
Civil Engineering Infrastructures Journal 2023, 56(1): 51-78 

DOI: 10.22059/CEIJ.2022.330788.1792 

 

RESEARCH PAPER   

   

 

An Explicit and Highly Accurate Runge-Kutta Family 

   
Rezaiee-Pajand, M.1* , Esfehani, S.A.H.2 and Ehsanmanesh, H.3 

 
1 Professor, Civil Engineering Department, Faculty of Engineering, Ferdowsi University 

of Mashhad, Mashhad, Iran. 
2 M.Sc., Civil Engineering Department, Faculty of Engineering, Ferdowsi University of 

Mashhad, Mashhad, Iran. 
3 B.Sc., Department of Electrical Engineering, Faculty of Engineering, Ferdowsi 

University of Mashhad, Mashhad, Iran. 
 

© University of Tehran 2022 

 

 
Received: 16 Sep. 2021;                Revised: 14 May 2022;               Accepted: 17 Jul. 2022 

ABSTRACT: In this paper, an explicit family with higher-order of accuracy is proposed 

for dynamic analysis of structural and mechanical systems. By expanding the analytical 

amplification matrix into Taylor series, the Runge-Kutta family with 𝑛 stages can be 

presented. The required coefficients (𝛼) for different stages are calculated through a 

solution of nonlinear algebraic equations. The contribution of the new family is the 

equality between its accuracy order, and the number of stages used in a single time step 

(𝑛). As a weak point, the stability of the proposed family is conditional, so that the 

stability domain for each of the first three orders (𝑛 = 5, 6, and 7) is smaller than that for 

the classic fourth-order Runge-Kutta method. However, as a positive point, the accuracy 

of the family boosts as the order of the family increases. As another positive point, any 

arbitrary order of the family can be easily achieved by solving the nonlinear algebraic 

equations. The robustness and ability of the authors’ schemes are illustrated over several 

useful time integration methods, such as Newmark linear acceleration, generalized-𝛼, and 

explicit and implicit Runge-Kutta methods. Moreover, various numerical experiments are 

utilized to show higher performances of the explicit family over the other methods in 

accuracy and computation time. The results demonstrate the capability of the new family 

in analyzing nonlinear systems with many degrees of freedom. Further to this, the 

proposed family achieves accurate results in analyzing tall building structures, even if the 

structures are under realistic loads, such as ground motion loads. 
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1. Introduction 

 

The ability of structural analysis can be 

regarded as one of the most important 

achievements on the engineering field (Haj 

Najafi and Tehranizadeh, 2016; 

Ghassemieh and Badrkhani Ajaei, 2018; 
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Ezoddin et al., 2020; Kordi and Mahmoudi, 

2022). Time integration methods offer 

numerous techniques to analyze structural 

and mechanical dynamic systems with high 

efficiency (Bathe, 1982; Goel et al., 2018; 

Rezaie et al., 2018). These techniques are 

implemented to calculate the dynamic 
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responses of the motion in linear and 

nonlinear systems (Chang, 2013; Soares 

and Großeholz, 2018). It is well-known that 

Newmark’s paper in 1959 is considered as 

one of the fundamental works in this scope 

(Newmark, 1959). 

In time integration methods, time is 

divided into several time steps (Shutov et 

al., 2013), in which the length of time steps 

might be equal or different (Rossi et al., 

2014). Time integration methods are 

typically classified as explicit or implicit. In 

explicit algorithms, the response at the end 

of each step is directly calculated based on 

the initial value of the response, as well as, 

the initial and current values of inputs (Kim, 

2019). Some researchers developed their 

methods based on this idea (Hulbert and 

Chung, 1996; Soares, 2016). On the other 

hand, in implicit schemes, the response at 

the end of each time step not only depends 

on its initial value, but also on the response 

value at the end of the time step (Lee et al., 

2017). In this manner, the response is 

usually obtained by solving an algebraic 

equation. Many researchers proposed 

various implicit time integrations to solve 

linear and nonlinear dynamic  systems 

(Newmark, 1959; Ortigosa et al., 2020). By 

combining the explicit and implicit 

schemes, predictor-corrector methods have 

been developed. In these procedures, an 

explicit algorithm is deployed to 

approximate the initial solution of the 

response. In the next step, an implicit 

method is utilized to modify the obtained 

solution (Noels et al., 2006; Yaghoubi et al., 

2016). 

A large group of methods, known as 

Runge-Kutta schemes and their derivations, 

has been developed over decades to deal 

with dynamic equations. The first useful 

group is known as 2nd-order and 4th-order 

Runge-Kutta schemes, which were 

introduced by Heun (1900) and Kutta 

(1901), respectively. Thereafter, different 

methods have been proposed based on 

Runge-Kutta techniques (Izzo and 

Jackiewicz, 2017; Jørgensen et al., 2018). It 

is worth emphasizing that some of these 

methods are explicit, and some others are 

based on implicit techniques (Zhao and 

Wei, 2014; Grote et al., 2015). More to this, 

some researchers presented predictor-

corrector Runge-Kutta algorithms (Gu and 

Zhu, 2021). Butcher (2016) proposed a 

general table to illustrate the majority of the 

Runge-Kutta schemes. Each Runge-Kutta 

method exploits a number of stages to 

achieve the response at the end of time step. 

The accuracy order of the scheme will be 

improved by increasing the number of 

stages. However, based on the results of 

Butcher’s study, in order to achieve an 

accuracy order greater than 4 in an explicit 

Runge-Kutta scheme, the number of 

utilized stages should be larger than the 

desired accuracy order (Hairer et al., 2006). 

Fok (2016) proposed a 4th-order of accuracy 

Runge-Kutta method. In his scheme, the 

length of time step is changed to control the 

error of response solution. Braś et al. (2017) 

suggested an explicit-implicit method to 

obtain a Runge-Kutta family with various 

orders of accuracy, from the first- to the 

fourth-order. In their technique, the number 

of stages is equal to the accuracy order of 

the method. Grote et al. (2015) proposed 

some explicit forms of the local time-

stepping Runge-Kutta method up to the 4th-

order. Based on Runge-Kutta techniques, 

Zhao and Wei (2014) developed a new 

discrete Galerkin method for time 

integration. The highest order of accuracy 

provided by this approach, which is an 

implicit Runge-Kutta technique, is equal to 

6. Many scholars offered some methods in 

which their order of accuracy varies 

between 1 and 5 (Izzo and Jackiewicz, 

2017; Isherwood et al., 2018; Jørgensen et 

al., 2018; Martín-Vaquero and Kleefeld, 

2019). However, some of the proposed 

procedures have a higher order of accuracy, 

which can only solve free vibration 

problems (Turaci and Öziş, 2018; Sun and 

Shu, 2019). 

Some researchers use the expansion of 

the exponential matrix to develop their 

Runge-Kutta family. For example, Vejju et 

al. (2016) computed the state transition 
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matrix using Lagrange’s interpolation 

formula for the general solution of linear 

dynamical systems. In their method, the 

exponential of a matrix is approximated by 

Lagrange’s interpolation polynomials. 

