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ABSTRACT: Crack detection is one of the critical tasks in health monitoring and 

inspection of civil engineering structures. The existence of major cracks may have 

detrimental effects on the integrity and performance of structures that need full 

consideration. Recent research into crack identification has shown an increasing interest 

in vision-based automated techniques, employing deep-learning computational methods 

such as Convolutional Neural Networks (CNNs). However, the wide range of real-world 

situations (e.g. camera or subject motion, misfocus, mist, and fog) can significantly 

compromise the accuracy of CNN-based crack identification due to a mismatched dataset 

in training and testing. Therefore, this study aims to establish an intelligent identification 

model using deep CNNs to automatically detect concrete cracks from real-world images. 

Moreover, the efficiency of the algorithm in identifying cracks based on blurred images 

in the training and validation dataset was investigated. The original dataset is replicated 

into various blurriness levels and split into eight different crack image sub-datasets. CNN 

models were trained and crack identification was carried out using different levels of 

image blurriness. The classification performance of the trained CNN was assessed using 

the concrete crack image dataset taken around Universiti Teknologi Malaysia. Sensitivity 

studies were also conducted to investigate the efficiency of the CNN method to identify 

damage under various image parameters. The results showed that the subset with the 

combination of sharp and slight blurriness level (blurriness Level 1) reached the highest 

training accuracy of 98.20%, and the network trained with blurriness Level 1 alone had 

the best accuracy, precision, and F1 score performance over eight training subsets. 

Moreover, the robustness of the networks was examined and verified under four different 

situations, which are; lighting, crack width, colour structures, and camera shooting angle 

conditions. It was observed that the presence of blurred images in the training dataset can 

enhance the CNN crack detection performance while high shooting angle and uneven 

illumination has a negative effect on the accuracy of the proposed CNN. 

 

Keywords: Blurriness, Concrete, Convolutional Neural Network, Crack, Distance, 

Structural Health Monitoring. 
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1. Introduction 

 

Concrete material has been widely used in 

civil structures. Over the service life, 

concrete structures may undergo many 

types of damage such as cracks, reduction 

of reinforcement bar diameter due to 

corrosion, loss of bond in the steel-concrete 

interface, corrosion of prestressed cables, 

and spalling. Lighter damage may have an 

impact on the aesthetic value of the 

structures, while severe damages could 

affect the durability and stability of the 

whole structure. Structural Health 

Monitoring (SHM) is the process of 

identifying damages during the service life 

of a structure (Abdulkareem et al., 2018; 

Abudallah Habib et al., 2021). Hence, the 

SHM practice, starting with early detection 

and followed by appropriate repair 

strategies, has a very important role in 

ensuring structural safety. Cracking is one 

of the most commonly reported defects that 

may threaten the structural health and 

integrity of concrete structures (Delatte, 

2009).  

Vision-based SHM has the potential to 

provide valuable information on structural 

monitoring (Ye et al., 2016). 

Conventionally, visual inspection is carried 

out by certified inspectors or structural 

engineers to detect and evaluate structural 

damage. However, the accuracy of human-

based visual inspection is greatly influenced 

by the skill level and experience of the 

inspectors (Li et al., 2019). Additionally, 

this approach is not economical and more 

time-consuming, especially for large-scale 

structures. Recent advances in the quality of 

digital cameras and lenses, as well as their 

ability to be synchronised with other smart 

devices and vehicles, have made vision-

based methods an attractive choice for SHM 

applications. Recently the joint application 

of computer-vision and deep-learning 

techniques are being widely incorporated in 

inspection, monitoring, and assessment of 

infrastructure. 

Due to the high-capability in recognising 

patterns with extreme variability using 

convolutional and pooling layers, the 

Convolutional Neural Network (CNN) has 

revolutionised the paradigms of crack 

detection using computer vision and image 

processing (Wang et al., 2019). CNN is a 

deep neural network model utilising layers 

with convolving filters that are inspired by 

the visual cortex of animals (Ciresan et al., 

2011). The utilisation of CNN for crack 

detection has been found in various civil 

engineering applications such as road 

pavements, masonry structures, buildings, 

roadway, bridges, and steel and concrete 

structures. Cha et al. (2018) developed a 

quasi-real-time structural damage detection 

method based on a faster region-based 

convolutional neural network. In their 

study, multiple types of structural damage 

images of concrete cracks, steel corrosion, 

bolts corrosion, and steel delamination with 

500  375  3 pixels resolution under 

uncontrolled conditions were used to train 

and validate the networks. The outcome of 

the study shows that 87.8% of structural 

damages were correctly detected and 

localised.  Meanwhile, Atha and Jahanshahi 

(2018) demonstrated the applicability of 

CNN in detecting corrosion. To obtain the 

optimal CNN architecture, the authors have 

compared the performance of the existing 

pre-trained networks such as ZFNet and 

VGG16. The authors also investigated the 

effect of different input image parameters in 

terms of sizes and colour spaces. The study 

revealed that the input image size of 128  

128 pixels resolution and the RGB or 

YCbCr is the most robust image input 

parameter. Later, Dorafshan et al. (2018) 

compared the performance of common edge 

detectors and CNN for crack detection in 

concrete structures. The study employed 

AlexNet CNN architecture in three different 

modes which are: i) fully train the network 

from scratch, ii) alter the last fully 

connected layers to match with the target 

labels, and iii) fine-tune the layers in 

AlexNet. It was found that fine-tuned 

AlexNet provides excellent crack detection 

accuracy. Recently, Zhang et al. (2020) 

successfully conducted an investigation on 
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autonomous bolt loosening detection based 

on faster R-CNN. Images with tight and 

loose bolts in 640  478  3 pixels 

resolution were used in the training and 

validating process. The study successfully 

demonstrated that the trained networks are 

able to detect the bolt damage accurately 

with input images from different conditions 

in terms of lighting, angles, and vibration. 

