.48 0.84 

RANSAC regressor 0.67 0.72 -171.91 0.8 0.33 -50.48 0.84 

TheilSen regressor 0.69 0.66 -177.91 0.82 0.3 -56.48 0.85 

Passive aggressive regressor 0.67 0.73 -161.91 0.78 0.36 -40.48 0.85 

ridge 0.71 0.62 -171.91 0.82 0.29 -50.48 0.87 

Quantile regressor 0.73 0.59 -163.91 0.82 0.29 -42.48 0.89 

Bayesian ridge 0.73 0.58 -179.91 0.81 0.3 -58.48 0.9 

Linear regression 0.82 0.39 -161.91 0.85 0.24 -40.48 0.96 

Decision tree Regressor 0.87 0.29 -167.91 0.9 0.16 -46.48 0.97 

Gradient boosting regressor 0.96 0.09 -179.91 0.9 0.17 -58.48 1.07 

SVR (Kernel = poly, degree = 2) 0.95 0.1 -155.91 0.89 0.18 -34.48 1.08 

Random forest regressor 0.97 0.06 -147.91 0.85 0.24 -26.48 1.14 

Polynomial regression 0.97 0.08 -167.91 0.84 0.26 -46.48 1.15 

Figures 2 to 6, in two peaks: a) for the 

morning peak, and b) for the evening peak, 

represent the fluctuations in a scatter plot.  

According to Chen and Fan (2019), it is 

reliable when PTI is below 1.5. When it 

surpasses 1.5 but does not reach 2.5, it is 

labeled as moderately to heavily unreliable, 

and for the values of PTI bigger than 2.5, it 

is said to be extremely unreliable. Eqs. (1-

3) show this classification numerically. 

 

PTI < 1.5: Reliable (1) 

1.5 ≤  PTI   
≤  2.5: Moderate to heavy 

(2) 

PTI >  2.5: Extremely unreliable (3) 

As Figures 2 to 6 suggest, in both peaks, 

regardless of the day, when congestion is 

reduced to 0.9, PTI reaches 1.5. It means 

that a 10% reduction in speed (compared to 

free-flow speed), causes a 50% increase in 

travel time compared to free-flow travel 

time. In other words, when congestion is in 

the range of 1 to 0.9, PTI is reliable in both 

peaks. Somewhere between 0.7 and 0.75 is 

a point where the PTI reaches 2.5, meaning 

that PTI is leaving the moderate or heavy 

unreliable part, and enters an extremely 

unreliable phase. It is worth noting that, the 

intensity of PTI increase is slight until 

congestion is 0.5, then as congestion 
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decreases, the PTI increase will be more 

severe. This study's findings are compatible 

with the results of utilizing Random Forest 

(RF) regression, which was the main focus 

by Afandizadeh Zargari et al. (2023).  

As the main aim of this study is to 

analyze on planning level, sub-temporal 

variations including possible variability 

between the months were excluded. 

Undoubtedly, such variations are 

interesting to study, but could be the subject 

of later studies, and is out of the scope of 

this manuscript. Also, the type of road, road 

geometry, and the type of traffic (modal 

split) can influence the results but requires 

more detailed data. 

 

 
(a) 

 

 
(b) 

Fig. 2. a) Comparison between GB and RF modeling results- Monday morning peak; and b) Comparison 

between GB and RF modeling results- Monday evening peak 
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(a) 

 

 
(b) 

Fig. 3. a) Comparison between GB and RF modeling results- Tuesday morning peak; and b) Comparison 

between GB and RF modeling results- Tuesday evening peak 
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(b) 

Fig. 4. a) Comparison between GB and RF modeling results- Wednesday morning peak; and b) Comparison 

between GB and RF modeling results- Wednesday evening peak 
 

 
(a) 

 

 
(b) 

Fig. 5. a) Comparison between GB and RF modeling results- Thursday morning peak; and b) Comparison 

between GB and RF modeling results- Thursday evening peak 
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(a) 

 
 

 
(b) 

Fig. 6. a) Comparison between GB and RF modeling results- Friday morning peak; and b) Comparison between 

GB and RF modeling results- Friday evening peak 

 

4. Conclusions 

 

To predict how speed reduction (in terms of 

congestion) can lead to an increase in 

planning time index (PTI), the authors used 

15 bagging-based regressor methods on a 

1.467-mile section of I-64 in Virginia, US. 

The data of congestion, as the independent 

variable, and PTI as the dependent variable 

were considered for modeling. The 

performance of these methods was then 

assessed by Mean Squared Error (MSE), 

goodness of fit (R2), stability ratio, and 

Akaike Information Criterion (AIC). 

Surprisingly, the Gradient Boosting (GB) 

regressor could eliminate competitive 

methods (in terms of minimum AIC and 

stability ratio). After the model selection 

process, the results were separately 

depicted in a scatter plot for morning and 

evening peaks. The results revealed that 

when congestion reaches 0.9, PTI goes 

beyond the reliable area in both peaks. The 

corresponding congestion for entering the 

extremely unreliable area is between 0.7 

and 0.75 for both peaks. Finally, 

somewhere between 0.5 and 0.4, the plots 

have shown an intense increase, meaning 
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that for congestion values less than these 

values, the increase in PTI is severe. TTR is 

a crucial component of congested traffic 

regimes that has not been taken into account 

traditionally by the Congestion 

Management Process (CMP). The emphasis 

on travel time reliability is driven by 

elements like restrictions on roadway 

expansion. This research points out 

potential areas where the CMP could 

incorporate TTR. A comprehensive 

knowledge of the regional transportation 

systems and a toolbox of techniques are 

produced by incorporating TTR into CMP. 

A CMP that incorporates reliability will 

usually intend to take advantage of 

operational strategies like Advanced 

Traveler Information Systems (ATIS) 

rather than capacity improvements, so the 

utilized methodology in this study will 

depict a framework that explains the value 

of TTR incorporation into the CMP. 

Understanding the relationship between 

congestion and travel time reliability can 

improve the transportation system's 

performance in various ways. It can help in 

developing congestion mitigation 

strategies, identifying operation strategies, 

quantifying the benefits of traffic 

management, improving safety, and 

maximizing the use of existing capacity. 

Focusing on improving travel time 

reliability can lead to strategies that reduce 

the impact of congestion on travelers, 

improve safety, support economic growth, 

and make better use of existing 

infrastructure. Transportation agencies can 

use tools such as the Organizing for 

Reliability Tools from the Strategic 

Highway Research Program 2 (SHRP2) to 

systematically improve their capabilities in 

transportation systems management and 

operations. 
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