However, the coefficients required for 

Lagrange’s interpolation should be 

calculated for every dynamic system. 

Kassam and Trefethen (2005) proposed a 

modified exponential time difference 

fourth-order Runge-Kutta method to solve 

stiff nonlinear PDEs. Based on the 

experiments performed, the maximum 

order of accuracy of their method is 5. 

Zhang et al. (2020) invented an exponential 

Runge-Kutta method with second-order 

accuracy in space and fourth-order accuracy 

in time. In their algorithm, the product of a 

block Toeplitz matrix exponential and a 

vector is calculated by the shift-invert 

Lanczos method. A survey on the literature 

manifests that researchers have carried out 

a great deal of work concerning the dynamic 

analysis of structures. So far, various 

strategies have been proposed to increase 

the order of accuracy and stability of 

different methods. Nonetheless, the 

development of a family capable of 

furnishing any arbitrary order remains a 

significant challenge. 

This paper presents a comprehensive 

explicit family of Runge-Kutta methods to 

deal with linear and nonlinear structural 

dynamic systems. In this manner, the 

amplification matrix of analytical solution 

is expanded into Taylor series, and by 

solving a system of nonlinear algebraic 

equations, coefficients required (𝛼) for the 

stages of the Runge-Kutta family are 

obtained. One of the superiorities of the 

proposed formulation is the equality 

between the method accuracy order, and the 

number of stages used in a single time step. 

Aside from this, any arbitrary order of the 

family can be easily achieved by solving a 

system of algebraic equations. 
 

2. Proposed Scheme 
 

2.1. Linear Dynamic Systems 

In linear structural dynamics, the 

equation of motion with initial values for 

displacement (𝒖0) and velocity (𝒖̇0) is 

written in the following form.  
 

( ) ( ) ( ) ( )

( ) ( )0 00  ,  0

t t t t+ + =

= =

Mu Cu Ku f

u u u u
 (1) 

 

where, 𝑴, 𝐂, and 𝑲: are the mass, damping, 

and linear stiffness matrices of the structure, 

respectively. Also, 𝒖,𝒖̇,𝒖̈ and 𝒇: are vectors 

showing the displacement, velocity, 

acceleration, and applied loads in different 

nodes of the structure at time t, respectively. 

Eq. (1) can be formulated in the form of 

state-space representation as follows: 
 

= +x x pM  (2) 
 

in which, 𝒙: is the state space vector of Eq. 

(2) and is given by: 
 

u
x

u

 
=  
   

(3) 

 

where, 𝒙̇, 𝒑, and M : are derivative of the 

state vector, input vector, and state 

coefficient matrix, respectively. The input 

vector 𝒑 and state coefficient matrix M  are 

expressed as follows.   
 

( )
1

1

0
p

M f t



−

 
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 

k
 (4) 

1 1

0 I

M K M C

 

− −

 
=  

− − 

k k k k
M  (5) 

 

where, 0𝑘×𝑘 and 𝑰𝑘×𝑘: represent zero and 

identity matrices, respectively, and 𝑘: 

shows the degrees of freedom for the 

structure with the equation of motion in Eq. 

(1). In the time integration process, the 

time-domain [0, 𝑡] is divided into 𝑚 

subdomains, each having a length of 𝛥𝑡. 

These are called time steps. At each step, 

the values provided at the beginning of the 

step, and the input vector are used to 

calculate the responses at the end of the 

step. The value of the input vector at each 

step is defined as follows: 
 

( ) ( )( )1 ; 0= −  +   p pi i t t    (6) 
 

where, 𝑖: shows the step number and 𝜏: is a 
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time variable that varies in [0,  𝛥𝑡]. The 

exact solution of Eq. (2) at the end of the 

time step 𝑖 is achievable as follows: 
 

( )1
0

t
t

i i ie e t d  




+ = +  −x x p
M M

 (7) 

 

where 𝒙𝑖 and 𝒙𝑖+1: represent the initial and 

final values of the solution of Eq. (2) at 𝑖th 

time step. Taylor series expansion for the 

exponential matrix functions given in Eq. 

(7) (i.e. teM   and eM ) can be represented 

in the following equations: 
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By substituting Eqs. (8) and (9) into Eq. 

(7), the exact solution of Eq. (2) at the i th 

step is rewritten in the below form: 
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Similar to other Runge-Kutta schemes, 

the proposed formulation uses the initial 

value xi  to produce the increments of the 

variable x (ΔX ) in some stages. In this 

manner, the increments are calculated as 

follows: 
 

𝑿0 = 𝒙𝑖  
𝑿1 = 𝑿0 
𝜟𝑿1 = ℳ(𝑿1 + 𝑷1)𝛥𝑡 
𝑿2 = 𝑿0 + 𝛼1𝜟𝑿1 
𝜟𝑿2 = ℳ(𝑿2 + 𝑷2)𝛥𝑡 
𝑿3 = 𝑿0 + 𝛼2𝜟𝑿2 
𝜟𝑿3 = ℳ(𝑿3 + 𝑷3)𝛥𝑡 
… 
𝑿𝑛−1 = 𝑿0 + 𝛼𝑛−2𝜟𝑿𝑛−2 
𝜟𝑿𝑛−1 = ℳ(𝑿𝑛−1 + 𝑷𝑛−1)𝛥𝑡 
𝑿𝑛 = 𝑿0 + 𝛼𝑛−1𝜟𝑿𝑛−1 
𝜟𝑿𝑛 = ℳ(𝑿𝑛 + 𝑷𝑛)𝛥𝑡 

(11) 

where n: denotes the number of the utilized 

stages. Eventually, using the initial values 

and weighted average of the increments 

(ΔX), the responses at the end of the time 

step i  is achievable by using Eq. (12). 
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in which coefficients 1  to 1 −n  and vectors 

0P  to nP : represent the unknown quantities, 

which should be calculated.  By using Eqs. 

(11) and (12), Eq. (13) is achieved. 
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where, XP is defined as follows. 
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By substituting Eq. (14) into Eq. (13), 

Eq. (13) can be expanded in the following 

form. 
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According to Eq. (10), if the number of 

selected terms in the series is limited to n, 

one can arrive at: 
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Both Eqs. (15) and (16) consist of two 

parts corresponding to the initial value and 

the input vector at the time step i . By  

equating the part which is associated with 

the initial value of the step i  in Eqs. (15) 

and (16), one can write: 
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According to Eq. (17), the required 

relations for obtaining the unknown 

coefficients, 1  to 1 −n , are as follows. 
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(18) 

 

It is obvious that the values of all 

coefficients, 1  to 1 −n , for any arbitrary n, 

can be available. The studies about the 

uniqueness and existence of the coefficients 

1  to 1 −n  are presented in Appendix 1. 