These studies described above demonstrate 

that the use of images together with CNN is 

a promising tool for damage detection and 

the versatility makes CNN potentially 

outperform most of the existing sensor-

based damage detection methods. 

In recent years, more detailed studies 

have been conducted to improve the 

performance of CNN for crack detection. 

For example, Cha et al. (2017) proposed a 

new CNN architecture for crack detection 

of concrete structures without calculating 

defect features. The study considered the 

image degradation effect due to the changes 

in lighting and shadow conditions. The 

results showed that considering the image 

degradation in the training data provides 

higher robustness and adaptability of the 

CNN-based method in finding concrete 

cracks in more realistic situations. Li et al. 

(2018) applied CNN for detecting cracks in 

real bridge inspections considering 

disturbance of noise and clutters. The result 

of the experimental work showed that the 

proposed algorithm outperforms the up-to-

date methods in crack detection of civil 

structures. The higher success rate achieved 

in the experimental verification indicates 

the advantages of the proposed CNN-based 

method in crack detection of concrete 

surfaces.  

Since the performance of CNN is highly 

dependent on the incorporated image 

quality, a more detailed study has been 

conducted to improve the performance of 

CNNs dealing with low-quality images. For 

example, Zhou and Song (2021) built and 

trained a novel CNN architecture that can 

analyse images with various types of 

disturbances such as low contrast and 

shallow cracks in roadway inspections, 

which led to better classification 

performance. Deng et al. (2020) carried out 

a comparative study to investigate the 

performance of three Faster R-CNNs, 

region-based fully convolutional networks, 

and feature pyramid network-based Faster 

R-CNN algorithms for detection of out of 

plane racks incorporating deformable 

modules. The results show that the addition 

of deformable modules improved the 

precision of crack detection in all three 

algorithms. Chen and Jahanshahi (2020) 

introduced a rotation-invariant fully 

convolutional network called active rotating 

filters to consider the rotation variation 

property of images for crack detection of 

concrete and pavements. 

Currently, the extraction of information 

from blurred images is a popular research 

topic in the image processing field. 

Unmanned aerial vehicles which are 

capable of using a visual mounted camera 

are widely deployed to replace traditional 

human-based visual inspection of civil 

structures (Dorafshan and Maguire, 2018). 

One of the main challenges of unmanned 

aerial vehicles imagery is the blurriness 

caused by environmental and operational 

factors such as wind, mist, and fog (Sieberth 

et al., 2015). On the other hand, the 

application of smartphone cameras has been 

rapidly introduced to the visual monitoring 

of structures (Ratnam et al., 2019). 

Smartphones show great application 

prospects due to their unique combination 

of properties such as embedded hardware 

devices, intelligent antenna systems for 

transmitting and receiving data and, 

excellent optical properties. However, the 

pictures captured by mobile phones are 

prone to blurriness, probably due to 

operational factors such as camera 

movement and missed focus (Fankhauser et 

al., 2020).  

Blurriness is one of the main qualitative 

attributes of images in computer vision 

systems. The qualitative attributes of 

images can be divided into three general 

categories of blurriness, noisiness, and 

blockiness (Shen et al., 2018). The 



120  Su Fen et al. 

 

qualitative attributes of images and the 

reasons for their degradation are shown in 

Figure 1. Blur in images is one of the most 

common degradation phenomena that is 

mainly caused by several reasons such as 

camera shake, blurry background due to 

dust and debris, mist and fog, and missed 

focus. Blurriness is defined as the lack of 

spatial detail features resulting in a 

reduction in the sharpness of edges. Several 

solutions are introduced to deal with the 

blurriness of images. Dash et al. (2009) 

proposed restoration of images, while Han 

et al. (2018) and Sieberth et al. (2013) 

proposed removing the blurred images from 

the database. Though isolation of blurred 

images can improve the accuracy of the 

visual analysis and interpretation of data 

and reduce the rate of errors and false 

alarms, it may result in a partial loss of 

valuable information about the health state 

of a structure. Restoration of blurred images 

is another solution that is expensive due to 

the high computation burden and large 

execution time. 

Several research studies have been 

carried out to enhance the quality of 

detecting cracks on concrete surfaces using 

computer-vision and deep-learning 

techniques. Jang et al. (2019) and Fan et al. 

(2018) studied methods to improve crack 

detectability while minimising false alarms. 

Cha, Choi, and Büyüköztürk (2017), Kim 

and Cho (2018) and Protopapadakis et al. 

(2019) investigated the accuracy, noise 

immunity, and versatility of the acquired 

images on CNN-based crack identification. 