These coefficients are outlined in Table 1 

for n  from 2 to 10. To obtain the unknown 

vectors of P0  to Pn, the part of Eqs. (15) and 

(16) concerned with the input vector must 

be equated. In this manner, the 

corresponding equality can be expressed as: 
 

( )

1
1

0

1

1 2

1 1

1 2 1

0
1

1
1

1 1

I  

[ ]

!

]

[

−
−

=

−

−



=

 
+ + 
 
 

 
 + ++ 

 

++  

 
= +  − 

 





P

P P P

P

P

n

j j

n

n

n n

n

s sn
t

i

s

t

t

t d
s



 

 


 

M

M

M

 
(19) 

 

From Eq. (18), one can find out that the 

term 
1

1

1
1



−

=

 
+  

 

n

j j

 is equal to ( )2 1−n . Using this 

equality and according to Eq. (19), one can 

use the equalities provided in Eq. (20) to 

calculate the unknown vectors P0  to Pn. 
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Table 1. Values of coefficients 𝛼(1 𝑡𝑜 𝑛−1) for 𝑛 = 2 to 10 

( )   to n−1 1
  n  

1 1=α    2 

1

2

3
=α  , 2

2

3
=α  3 

1

1

2
=α  , 2

1

2
=α   , 

3 1=α    4 

1 0.276393202250021=α   , 2

1

3
=α , 3 0.723606797749979=α   , 4 1=−α    5 

1 0.204201653860479=α   , 2 0.230959413182896=α   , 

3 0.324788653084487=α   , 4 0.906716946538805=α   ,                   

5 0.226824729490652=−α    

6 

1 0.164001419299363=α   , 2 0.180945030752080=α   , 

3 0.224567849422043=α   , 4 0.322442384424107=α   , 

5 1.108043316102407=  α   , 6 0.110121647194359=−α    

7 

1 0.138024395659493=α   , 2 0.150377394128368=α   , 

3 0.177126116082260=α   , 4 0.222065352065870=α   , 

5 0.321068289581217=α   , 6 1.324671785816124=α   , 

7 1.324671785816124=α    

8 

1 0.119669128822673=α   , 2 0.129338229567660=α   , 

3 0.148026233263177=α   , 4 0.175655856970635=α   , 

5 0.220533539633299=α   , 6 0.319746278224780= α   , 

  7 1.553697400184442=α   , 8 0.045783116925874=−α    

9 

1 0.105907195963393=α   , 2 0.113787598394926=α   , 

3 0.127824138883028=α   , 4 0.147160952467405=α   , 

5 0.174797828444654=α   , 6 0.219349289937336=α   , 

7 0.318322435005099=α   , 8 1.792850560904159=α   , 

9 0.033525393846740=−α    
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(20) 

 

It would be cumbersome and rather 

impossible in some cases to calculate the 

above integrations in a general form. In 

order to reduce the complexity and make the 

solution straightforward, the Taylor series 

expansion of the term ( )p  −i t  given in 

the following form can be utilized. 

 

( ) ( )
( )

( )

( )
( )

( ) ( )
( )

2

0
0

1!

0 0

2! !

 −  +  − +

 − ++  −

p
p p

p p

i

i i

n
ni i

t t

t t
n

 

 

 (21) 

 

By substituting Eq. (21) into Eq. (20), the 

unknown vectors P0 to Pn will be achieved. 

 

2.2. Nonlinear Dynamic Systems 

The general form of a nonlinear dynamic 

equation is as follows: 
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( ) ( ) ( )( ) ( ),t t t t+ =Mu F u u f  (22) 

 

The relation between ( )u t  and ( )u t , ( )u t

, and ( )f t , can be expressed as: 

 

( ) ( ) ( )( ) ( )1 1,t t t t− −= −  + u M F u u M f  (23) 

By considering Eq. (3), the derivative of x  

is stated as below. 
 

( )

( )

t

t

  
=  
  

u
x

u
 (24) 

 

Based on Eqs. (23) and (24), the 

nonlinear dynamic system shown in Eq. 

(22) can be represented as Eq. (23) (Brogan, 

1991). 
 

 𝒙̇ = {
𝒖̇(𝑡)

𝒖̈(𝑡)
}

= {
𝒖̇(𝑡)

−𝑴−1 × 𝑭(𝒖(𝑡), 𝒖̇(𝑡)) + 𝑴−1 × 𝒇(𝑡)
}

= {
𝒖̇

−𝑴−1 × 𝑭(𝒖(𝑡), 𝒖̇(𝑡))
} + {

0𝑘×1

𝑴−1 × 𝒇(𝑡)
} 

 (25) 

 

Eq. (23) has two sections that are separately 

related to the state variable 
( )

( )

  
=  
  

t

t

u
x

u
 and 

the input vector f(t). Using ( )p t  and G(x) 

presented in Eqs. (26) and (27), Eq. (25) can 

be rewritten in a compact form, which is 

shown in Eq. (28). 
 

( ) ( )1

1

0k
t t



−

 
=  
 

p f
M

 (26) 

( )
( )1 ,

uu
G x G

M F u uu
−

    
= =   

−     

 (27) 

( ) ( )t= +x G x p  (28) 

 

Similar to the procedure explained for 

linear dynamic systems, in order to obtain 

1

1

1

u
x

u

+

+

+

 
=  
 

i

i

i

 at the time step i , the values of 

u
x

u

 
=  
 

i

i

i

 and P0 to Pn are needed. The 

values of P0 to Pn are calculated by using 

( )p t  and through the solution of Eq. (20). 

The procedure to obtain 1x +i  is shown in 

Figure 1. 
 

 
Fig. 1. The procedure for calculating 𝐱𝑖+1 at the time step 𝑖 

Initialization:

For :

If :

Based on Eq. (13):

is calculated based on Eq. (14).

YesNo
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Based on the flowchart illustrated in 

Figure 1, at the beginning of the i th time 

step, the values of xi and P0 to Pn are 

considered. At the first, X0 is set as xi . In 

the next step, using an iterative procedure, 

the increment ΔXj is calculated for 1=j  to 

n. In each iteration, ΔXj is achieved by using 

( ).G  function given in Eq. (27) and Pj 

provided at the beginning of the time step i

. Finally, the value of 1

1

1

u
x

u

+

+

+

 
=  
 

i

i

i

 is 

achieved by using Eq. (13). Different 

increments of the variable X(ΔXj) are 

obtained explicitly and there is no recursive 

solution to calculate them. Also, the values 

of P0 to Pn are explicitly achieved by using 

Eqs. (20) and (21). Therefore, the new 

family can be categorized into explicit time 

integration groups. 

 

3. Amplification Matrix 

 

To assess the stability and numerical 

accuracy of the proposed method, the 

amplification matrix should be obtained. 

This matrix is calculated for a linear 

structure having one degree of freedom, 

which is shown in Eq. (29). 

 

( ) ( ) ( )22 0u t u t u t + + =  (29) 

 

where   and  : refer to the natural 

frequency and damping ratio of the 

structure, respectively. When the new 

scheme is applied to find the solution of the 

above system in the time step i , the 

following relationship can be presented for 

the solutions at the beginning and end of the 

time steps i :  

 

( )1

1

i i

i i

u u
t

u u

+

+

   
=    

   
A  (30) 

 

where A: is the amplification matrix of the 

new method and can be presented in the 

following form by using Eq. (16). 

( ) 2 2

1 !

s sn

s

t
t

s


=


 = +A I

M  (31) 

 

Matrix M : is the state coefficient matrix 

introduced in Eq. (5) and can be obtained 

for the system of Eq. (29) as below. 
 

ℳ = [
01×1 𝐼1×1

−(1)−1(𝜔2) −(1)−1(2𝜉𝜔)
]

= [
0 1

−𝜔2 −2𝜉𝜔
] 

(32) 

 

4. Numerical Stability 
 

A method is called numerically stable if 

displacement and velocity at time t  do not 

unlimitedly increase during the solution 

process. In a numerically stable technique, 

the physical conditions of the problem 

should not be intensified by the numerical 

procedures after several time steps. The 

stability of the proposed method is 

evaluated using the spectral radius of the 

amplification matrix. The spectral radius 

holds the following form for the 

amplification matrix A  obtained in Eq. 

(31). 
 

( ) ( )1 2max ,A  =  (33) 

 

where 1  and 2 : are the eigenvalues of the 

amplification matrix A, and . : is the 

absolute operator. The inequality ( ) 1A   

must be satisfied for all values in Δt , to 

make sure that a numerical method is stable 

(Bathe and Wilson, 1972; Bathe, 1982; 

Rezaiee-Pajand et al., 2018). The spectral 

radius of the amplification matrix for the 

Newmark linear acceleration (NLA) 

method (Newmark, 1959), the 4th-order 

Runge-Kutta (RK4) technique (Kutta, 

1901), and the 5th- to 7th-order of the 

proposed family are depicted in Figure 2. 

Moreover, Figure 3 presents the results for 

1=n  to 10 against t

T
. In these two figures, 

the damping ratio is considered to be zero. 

Based on Figure 2, as a weak point, the 

stability of the various orders of the new 

family is conditional. According to Figure 
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2, the largest stability domain belongs to 

NLA, RK4, and NRKF7, respectively. 

However, as is illustrated in Figure 3, from 

a general point of view, the stability domain 

increases by raising the value of n.  

 

5. Numerical Accuracy 

 

It is a common way that the accuracy of any 

time integration method is evaluated by 

assessing the order of accuracy, period 

error, and amplitude decay (Chung and 

Hulbert, 1993; Rezaiee-Pajand et al., 2021). 

The order of accuracy of the authors’ 

scheme will be examined in Section 6. 

Using the eigenvalue of the amplification 

matrix, one can be able to evaluate the 

numerical errors using the following 

relations (Bathe, 1982; Hughes, 2012). 
 

( )

( )

( )
( )

Δ

1,2

2

2

2 2 2

arctan /

1 Δ

1

ln   1

2arctan /

di t

d

a ib e

a b

t

a b

b a

 





  




− 
=  =

=
−

= −

+ −
= −

 (34) 

 

in which  : denotes the numerical damping 

ratio of a time integration method. 

Additionally, the numerical period can be 

calculated using 2


=T . Period error is 

estimated by comparing T  and the true 

period 2


=T .  

 

 
Fig. 2. The spectral radius for various schemes 

 

 
Fig. 3. The spectral radius for various orders of the new family 
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Fig. 4. Amplitude decay for various schemes 

 

Figures 4 to 7 compare the amplitude 

decay and period error of the present 

scheme against those of the other solution 

techniques. Based on Figure 4, the NLA 

method has no elongation error, in the given 

domain. The proposed family method, 

having orders of 7, 6, and 5, and finally, the 

RK4 scheme possesses lower elongation 

errors, respectively. Figure 5 clearly 

indicates that an increment in the order of 

the presented family will lead the amplitude 

decay error to become nearly zero in a great 

interval of Δt . 

According to the results shown in Figure 

6, the nearest method in period error value 

to zero belongs to the proposed method with 

the order of 7. Then, the methods with the 

orders of 6 and 5, and the classic 4th-order 

Runge-Kutta scheme have lower values in 

period error, respectively. The NLA scheme 

has more value in period error compared to 

all other proposed schemes. Figure 7 

displays the values of period error among 

different orders of the new family. As it can 

be observed, the value of the period error 

decreases as the order of the family raises. 
 

 
Fig. 5. Amplitude decay for various orders of the new family 
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Fig. 6. Period error for various schemes 

 

 
Fig. 7. Period error for various orders of the new family 

 

6. Order of Accuracy 

 

In order to determine the order of accuracy 

of the new time integration method, the 

amplification matrix of the proposed 

method should be compared with the 

analytical one (Hulbert and Hughes, 1987; 

Rezaiee-Pajand et al., 2021). To derive the 

analytical amplification matrix, the 

equation of motion given in Eq. (29) is 

considered. This equation can be changed 

into the subsequent equivalent first-order 

differential equation: 
 

=x xM  (35) 

 

where 

 

x
 

=  
 

u

u
 (36) 

2

0 1

2 

 
=  

− − 
M  (37) 

  

The exact solution for Eq. (35) with the 

given initial vector 0

0

0

x
 

=  
 

u

u
 can be 

expressed as follows (Turyn, 2013): 

 

0x x= teM
 (38) 
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Therefore, the following recursive 

relationship is obtained. 

 
Δ

1x x+ = t

i ieM
 (39) 

 

The matrix 
ΔteM

, which is the analytical 

amplification matrix in the equation of 

motion given in Eq. (29), can be expanded 

into Taylor series, as below (Moler and Van 

Loan, 2003). 

 

1 !

s s
t

s

t
e

s




=


= +I

M M
 (40) 

 

By comparing the Taylor series 

expansion of the amplification matrix 

outlined in Eq. (31), which belongs to the 

proposed family, and that in Eq. (40), it is 

concluded that the order of accuracy of the 

present family is equal to n  (the order of 

the proposed family). 

 

7. Numerical Examples 

 

In this section, numerical examples are 

presented to establish the accuracy and 

advantages of the proposed methods. 

Various problems in the scope of structural 

and mechanical engineering, including an 

undamped single degree of freedom 

oscillator, five stories shear building with 

non-classic damping, a structure with two 

degrees of freedom subjected to impact 

loading, a plane truss, a three-dimensional 

truss, and two nonlinear systems with many 

degrees of freedom, are employed. The 

nonlinear experiments include a nonlinear 

mass-spring-damper system with 100 Dofs 

and a tall shear building structure subjected 

to a realistic load, the El-Centro ground 

motion. All linear examples are analyzed 

and compared through different numerical 

schemes, including the Newmark Linear 

Acceleration (NLA) technique, the 4th-order 

classic Runge-Kutta (RK4) scheme, an 

implicit 4th-order Runge-Kutta method 

presented by Fok (2016) (CKRK), an 

implicit three-step method suggested by 

Zhao and Wei (2014) (SRK3), and the 

proposed family methods by the orders of 5, 

6 and 7 (NRKF5, NRKF6, and NRKF7). 