However, the number of studies to discuss 

the quality of image attributes and 

enhancing the quality of acquired images is 

limited for damage detection of civil 

engineering structures, and detailed study of 

the effect of images degraded with blur is 

also quite limited. Therefore, this study 

investigates the applicability of a CNN in 

autonomously detecting concrete cracks at 

various levels of images blur. Images of 

concrete cracks pulled from open-source 

databases of Mendeley Data and Data in 

Brief are used in this study. Selected images 

were compiled into a single training 

database for training the CNN. Afterward, 

the original dataset is split into eight 

different crack image sub-datasets with the 

combinations of various blurriness levels 

for this purpose.  
 

 
Fig. 1. The qualitative attributes of images and the reasons for the degradation of images 

  

Qualitative Attributes of Images 

Blurriness  Noisiness  

Reasons: 

 
- Subject Motion 

- Camera shake 

- Blurry background 

- ISO detail loss 

- Mist and fog 

- Missed focus 

- Insufficient depth of field  

- Lens softness 

Reasons: 

 
- Low light conditions 

- Uneven illumination 

- Dust/flash-induced 

artefacts 

- Variable image quality 

- Color segmentation 

procedure 

- Specular reflections 

Reasons: 

 
- Compression  

- Block-based processing 

- Removal of high 

frequency components 

- Transmission errors 

- Quantization  

- Encoding mechanisms 

- Pixel replication 
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CNN models are trained and crack 

identifications are completed using 

different levels of image blurriness. A 

sensitivity study is also conducted to 

investigate the efficiency of the CNN in 

identifying cracks based on a different level 

of image blur in the training and validation 

datasets.  

 

2. Research Methodology 

 

This section describes the CNN 

configuration and the dataset used in this 

study. The approach is the combination of 

data collection, pre-processing, configuring 

the CNN and building the model.  

 

2.1. Database Preparation 

Existing open-source image databases of 

concrete cracks available in Mendeley Data 

and Data in Brief are compiled into a single 

training database to train the CNN in this 

research. Figure 2 shows the sample of 

images from the database. To ensure 

consistency and robustness of the training 

process, certain necessary image 

characteristics are specified, which are: i) 

the image must be sharp and can be seen 

without soft edges, ii) the distance between 

the camera lens and the concrete surface 

must be between 0.2 m to 1.0 m, and iii) the 

lighting condition of the image should be 

between 50 lux and 25,000 lux, which 

represents the dark to intensive lighting 

condition, respectively. Each of the images 

collected is then cropped into sub-images 

with a resolution of 227  227 pixels. The 

pixel of each image represents an element 

in the input matrix of the CNN. To prevent 

the occurrence of false annotations in the 

generation process of the database, cropped 

images with cracks on the edges are 

excluded. In total, 53,905 cropped small 

images were chosen which comprise 20,935 

cracked and 32,970 non-cracked images. 

These images were stored in JPG format. As 

a supervised learning model, the trained 

CNN requires labelled information for all 

data. Hence, all of the 227  227 pixel 

images were labelled as "crack" or 

"positive" and "non-crack" or "negative" for 

classification purposes. The images were 

then randomly divided into training and 

validation sets with a ratio of 7:3. 

In order to reduce the possibility of a 

network overfitting, data augmentation is 

performed with the use of the MATLAB 

software. An "imageDataAugmenter" is 

created to flip the training images 

horizontally and vertically. Subsequently, 

during the training process, an 

"augmentedImageDatastore" is responsible 

for transforming the training batches with 

the specified data augmentation options in 

the "imageDataAugmenter". It augments 

the training images randomly for each 

epoch without storing any images in 

memory. Thus, the transformed training 

datasets will be slightly different at every 

epoch. Once the network parameters are 

updated, the augmented images will be 

discarded. It should be noted that the actual 

number of training images remains 

unchanged at each epoch.  

 

  
(a) (b) 

Fig. 2. Sample of training images: a) Fine images; and b) Shadowed images 
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To identify the effect of the blurriness 

level and the performance of the CNN, 

various levels of blur are evaluated in this 

study. Each of the sub-images is blurred 

using a built-in function in MATLAB; 2-D 

Gaussian smoothing kernel with various 

standard deviations. The higher the value of 

standard deviation equals a higher level of 

blurriness. In this study, three levels of 

blurriness are examined where the standard 

deviation ranges from 1 to 3. Illustrations of 

different blurriness level on the images are 

depicted in Figure 3. The original dataset is 

replicated and split into eight different sub-

datasets to train and validate the proposed 

CNN model in this study. These databases 

are composed of images with and without a 

blurriness level. Table 1 tabulates the image 

database combination used to train each 

network in this research. These databases 

are used to train different CNN models to 

detect damage which also consists of 

different levels of blurred images. 

2.2. Convolutional Neural Network 

Figure 4 shows the CNN architecture, 

which consists of multiple convolution 

blocks followed by the fully connected and 

classified layers. The input layer reads the 

image of 227  227  3 pixels resolution, 

and transfers it to the convolution blocks. 

Each convolution block is comprised of a 

convolution layer, an activation unit, and a 

pooling layer. The convolution operations 

with filters are performed to extract image 

features. Additionally, batch normalisation 

and dropout layers are introduced with the 

aforementioned layers in accordance with 

the purposes of use. After extracting the 

features of images in the learning layers, the 

output layer is responsible for classifying 

the images into their respective categories. 

Table 2 presents the detailed parameters of 

each layer and operation in the proposed 

CNN. 