The solution of the nonlinear mass-spring-

damper structure is added to illustrate the 

capability of the new family in the analysis 

of nonlinear dynamic systems with many 

degrees of freedom. Furthermore, the 

example of a tall shear building structure is 

used to demonstrate the ability of the new 

family methods over broadly accepted 

methods such as the generalized-𝛼 method 

(Chung and Hulbert,1993), and the higher-

order implicit method, SRK3, in 

comparison to dealing with many degrees of 

freedom nonlinear structures subjected to a 

realistic load. 

 

7.1. Undamped Single Degree of 

Freedom Oscillator 

In the first example, the following 2nd-

order differential equation is considered. It 

should be reminded that this equation has 

been widely adopted in evaluating the 

accuracy of several time integration 

schemes (Bathe, 1982; Rezaiee-Pajand et 

al., 2018; Rezaiee-Pajand et al., 2021).  

 

0+ =u u  (41) 

 

It is assumed that the initial values of 0u  

and 0u  are equal to 1000 and 0, respectively. 

The exact solution of Eq. (41) is given by 

( )1000cos=exu t . The time step in the 

numerical integration procedures is 

assumed as Δ 0.1 =t s and the total time of 

the analysis is equal to 10 =t s. Figure 8 

illustrates the logarithmic values of error for 

different methods in base 10. 

According to the results demonstrated in 

Figure 8, the proposed family having an 

order of 7 gives the lowest value of error, 

while the NLA method possesses the 

highest error value. Figure 9 depicts the 

error values for two other techniques, the 

CKRK scheme and the new family method 

of order 5. Based on this figure, the 

suggested method of this paper leads to a 

lower error value compared to the CKRK 

scheme. 
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Fig. 8. Logarithmic error for different methods 

 

 
Fig. 9. Error comparison between the CKRK and NKRF5 schemes 

 

According to Figure 8, the maximum 

values of the errors for the NRKF7 and 

SRK3 methods are equal to -7.625 and -

7.105, respectively. Aside from this, as 

shown in Figure 9, the maximum values of 

errors are 
31.328 10−  and 

31.870 10−  for 

the NRKF5 and CKRK methods, 

respectively. In these comparisons, the 

NRKF5 and NRKF7 are explicit methods, 

although the CKRK and SRK3 methods are 

implicit schemes. The comparison between 

the maximum values of errors in these 

techniques illustrates that the proposed 

explicit family has higher abilities in 

solving undamped systems, compared to the 

implicit methods. 

 

7.2. Five Stories Shear Building with 

Non-Classical Damping 

Figure 10 depicts a shear frame building, 

which was investigated by Rezaiee-Pajand 

et al. (2018). All stories have an equal mass 

of 
62.616 10 Kg. The stiffness of the 

second to fifth stories is considered as 
6981 10 N/m. The stiffness of the first story 

is 20% larger than that of the other stories. 
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It should be added that the first story is 

equipped with a damping device. In this 

regard, the damping matrix consists of two 

parts. The classic damping of the structure 

is obtained by 0.3 0.002cC M K= + . Aside 

from this, the term ( )20  1,1cC  is added to 

the damping of the first degree of freedom 

of the structure. As it is shown in Figure 10, 

five lateral forces are applied to the 

structure. The equation of these forces is 

given by: 

  

( )   ( )62.616 10 1,1  ,1,1,1   sinf = 
T

t t  (42) 

 

Selecting the time step as Δ 0.01t = s, this 

example is analyzed using different 

techniques. The near-exact solution for this 

problem is obtained by the RK4 method 

with a very tiny time step equal to 0.00001 

s. Figure 11 depicts the error of different 

methods in calculating the horizontal 

displacement of the fifth story compared to 

the near-exact solution. 

 

 
Fig. 10. Five stories shear building 

 

 
Fig. 11. Error of the horizontal displacement of the fifth story 

5
x

4
x

3
x

2
x

1
x

= EI

= EI

= EI

= EI

= EI

5
m

4
m

3
m

2
m

1
m

5
f

4
f

3
f

2
f

1
f

-20.00

-18.00

-16.00

-14.00

-12.00

-10.00

-8.00

-6.00

-4.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g

 |
E

rr
o

r|

t (s)

NLA RK4 CKRK SRK3 NRKF5 NRKF6 NRKF7



Civil Engineering Infrastructures Journal 2023, 56(1): 51-78 65 

 

Based on the results shown in Figure 11, 

the NRKF5 and CKRK methods have lower 

analysis errors compared to the NLA and 

RK4 schemes, which are more applicable 

time integration methods in civil 

engineering fields. The solution obtained by 

the NRKF6 is more accurate than the one 

from the implicit CKRK method. The 7th-

order method of the new family and SRK3 

technique furnished the best accuracy in the 

analysis. Figure 12 presents a more exact 

comparison between the error values of the 

NKRF7 and SRK3 methods. As it is 

illustrated in Figure 12, the value of error is 

larger in the SRK3 scheme compared to the 

NRKF7 method. The outcomes reveal that 

the accuracy of the proposed family in 

analyzing non-classic structural problems is 

better than the other methods. 

 

7.3. A Structure with Two Degrees of 

Freedom Subjected to Impact Loading 

Some researchers investigated a 

dynamic system with two degrees of 

freedom subjected to impact loading 

(Rezaiee-Pajand et al., 2018). The 

equilibrium equation of this system and the 

applied loads are expressed as follows. 

 

[
𝑚 0
0 3𝑚

] 𝒖̈ + [
3𝑘 −2𝑘

−2𝑘 6𝑘
] 𝒖

= [
0
1

] × 𝑓(𝑡) 
(43) 

( )
( )1000 1 10           0 0.1

          0                           0.1

 −  
= 



t t
f t

t
 (44) 

 

The values of stiffness k  and mass m  

are equal to 1000 N/m and 0.5 Kg, 

respectively. The exact solution can be 

attained via modal analysis. By choosing a 

value of 0.001 s for the time step, the system 

is analyzed with different methods. The 

values of error for the time integration 

methods are shown in Figure 13. Based on 

the results obtained, the NLA method and 

the fourth-order classic Runge-Kutta lead to 

the highest errors in the analysis. The 

highest values of error for these methods are 

equal to -2.568 and -5.517, respectively. As 

it is demonstrated in the figure, the error of 

the analysis for the new family method 

decreases as the order of family increases. 

The highest values of error for the orders of 

5, 6, and 7 are equal to -7.377, -9.309, and -

11.290, respectively. Moreover, the NKRF7 

method has better accuracy in comparison 

to the implicit SRK3 scheme. The results 

indicate that the proposed family is capable 

of analyzing structures subjected to impact 

loading over other techniques. 
 

 
Fig. 12. Error comparison between the SRK3 and NRKF7 methods 
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Fig. 13. Error of 1u  of 2Dof structure 

 

7.4. Plane Truss 

The plane truss represented in Figure 14 

comprises three elements and 3 degrees of 

freedom (Paz and Kim, 2018). The 

characteristics of the members are outlined 

in Table 2. A constant horizontal force 

equal to 22241.108 N is applied to node 1. 

Figure 15 portrays the error value for 

horizontal displacement of this node in the 

final steps of the analysis. The related exact 

responses are obtained by using modal 

analysis. 

The NRKF7 and NLA methods lead to 

the smallest and largest error values in the 

analysis, respectively. The maximum 

values of the error for these methods are 

equal to -11.030 and -3.539, respectively. 

The error values of NRKF5 and CKRK 

schemes are nearly equal. The maximum 

value of error for these methods is almost 

equal to -7.588. Based on the results, it is 

obvious that an increase in the order of the 

new family reduces the error of the analysis. 

The results of this example demonstrated in 

Figure 15 illustrate that the suggested 

family is capable of analyzing two-

dimensional structures. 

 

 
Fig. 14. Three members plane truss 

 

Table 2. Characteristics of the plane truss 

m (N.sec2/m2) E (N/m2) Length (mm) Area (mm2) Member 

689.48 2.06844×1011 1524.0 6451.6 1 

689.48 2.06844×1011 2155.3 6451.6 2 

689.48 2.06844×1011 1524.0 6451.6 3 
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Fig. 15. The horizontal displacement error of node 1 

 

7.5. Three-Dimensional Truss 

The structure shown in Figure 16 

illustrates a three-dimensional truss. The 

nodal coordinates are available in Table 3. 

The elastic modulus and density of 

members are given as 112 10E =   N/m2 and 

7850ρ  = Kg/m3, respectively. In this 

structure, the upper node is subjected to two 

forces in the X- and Y-directions. These 

forces are equal to 4000xF  =  kN and 

16000yF  = kN. The cross-sectional area of 

highlighted members indicated by b is equal 

to 1935 mm2, and that of pale members 

named a  is equal to 3870 mm2. The 

smallest period of this structure is 
3

min  2.59 10T −=   s. The responses of this 

structure are obtained up to 
61.25 10    mint T=  s by choosing the time 

steps of 0.01 mint T = s. Figure 17 

demonstrates the values of error in vertical 

tip displacement within the timeline 
3 31247.5 10 1250 10 minT  −   s of the 

analysis. Moreover, the exact solution of 

the three-dimensional truss is available by 

using modal analysis. 

 

 
Fig. 16. The three-dimensional truss 
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Table 3. Characteristics of the three-dimensional truss 

Z (mm) Y (mm) X (mm) Node number 

0 9144 0 1 

1524 4572 0 2 

-914.4 4572 -1219.2 3 

-914.4 4572 1219.2 4 

3048 0 0 5 

-1828.8 0 -2438.4 6 

-1828.8 0 2438.4 7 

 

 
Fig. 17. Error of the top node vertical displacement 

  

Error in each numerical integration 

method is calculated through Eq. (45). 

 

( ) ( )( )

( )( ) ( )( )

2

2

2

exact scheme

t

Err L norm x t x t

L norm x t x t

= −

=
 (45) 

 

Values of Err  for different time 

integration methods and CPU time of each 

method are reported in Table 4. 

The results presented in Figure 17 and 

Table 4 indicate that the highest accuracy 

belongs to the 7th-order method of the new 

family, while the Newmark linear 

acceleration technique leads to the lowest 

precision. The values of Err  for these 

schemes are equal to 62.69 10−  and 
32.34 10 , respectively. Based on the 

results obtained in Table 4, the fourth-order 

Runge-Kutta method has the highest value 

in CPU time, which is equal to 146.11 s. On 

the other hand, the lowest value for CPU 

time with good accuracy is for the method 

NRKF5, which is equal to 69.53s. The 

NRKF7 method has a better performance 

compared to the SRK3 method in accuracy 

and CUP time. The values of Err  and CPU 

time for the NRKF7 method are 
62.69 10−  

and 84.84 s, and are 64.87 10−  and 95.05 s 

for the SRK3 method. From the obtained 

results, one can conclude that the new 

explicit family has a good ability to analyze 

structural dynamic systems in low CPU 

time with acceptable accuracy. 

Furthermore, according to the outcomes, 

the present family methods show their 

ability in the analysis of three-dimensional 

problems. 
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7.6. A Nonlinear Mass-Spring-Damper 

System with 100 Dofs 

Figure 18 illustrates a nonlinear system 

of masses, springs, and dampers with 100 

Dofs. The relations for the forces applied 

due to nonlinear springs ( ( ),k iF x ) and 

nonlinear dampers  

( ( ),c iF x ) are shown in Figure 19 (Rezaiee-

Pajand and Karimi-Rad, 2017; Rezaiee-

Pajnd et al., 2021). The values for the 

masses (Mi), and the coefficients Ki and Ci, 

are given in Table 5. The coefficients k  

and c  are equal to 0.8. Also, for each 

nonlinear stiffness and damper, the values 

of xu  and xv  are equal to 1 m and 1 m/s, 

respectively. 

No load is applied to the structure, and 

the initial displacement and velocity for all 

nodes are 0, except for the last node. The 

initial values for displacement and velocity 

of this node (x100 and  

100x ) are 2 m and 2 m/s, respectively. The 

near-exact solution is achieved by the 

fourth-order Runge-Kutta with a very tiny 

time step 3Δ 10
1.6 3

 −= ext s. Table 6 

shows the results obtained by the various 

orders of the suggested family in the time 

interval of 
100

0
1.6 3

 
− 

 
s. Due to the 

explicitly of the fourth-order Runge-Kutta 

method, as well as, the new family, there is 

no need for any iterative nonlinearity 

solution methods, such as Newton-Raphson 

iterations. The responses are obtained for 

three cases with different time steps (Δt). 

The value of RMSE , the root of mean 

squares of the errors for all Dofs, can be 

obtained by the following equation. 

 

( ) ( )( )
100

2

, ,

1 1

1
 
= =

=

 − x x

scheme

steps

i exact j i scheme j

i j

RMSE

t t
steps

 (46) 

 

The results presented in Table 6 show 

that different orders of the new family can 

analyze properly nonlinear dynamic 

systems with many degrees of freedom. 

According to these results, as the order of 

the family increases, the value of RMSE

decreases. Based on the experiments in 

Case 1 (Δ 1000Δ= ext t ), by increasing the 

order of the family, the solution becomes 

more stable. As shown by the numerical 

results, the NRKF5 method becomes 

unstable; however, the NRKF6 and NRKF7 

schemes have more stable results. The 

results for Cases 2 and 3 reveal that for 

nonlinear dynamic analysis, the NRKF6 

method can obtain solutions with low error, 

and even is more accurate than the NRKF7 

method (Case 3). In this manner, the 

NRKF6 can be chosen as the optimum 

member of the new family, for nonlinear 

dynamic analysis.