 

  
(a) (b) 

  

  
(c) (d) 

Fig. 3. Blurriness Level of: a) Sharp image; b) Level 1 blurred image; c) Level 2 blurred image; and d) Level 3 

blurred image 
 

Table 1. Image databases combination 

Network Datasets 

A Sharp 

B Blurriness level 1 

C Blurriness level 2 

D Blurriness level 3 

E Sharp + Blurriness level 1 

F Sharp + Blurriness level 2 

G Sharp + Blurriness level 3 

H Sharp + Blurriness level 1 + 2 + 3 
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Fig. 4. Overview of CNN architecture 

 
Table 2. Detailed parameters of each layer and operation in CNN 

Layer W/H Channel Operation W/H Channel Number Stride Padding 

Input 227 3 Conv1 3 3 8 1 1 

L1 227 8 Pooling 3 3 - 2 0 

L2 113 8 Conv2 3 8 16 1 1 

L3 113 16 Pooling 3 3 - 2 0 

L4 56 16 Conv3 3 16 32 1 1 

L5 56 32 Dropout - - - - - 

L6 56 32 Fully Connected 1 - 2 - - 

L7 1 2 Softmax and Classification - - - - - 

L9 1 2 - - - - - - 

  

2.3. Sliding Window Technique 

As depicted in Figure 5, during the 

sliding process, some of the cropped images 

may only have cracks on the edge spaces of 

images. These cracks can cause 

misclassification in the separation process. 

The sliding window technique is employed 

to overcome this problem in identifying the 

intact or cracked regions. The CNN 

architecture processes each receptive field 

and extracts features corresponding to 

weight kernels. The class of each region is 

recognized based on these weight 

dependent features. The features of the 

CNN architecture are automatically revised 

in every layer by the updated receptive 

fields' weights. The number of receptive 

fields of the designed architecture was 221, 

with 227 × 227 pixels. In this experiment's 

developed network, the three convolutional 

layers train the network. Features obtained 

from the first and second layers are only 

speculated as concrete surface cavities in 

the training data set. The visualized features 

are recognized and exploited by the trained 

network. The features from the last 

convolutional layer can be regarded as 

crack features. The segmentation results 

from the third layer are consistent, having 

low sensitivity to noise on the model's 

performance.  

The sliding window searches over an 

image by shifting 227 pixels horizontally or 

vertically for a new region without 

overlapping. Since these kinds of images 

are disregarded in the generation of the 

database, the proposed CNN might not be 

able to detect such features as a crack or 

intact accurately. Therefore, based on Cha 

et al. (2017), an image is allowed to be 
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scanned twice with the designated sliding 

window approach, as illustrated in Figure 6. 

Directly, it can reduce the presence of such 

crack features and minimise 

misclassification.  

 

2.4. Performance Indicator and Network 

Testing 

The performance of the trained CNN is 

assessed using pictures of concrete cracks 

taken from Universiti Teknologi Malaysia. 

These pictures are referred to hereinafter as 

the test set. The test set is taken in such a 

way that they contain one or more of: i) 

different lighting conditions, ii) different 

crack widths, iii) different colour structures, 

iv) different shooting angles, and v) 

different image distances. The results are 

then compared to the actual observation in 

the test set. True Positives (TP) refer to the 

sub-image that is correctly labelled as a 

"crack" image by the network whilst False 

Positives (FP) indicate that the sub-image is 

falsely labelled as a "crack" image by the 

network. Furthermore, a True Negative 

(TN) test result denotes that the network 

correctly classified the sub-image as a "non-

crack" image, and a False Negative (FN) 

happens when the network falsely classifies 

the sub-image as a "non-crack" image. 

Subsequently, the actual crack or Positive 

observation (P) is the sum of TP and FN in 

the testing image. In contrast, actual "non-

crack" or Negative observation (N) is the 

sum of TN and FP in the test set. 

 

 
Fig. 5. Presence of cracks on the edges of testing cropped image spaces 

 

 
Fig. 6. Sliding window technique 
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In order to evaluate the performance of 

each network, performance indicators 

including accuracy, precision, recall, and F1 

score will be deployed in this study. It 

should be noted that the accuracy does not 

always reflect the true performance of the 

CNN. The equations for the performance 

indicators are defined as: 

 

 

 

TP TN

P N
Accracy

+
=

+

 
 

 (1) 

 

TP
Precision

TP FP
=

+


 

 (2) 

 

TP
Recall

TP FN
=

+


 

 (3) 

2   
1

Recall Precision
F

Recall Precision

 
=

+
 (4) 

 

where TP, TN, P and N: are true positive, 

true negative, positive observation and 

negative observation as mentioned earlier. 

By taking into account the precision, 

recall, and F1, a better understanding of the 

effects of FN and FP regions can be 

provided on the performance of the CNN. 

 

3. Prediction on Training Models 

 

Under the same CNN architecture, eight 

different networks were used in the training 

process. These image datasets are made up 

of images with and without a blurriness 

level. This is to investigate the influence of 

the inclusion of blurred images on the 

performance of CNN. The corresponding 

datasets and detailed proportions of the 

training and validation sets for every 

network are listed in Table 3.  

The validation accuracy is the indicator 

of the model response to new data and it is 

defined as the rate of correct classification 

of a newly seen image to the validation set 

at the iteration. The recorded training 

results including validation accuracy and 

training time for every network from the 

corresponding datasets are summarised in 

Table 4. 

Stochastic gradient descent momentum 

was used to optimize CNN training with an 

initial learning rate of 0.01. The learning 

rate selection is a trade-off problem for 

accuracy and computation speed. A lower 

learning rate results in a longer training 

time, while a higher learning rate yields a 

shorter learning time. However, the 

network might reach a suboptimal result or 

diverge eventually. On the other hand, an 

epoch is a complete training cycle on the 

entire training dataset. The maximum 

number of epochs is the number of times the 

network has been updated for all of the 

images in the training set. In this study, the 

maximum epoch number considered is 10. 

The early stopping method was applied in 

the training process. Once there is little or 

no improvement on the loss of the 

validation set in ten consecutive times, the 

training progress will be stopped 

automatically. If the validation criterion is 

not met by the end of the 10th epoch, the 

training will be stopped at the maximum 

epoch number. 

 
Table 3. Proportions of cracked and non-cracked images in training and validation sets 

Network 

No. of images 

Crack Non-crack 

Training Validation Total Training Validation Total 

A 14655 6280 20935 23079 9891 32970 

B 14655 6280 20935 23079 9891 32970 

C 14655 6280 20935 23079 9891 32970 

D 14655 6280 20935 23079 9891 32970 

E 23909 12561 41870 46158 19782 65940 

F 23909 12561 41870 46158 19782 65940 

G 23909 12561 41870 46158 19782 65940 

H 58618 25122 83740 92316 39564 131880 
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As shown in Table 4, the training time 

consumed for network A to network D is 

similar. As the number of images in the 

datasets increases, the training time 

increases. Network H was observed to have 

the longest training time since it was trained 

with the largest dataset. As for the 

validation accuracy, all networks achieved 

an accuracy above 95%. Network B and 

Network E yielded the highest accuracy as 

compared to the respective network made 

up of the same amounts of datasets. It 

should be noted that datasets from both 

networks consist of Level 1 blurriness 

images. On the other hand, Network H 

attained the lowest validation accuracy 

among all other networks. The lower 

validation accuracy can be due to the wide 

diversity of encompassed subclasses and a 

large number of training samples in 

Network H. Hence it can be noted that 

Network A performs as the optimum model 

based on the accuracy and training time 

results as shown in Table 4. Therefore, 

Network A is adopted for further 

performance investigation of the network 

under different conditions.  

As shown in Table 4, increasing the 

number of training samples increased the 

training time. Generally, a larger training 

dataset could contribute more real-world 

scenarios, leading to a better generalization 

performance of the CNN algorithm. 

Overall, the total training time and 

computational overhead for performing 

one-time image training are not crucial if 

they help achieve enhanced accuracy. 

Hence, In real-world applications, 

increasing the number of training samples 

and training time is advisable if this 

increase could enhance the CNN's 

classification performance and detection 

accuracy in practical applications. In such a 

way, a trade-off between the training time 

and the accuracy should be set. 

 

3.1. Performance of Network A under 

Different Conditions 

Network A is used to detect concrete 

cracks on images in the test set. 23 raw 

images taken at a distance of 0.5 m are used 

to build the test set. It is noted that the 

images in the test set were not used in the 

training of Network A. Therefore, the 

images in the test set are entirely arbitrary 

to the trained Network A. Table 5 presents 

the summarised results of the testing 

images. As can be seen from Table 5, the 

highest accuracy reported is 100% in testing 

images No. 9 and 12. The test results are 

shown in Figures 7a and 7b, respectively. 

This may be due mainly to the absence of 

noisy features in these testing images. In 

contrast, the lowest accuracy reached is 

40% in testing image No. 15 as shown in 

Figure 7c. It can be noticed that the 

existence of FP regions is mainly 

concentrated in the area of orange colour 

and spall concrete surfaces. Therefore, it 

leads to a lower number of TNs and 

eventually decreases the accuracy achieved. 

Overall, the network accurately detected 

these testing images with 83% accuracy, 

with less than approximately 14.82% 

degradation of accuracy obtained during the 

validation process, as shown in Table 4. 

Additionally, four different conditions in 

terms of lighting condition, crack width, 

colour structure, and angle are assessed 

during the testing process. The detailed 

detection results are displayed and 

discussed in the following subsections. 

 
Table 4. Results for eight networks with different datasets 

Network Accuracy (%) Training time (hr) 

A 97.64 6.32 

B 97.66 6.62 

C 96.09 6.63 

D 96.75 6.62 

E 98.20 15.15 

F 96.47 11.37 

G 97.63 19.52 

H 95.85 25.08 
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Table 5. Summarised result of scanned testing images 
No. P N TP FP TN FN Accuracy Precision Recall F1 Remark 