 
Table 4. CPU time and error of various schemes 

Scheme NLA RK4 CKRK SRK3 NRKF5 NRKF6 NRKF7 

CPU Time (s) 21.35 146.11 81.47 95.05 69.53 74.18 84.84 
Err (mm) 2.34×103 2.01×10-1 5.44×10-3 4.87×10-6 1.37×10-3 8.88×10-6 2.69×10-6 

 

 
Fig. 18. The nonlinear mass-spring-damper system with 100 Dofs 
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(a) (b) 

Fig. 19. Relations for stiffness and damping forces: a) Stiffness force; and b) Damping force 
 

Table 5. The values of iM , iK  and iC  for various nodes 

i
C  (N.s/m) i

K  (N/m) i
M (kg) Number 

0.50 3 1   1-30 

0.10 2 1 31-70 

0.15 1 1   71-100 

 
Table 6. The values of RMSE for the suggested family 

Case. Δt  Steps 
RMSE 

NRKF5 NRKF6 NRKF7 

1 1000Δ ext  100 ∞ 4.194×101 3.521×10-2 

2 500Δ ext  200 6.222×10-3 3.569×10-3 3.493×10-3 

3 100Δ ext  1000 3.809×10-4 2.910×10-4 2.926×10-4 

 

 
(a) 

 

 
(b) 

Fig. 20. Solutions of 100x  from various orders of the new family: a) The values of  x100; and b) The errors of the 

solutions 
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Further to this, Figure 20 shows 

solutions of 100x  by various orders of the 

new family obtained in the condition of 

Case 2. As shown in Figure 20, all orders of 

the new family have a good performance in 

achieving accurate results for nonlinear 

systems with many degrees of freedom. It is 

noteworthy that the smallest period of this 

structure is equal to 2.565 s and the time 

step chosen to analyze the system as shown 

in Case 2, is equal to 0.567 s (500Δ ext ), 

which means the time step used is not a very 

small value. Therefore, one can conclude 

that various orders of the new family have 

the capability in solving nonlinear systems 

with many degrees of freedom, in the case 

of using a logical time step. 

 

7.7. A Tall Shear Building Subjected to 

El-Centro Ground Motion 

In this example, the dynamics of a tall 

shear building subjected to a realistic 

ground motion are analyzed. This shear 

building shown in Figure 21 is a fifty-story 

structure. The nonlinear behavior of the 

structure has been assumed as the bilinear 

model demonstrated in Figure 22. The 

elastic stiffness is 5

1 3.404 10K =   N/m and 

the post-elastic stiffness is 4

2 3.404 10K =   

N/m. 
xu  is considered as 0.012 m. The story 

mass is 
3245.6 10m =   Kg. The mentioned 

characteristics are the same for all stories. 

Since the dynamic response of structures 

due to earthquake excitations is very 

important in earthquake engineering, the 

fifty-story shear building is analyzed when 

it is subjected to the El-Centro earthquake. 

Figure 23 shows the time history of the 

North-South component of this ground 

motion.  

 

 
Fig. 21. A tall shear building with fifty stories 

 

 
Fig. 22. Nonlinear relation between deformation and force 
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Fig. 23. Time history of north-south component of the El-Centro ground motion 

 

The near-exact solution of this analysis 

is obtained by the fourth-order Runge-Kutta 

method using a very tiny time step 
5Δ 2 10ext −=   s in the time interval of 31.18 

s. To investigate the advantages of the new 

methods, the structure is analyzed with 

various time steps 1Δ 2000Δ ext t= , 

2Δ 1000Δ ext t=  and 3Δ 100Δ ext t= . Also, the 

results are compared to those from the 

generalized-𝛼 and SRK3 methods. Due to 

the explicitly of the new family, there is no 

need for iterative methods such as Newton-

Raphson technique. However, the 

generalized-𝛼 and SRK3 schemes need 

Newton-Raphson iterations. The iterations 

are terminated if the incremental 

displacements reach a tiny value, 10-10 m. 

Figure 24 shows the lateral responses of the 

first story analyzed by various methods, 

which are obtained by using the second time 

step, 2Δt . 

 

 
Fig. 24. lateral responses of the first story analyzed by various methods with the second time step, 2Δt  
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Table 7. Values of analysis error, CPU time, and storage for different methods 

Scenario Property Gen. 𝜶 NRKF5 NRKF6 NRKF7 SRK3 

1Δt  
Err  1.90×101 1.22 1.22 1.21 1.71×10-1 

CPU Time (s) 1127 38 43 51 384 

Storage (Byte) 1,002,912 726,824 729,680 732,664 742,177 

2Δt  
Err  8.26 6.51×10-3 5.72×10-3 7.06×10-3 2.68×10-6 

CPU Time (s) 2540 71 86 98 582 

Storage (Byte) 1,938,912 1,350,024 1,352,880 1,355,864 1,365,377 

3Δt  
Err  2.63×10-1 6.56×10-4 5.75×10-4 7.13×10-4 5.85×10-8 

CPU Time (s) 21980 676 821 961 4279 

Storage (Byte) 18,776,112 12,574,824 12,577,680 12,580,664 12,590,177 

 

In order to compare analysis error (Err), 

CPU time, and storage values achieved by 

various time integration methods, Table 7 is 

prepared. In this table, the value of analysis 

error (Err) is calculated by using Eq. (45). 

Based on the results presented in Table 7, 

the generalized-𝛼 method with the highest 

values in Err, CPU time, and storage, has 

the weakest performance among the other 

methods. On the other hand, the NRKF5 

method reaches the minimum values in 

CPU time and storage, in various analyzes. 

In the second and third scenarios (the cases 

of 2Δt  and 3Δt ), among different orders of 

the new family, the NRKF6 method reaches 

solutions with the minimum values in Err 

and comparable values in CPU time and 

storage. Therefore, the NRKF6 method is 

chosen as the best order among different 

orders of the new family, which can reach 

better solutions in the nonlinear dynamic 

analysis. Compared to the SRK3 method, 

all suggested members of the new family 

have lower values in CPU time and storage. 

The values of Err  obtained for the SRK3 

method are small in different scenarios, 

whereas, compared to different members of 

the new family, the SRK3 method has larger 

values in CPU time.  

By comparing the results obtained by the 

SRK3 method in the first scenario ( 1Δt ) and 

those by the NRKF6 method in the second 

scenario ( 2Δt ), it is obvious that the NRKF6 

method has a better performance to obtain 

solutions with lower error values in a lower 

CPU time. In this comparison, the values of 

Err  for the SRK3 and NRKF6 methods are 
11.71 10−  and 35.72 10− , respectively. 

Also, the values of CPU time for these 

methods are 384 s and 86 s, respectively. 

Aside from this, by comparing the values of 

CPU time between these two methods, one 

can see that the ratio of the CPU time values 

of the SRK3 and NRKF6 methods is 8.9        

(
384

43
) in the first scenario. The ratio is equal 

to 6.8 (
582

86
) and 5.2 (

4279

821
) in the second 

and third scenarios, respectively. These 

comparisons illustrate that the SRK3 

method needs a higher interval of time to 

perform nonlinear dynamic analyses 

compared to the NRKF6 method. On the 

other hand, the NRKF6 method can obtain 

good solutions with low error values in a 

shorter CPU time. 