1 4 8 3 1 6 1 0.83 0.75 0.75 0.75 Figure 8a 

2 33 188 33 27 161 0 0.88 0.55 1.00 0.71 - 

3 32 189 31 24 165 1 0.89 0.56 0.97 0.71 - 

4 24 129 14 9 120 10 0.88 0.61 0.58 0.59 - 

5 29 192 28 53 139 1 0.76 0.35 0.97 0.51 - 

6 23 198 10 4 194 13 0.92 0.71 0.43 0.54 - 

7 26 195 3 6 189 23 0.87 0.33 0.12 0.18 - 

8 21 200 21 63 137 0 0.71 0.25 1.00 0.40 Figure 9a 

9 4 8 4 0 8 0 1.00 1.00 1.00 1.00 - 

10 4 8 4 2 6 0 0.83 0.67 1.00 0.80 - 

11 23 198 21 21 177 2 0.90 0.50 0.91 0.65 Figure 9b 

12 4 8 4 0 8 0 1.00 1.00 1.00 1.00 Figure 8b 

13 29 192 28 72 120 1 0.67 0.28 0.97 0.43 Figure 9a 

14 28 193 28 24 169 0 0.89 0.54 1.00 0.70 Figure 8c 

15 16 83 17 59 23 0 0.40 0.22 1.00 0.36 Figure 10a 

16 18 177 17 14 163 1 0.92 0.55 0.94 0.69 - 

17 34 187 32 71 116 2 0.67 0.31 0.94 0.47 Figure 11b 

18 49 172 47 18 154 2 0.91 0.72 0.96 0.82 Figure 9c 

19 16 205 11 14 191 5 0.91 0.44 0.69 0.54 Figure 8d 

20 29 192 28 23 169 1 0.89 0.55 0.97 0.70 Figure 11c 

21 38 183 38 9 174 0 0.96 0.81 1.00 0.90 - 

22 9 9 7 3 6 2 0.72 0.70 0.78 0.74 - 

23 17 82 16 27 55 1 0.72 0.37 0.94 0.53 Figure 10b 

Average 0.83 0.56 0.87 0.64  
 

  
(a) 

 

  
(b) 

 

 
 

 
 

(c) 

Fig. 7. Images scanned using the trained CNN: a) No.9; b) No.12; and c) No.15

False Positive False Negative 
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3.1.1. Crack Detection under Different 

Lighting 

Figure 8 presents the detection result for 

the images with a shadowed area. As 

evidenced from Figure 8a, 1 out of 4 crack 

regions with the shadowed area is not 

successfully detected. In Figures 8b and 8c, 

the whole crack patterns are successfully 

identified by the proposed CNN. However, 

there are several FP regions distributed 

across the fine scratches and dirt stains of 

the image. As for Figure 8d, most of the 

crack regions are detected. Nevertheless, a 

few FN regions exist in the intensive 

lighting region, while FP regions are mainly 

distributed in the dark lighting region of the 

image. The test results for these images are 

tabulated in Table 6. It can be noted that the 

accuracy and recall for all testing images are 

sufficiently high. In contrast, precision and 

F1 are relatively low due to the high FP 

presence in Figures 8c and 8d. Figure 8d 

achieved the lowest precision followed by 

Figures 8c and 8a. This is owing to the 

existence of non-crack surfaces that are 

misclassified as crack surfaces. On the other 

hand, the presence of FN regions in Figures 

8a and 8d reduced the recall to 0.75 and 

0.65, respectively. Based on the results 

presented in Figure 8 and Table 6, it can be 

concluded that the proposed CNN is slightly 

sensitive to lighting conditions. Uneven 

illumination is an artefact classified as an 

image noisiness qualitative attribute of 

images. Figure 8d shows undetected crack 

regions in bright areas due to uneven 

illumination. The shadows or glow are 

created due to improper illumination mask 

the existing features. Several approaches 

are applicable for the correction of uneven 

illumination, including using illumination 

invariant features and illumination 

compensation approaches (Yang and Byun, 

2007).  

 

  
(a) 

 

  
(b) 

 

  
(c) 
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(d) 

Fig. 8. Shadowed images scanned using the trained CNN: a) 908  681 pixels; b) 908  681 pixels; c) 3859  

2951 pixels; and d) 3859  2951 pixels 
 

Table 6. Detailed analysis of test images in Figure 8 
Test image TP FP TN FN Accuracy Precision Recall F1 

Figure 8a 3 1 7 1 0.83 0.75 0.75 0.75 

Figure 8b 4 0 8 0 1.00 1.00 1.00 1.00 

Figure 8c 28 24 169 0 0.89 0.54 1.00 0.70 

Figure 8d 11 14 191 5 0.91 0.44 0.69 0.54 

Average 0.91 0.68 0.86 0.75 

 

3.1.2. Crack Detection under Different 

Crack Width 

Images containing various crack widths 

are also tested as depicted in Figure 9. The 

number of TP, FP, TN, and FN regions are 

summarised and tabulated in Table 7. It can 

be seen that the crack detection results for 

testing images are very effective regardless 

of crack width. The detection accuracy and 

recall are relatively high, which indicates 

that the majority of the cracks that 

theoretically exist are successfully spotted. 

Despite the successful detection, several FP 

regions occurred around the crack areas. 

Due to the high number of such regions, it 

will significantly reduce the precision and 

F1. As evidenced in Table 7, Figure 9a is 

reported to have the lowest precision as well 

as F1. 

 

  
(a) 

 

  
(b) 

False Positive False Negative 
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(c) 

Fig. 9. Images scanned using the trained CNN: a) Thin crack; b) Medium crack; and c) Thick crack 
 

Table 7. Detailed analysis of test images in Figure 9 
Test image TP FP TN FN Accuracy Precision Recall F1 

Figure 9a 21 63 137 0 0.71 0.25 1.00 0.40 

Figure 9b 21 21 177 2 0.90 0.50 0.91 0.65 

Figure 9c 47 18 154 2 0.91 0.72 0.96 0.82 

Average 0.84 0.49 0.96 0.62 
  

3.1.3. Crack Detection under Different 

Colour Structures 

Figure 10 shows the crack detection 

results with different colour structures with 

the proposed CNN model. It should be 

noted that they are made up of the same 

image yet different colours, in which Figure 

10a is the RGB image while Figure 10b is a 

grayscale image. A close examination of 

Figures 10a and 10b reveals that the 

presence of orange colour resulted in a 

significant increase in the number of FP 

regions. Consequently, the accuracy, 

precision, and F1 for Figure 10a is much 

lower than that of Figure 10b as shown in 

Table 8. The occurrence of a large number 

of FP regions are due to the colour of the 

testing image which is radically different 

from the training images used in the 

database. This explicitly reflects the low 

generalisability of Network A.  

 

  
(a) 

 
 

 
 

(b) 

Fig. 10. Images scanned using the trained and validated CNN: a) Normal color; and b) Grayscale 
 

Table 8. Detailed analysis of test images in Figure 10 
Test image TP FP TN FN Accuracy Precision Recall F1 

Figure 10a 16 60 23 0 0.39 0.21 1.00 0.35 

Figure 10b 16 27 55 1 0.72 0.37 0.94 0.53 

Average 0.56 0.29 0.97 0.44 

False Positive False Negative 

False Positive False Negative 
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3.1.4. Crack Detection under Different 

Shooting Angles 

Several testing images were 

photographed at different angles as 

illustrated in Figure 11. They can be divided 

into high angle (45 - 90), medium angle 

(0 - 45) and low angle (0). Based on the 

results presented in Figure 11, it can be 

noted that the majority of the cracks in these 

images are successfully detected. The 

existence of FN regions is very minimal. 

However, the number of FP regions 

increases by increasing the shooting angle. 

Table 9 shows the detailed test results for 

Figure 11. The images acquired at the low 

angle achieved the highest accuracy, 

precision, recall, and F1. In contrast, the 

medium and high angle images showed 

lower values for all 4 performance 

indicators. Both of these images showed 

similar values for the four performance 

indicators. The high number of FP regions 

in these testing images greatly reduced the 

value of precision and F1. Notwithstanding 

that, it is clearly shown that the accuracy 

and recall based on the proposed CNN are 

in an acceptable range and true cracks can 

be identified and detected. Based on the 

results shown in Figure 11 and Table 9, it 

can be concluded that the shooting angle 

has a degree of influence on the precision of 

the proposed CNN. At a higher shooting 

angle, the proposed CNN is expected to 

give a higher number of FP regions. 

However, the proposed CNN still satisfied 

the requirement of identifying and locating 

the cracks in the testing images. 
 

  
(a) 

  
(b) 

 
 

 
 

(c) 

Fig. 11. Images scanned using the trained and validated CNN: a) High angle; b) Medium angle; and c) Low 

angle 
 

Table 9. Detailed analysis of test images in Figure 11  
Test image TP FP TN FN Accuracy Precision Recall F1 

Figure 11a 28 72 120 1 0.67 0.28 0.97 0.43 

Figure 11b 32 71 116 2 0.67 0.31 0.94 0.47 

Figure 11c 28 23 169 1 0.89 0.55 0.97 0.70 

Average 0.74 0.38 0.96 0.53 

False Positive False Negative 
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3.2. Performance of the CNN under 

Various Image Distances 

In real applications, the performance of 

the CNN on detecting cracks is influenced 

by the distance between the camera and 

object. In order to reduce such effects, eight 

networks with combinations of sharp and 

blurred images are trained using different 

datasets as shown in Table 2. Subsequently, 

these networks are then used to classify the 

images in the test sets as depicted in Figure 

12. The test sets consist of four different 

classes of images taken in the distance of 

0.5 m, 1.0 m, 1.5 m, and 2.0 m, respectively.  

Figure 13 shows the performance 

indicators of all networks on the test sets. 

Among these networks, Network B appears 

to be the network with the best 

performance. The accuracy achieved by 

Network B increases gradually as the 

distance of the images in the test set 

increases from 0.5 m to 1.5 m. As the 

distance of the images increases from 1.5 m 

to 2.0 m, the accuracy of Network B shows 

a slight drop of 3.92%. The precision of 

Network B consistently outperformed most 

of the trained networks regardless of the 

image distances. This implies that the 

likelihood of misclassifying a non-crack as 

a crack is very minimal. The recall of 

Network B is slightly unsatisfactory as 

compared to other trained networks. This 

implies that Network B tends to miss more 

cracks as compared to the other trained 

networks. Since the F1 of Network B 

remains the highest among the trained 

networks, it can be said that the high 

precision outweighs the low recall of 

Network B and the low recall problem can 

be compensated by incorporating a larger 

volume of training data (Ryu, 2018). This 

suggests the highest robustness of Network 

B for crack detection across various 

distances of images from 0.5 m to 2.0 m. 

This detection performance is achieved due 

to the higher rate of TP diagnosis coupled 

with a lower number of FP in the detection 

of cracks incorporating replicated images of 

Level 1 blurriness for training. 