 

8. Conclusions 

 

In this study, a higher-order explicit family 

of time integration methods was presented. 

The suggested formulation could analyze 

various linear and nonlinear dynamic 

systems. To develop this family, the Taylor 

series of the analytical amplification matrix 

was utilized. In this way, each time step of 

the integration procedure was divided into 

several stages. Different orders of the 

suggested family can be obtained by 

solving a system of nonlinear algebraic 

equations. The coefficients required ( ) 

were shown for the orders 2n =  to 10, in 

Table 1. It is worth mentioning that the 

higher-order methods can be achieved 

effortlessly. Therefore, the proposed 

methods form a comprehensive family. As 

a negative point, the stability of the 

proposed family is conditional. On the other 
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hand, as a positive point, the numerical 

accuracy and order of accuracy are 

improved as the order of the family 

increases.  

One of the superiorities of the proposed 

Runge-Kutta family is the equality between 

the order of accuracy of the family and its 

number of stages used in a single time step. 

The results showed that the new family had 

the desired amplitude decay with a better 

performance in period error value compared 

to two well-known numerical integration 

methods, the Newmark linear acceleration 

and fourth-order Runge-Kutta. 

Furthermore, the performance of the family 

in amplitude decay and period error was 

enhanced as the order ( n ) rises. 

The advantages of the authors’ schemes 

were illustrated through various numerical 

experiments over several useful time 

integration methods, such as the Newmark 

linear acceleration technique, generalized-

𝛼, and explicit and implicit Runge-Kutta 

methods. The example undamped single 

degree of freedom oscillator showed the 

superiority of the proposed methods over 

the other techniques in analyzing linear 

mechanical systems. Furthermore, the 

results obtained by the proposed explicit 

family were more accurate than those 

achieved by the implicit CKRK and SRK3 

methods. In Example 7-3, an impact load 

was applied to two degrees of freedom 

structure. The results demonstrated that the 

NRKF7 method has a better performance in 

analyzing a structure subjected to impact 

loading compared to the implicit SRK3 

method. The methods NRKF6 and NRKF5 

had more accurate results than the CKRK, 

fourth-order Runge-Kutta, and Newmark 

linear acceleration methods. The outcomes 

from Example 7-2 illustrated the ability of 

the new family in dealing with the non-

classical damping behavior resulting from a 

five-story shear building. This example 

demonstrated that the method NRKF7 was 

the most accurate technique in analyzing 

shear building structures with non-classical 

dampers. Examples 7-4 and 7-5 showed that 

the suggested methods can solve plane and 

three-dimensional truss problems with high 

accuracy. In Example 7-5, the method 

NRKF6 and NRKF7 had the highest 

performance to solve the 3D truss problem 

in a low CPU time with very good accuracy. 

The results illustrated that Newmark linear 

acceleration and the fourth-order Rung-

Kutta methods had the highest values in 

error and CPU time, respectively. 

Example 7-6 showed that all orders of 

the proposed family can solve many 

degrees of freedom mass-spring-damper 

systems with nonlinear properties in 

stiffness and damping. In this experiment, 

the method NRKF7 analyzed the system 

with the lowest value in error, for large and 

medium time steps. However, if the time 

step is chosen a tiny value, the method 

NRKF6 can result in the more accurate 

analysis. As a weak point, if the time step is 

selected a large value, the results show that 

the lower orders of the family become 

unstable. However, as the order of the 

family is boosted, the stability, as well as, 

the accuracies of the answers are increased, 

which is a positive point.  

In the last example, a tall shear building 

structure subjected to El-Centro ground 

motion was investigated. This structure had 

many degrees of freedom with nonlinear 

behavior in stiffness. According to the 

results, the existing implicit methods in this 

example, the generalized-𝛼 and SRK3 

techniques had the highest values in error 

and CPU time, respectively. On the other 

hand, all members of the proposed family 

had the lowest values in CPU storage. As 

well, all orders of the proposed family had 

good performances in the accuracy of the 

solutions. Further to this, the NRKF6 

method, which was chosen as the best order 

of the new family, could obtain accurate 

solutions with low values in CPU time and 

storage. This experiment illustrated that the 

new family methods are robust in analyzing 

tall building structures subjected to a 

realistic load, such as El-Centro ground 

motion. 
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Appendices  

 

A.1. The Uniqueness of the Coefficients 

jα  

One can consider  1 2 1,  , ,Α    −= n n n n

n
 

as a set of the coefficients  j
 for 

2,..., 1j n= −  calculated from the nonlinear 

algebraic system given in Eq. (18) with the 

order of n . For every set of Α
n
, there is 

another set, such as  1 2 1, , ,B    −= n n n n

n
 

with the following relationships, which is a 

dual solution for the nonlinear algebraic 

system. 
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One can easily check the equality of 

these dual sets (Αn  and Βn ) for Eq. (18). It 

is worth mentioning that numerical 

characteristics of the new methods 

performed by the solutions Αn  and Βn , such 

as stability, order of accuracy, and 

numerical accuracy, are similar. For the 

new methods with the values of n  equal to 

2, 3, and 4, the sets Αn  and Βn  are equal. 

Therefore, the coefficients for =n 2, 3, and 

4, can be obtained uniquely. 

 

A.2. The Existence of the Coefficients jα  

The coefficients 1 −

n

n  and 2 −

n

n  are 

obtained based on the second and last 

equations in Eq. (18). Form the equality 
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 is calculated using the 

other coefficients as follows. 
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Also, 2 −

n

n  can be obtained from the 

equalities 
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Using the third equality in Eq. (18), 
2
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
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n

jj
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j

, as well as, Eqs. (A2) and 

(A3), one can calculate the coefficients for 

the methods with =n 2, 3, and 4, easily. For 

other values of n , the authors utilized a 

heuristic procedure, which performs in an 

iterative manner shown in Figure A1. In this 

procedure, the coefficients  n

j  are 

calculated using the coefficients 
1 −n

j . In 

order to stop iterations, the error introduced 

by Eq. (A4) should be computed at the end 

of each iteration. 
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The error calculated by Eq. (A4) 

demonstrates the difference between the 

term on the left side of each equality in Eq. 

(18), which is estimated by the values of 
, n itr

j , and the term on the right side of the 

equality. 
, n itr

j  is indeed the estimated value 

of  n

j  in the iteration itr.  , which is used 

to stop the iterations, has a very tiny value 

of 
131 10− . 

Figure A2 shows the values of Err  

obtained in calculating the coefficients 
n

jα  

for 1=n  to 100. The Results shown in 

Figure A2 illustrate the high ability of the 

authors’ heuristic procedure in the 

calculation of j  in a wide range of n .
 

 
Fig. A1. The procedure for calculation of n

j  for 5n   
 

 
Fig. A2. Err  for various values of n  
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