 

    
(a) 

 

    
(b) 

 

    
(c) 

    
(d) 

Fig. 12. Test sets taken in the distance of: a) 0.5 m; b) 1.0 m; c) 1.5 m; and d) 2.0 m 
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The accuracy achieved for Network A 

and Network H exhibited a similar trend as 

shown in Figure 13. Their accuracy rivals 

that of Network B. In fact, both Network A 

and Network H achieved slightly higher 

accuracy when the image distance was 0.5 

m. However, Network A and Network H 

achieved different precision, recall, and F1 

scores. By taking precision and recall into 

consideration, the F1 of Network A is 

significantly higher than that of Network H. 

Hence, it can be concluded that the true 

performance of Network A is better than 

Network H. As evidenced from Figure 13, 

the accuracy, precision, and F1 of Network 

C and D significantly increase as the 

distances of the images increases from 0.5 

m to 2.0 m. This indicates that the 

performance of Networks C and D 

improves as the distances of the images 

increases. This is attributed to the fact that 

both of the networks were trained by using 

blurred images only. This finding also 

supports the idea that higher image distance 

can be captured by using a more blurred 

image training set. The consistently high 

recall achieved by Network D suggests that 

this network can accurately capture true 

cracks regardless of image distances. This 

implies that training with a blurred image 

can improve the ability of the network to 

capture cracks with various image 

distances. 

 

  
(a) (b) 

  

  
(c) (d) 

Fig. 13. Performance of all networks on the test sets: a) Accuracy; b) Precision; c) Recall; and d) F1 
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To further verify the performance of 

blurred images in the training database, 

Networks E, F, and G are compared. 

Among these three networks, it is 

noticeable that Network G attained the 

highest accuracy and F1 across various 

distances of images from 0.5 m to 2.0 m. It 

is also noted that the performance of 

Network F is better than Network E, and 

Network G is better than Network F. This 

means that the performance of the network 

improves when a higher blurriness level is 

used in the training database across various 

distances of images. Therefore, it can be 

said that Network G has a better true 

performance than the other two networks. It 

is noted that the performance of these 

networks is poorer than Networks A and H. 

This finding suggests that training the CNN 

with additional images with a single 

blurriness level cannot improve the 

performance of the network. Such a 

combination of training databases may 

result in a decrease in the performance of 

the network. 

Different performance trends can be 

observed when comparing a network 

composed of merely blurred images with a 

network made up of both sharp images and 

blurred images. Network B consistently 

outperformed the accuracy and F1 of 

Network E for all distances of images. In 

contrast, Network G has a better 

performance on accuracy and F1 than that 

of Network D across various distances of 

images. Network C yielded a better 

performance as compared to Network F 

when the distances of images fall in the 

range of 1.5 m to 2.0 m. Although these 

networks achieved satisfactory accuracy 

during the training and validation process, 

the performance of the networks might 

suffer when used on images with significant 

deviations from the context represented in 

the training and validation set. Under these 

circumstances, the model could be 

improved by retraining with a wider range 

of databases. 

 

 

4. Conclusions 

 

This paper proposed a CNN-based 

framework for autonomous crack detection 

in concrete surfaces. The study aimed to 

increase the performance of the CNN 

algorithm that was least influenced by the 

mismatch of the dataset in training and 

testing caused by image blurriness artefacts. 

Hence, images of concrete cracks pulled 

from open-source databases Mendeley Data 

and Data in Brief were used in this study. 

Selected images were compiled into a 

single training database for training the 

CNN. A total of 53,905 images with 227  

227 pixels were chosen based on the 

requirements set. Subsequently, each image 

was blurred with three levels of blurriness. 

Unlike previous research, data 

augmentation in this study was carried out 

automatically with the use of a built-in 

function in MATLAB. The training images 

were allowed to flip horizontally and 

vertically in a probabilistic approach. The 

proposed CNNs were successfully 

developed to detect concrete cracks 

autonomously from images, with validation 

accuracy attained by all networks exceeding 

95%. The performance of the trained and 

validated CNN with the use of sharp images 

was evaluated using test sets with different 

pixels and under various lighting, crack 

widths, colour structures, and shooting 

angle conditions. A sliding window 

technique was deployed to perform the 

scanning of images larger than 227  227 

pixels. The accuracy obtained by the trained 

and validated CNN was lower than the 

validation accuracy recorded due to the 

presence of FPs in the region of dark 

lighting, dirt stains, fine scratches, and 

visible light spectrum. Additionally, the 

intercorrelations between blurriness and 

image distance are summarised, including:  

• As the distance of the images increases, 

the performance of the network trained 

with the use of blurred images 

significantly increases,  

• The highest performing range of 

blurriness level is 1, followed by 2 and 3, 
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• CNNs trained with a sharp image and 

single blurriness level do not improve 

the performance of the network across 

varying image distances, 

• Networks with the combination of sharp 

images and all blurriness level images 

exhibited similar accuracy trends 

compared to the network with only sharp 

images and  

• The network with the sole use of 

blurriness level 1 images as the dataset 

outperforms all other networks across 

varying distances of the images.  

It was observed that high shooting angle 

and uneven illumination has a negative 

effect on the accuracy of the proposed 

CNN. Therefore, this study concludes that 

the presence of blurred images in training 

data can solve the image distance issue 

associated with CNN. It could revolutionise 

automated inspection systems.  
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