
Civil Engineering Infrastructures Journal 2023, 56(1): 205-219 

DOI: 10.22059/CEIJ.2022.318133.1739 

 

RESEARCH PAPER   

   

 

Innovative Efficient Element for Analysis of FGM Plates Using FEM 

  
Shahnavaz, F.1 , Attarnejad, R.2* , Shaloudegi, K.3 and Kazemi Firouzjaei, R.4 

 
1 M.Sc., Researcher, School of Civil Engineering, College of Engineering, University of 

Tehran, Tehran, Iran. 
2 Professor, School of Civil Engineering, College of Engineering, University of Tehran, 

Tehran, Iran. 
3 M.Sc., Researcher, School of Civil Engineering, Clarkson, Potsdam, USA. 

4 M.Sc., Researcher, School of Civil Engineering, Polytechnic University of Catalonia 

(UPC), Barcelona, Spain. 
 

© University of Tehran 2021 

 

 
Received: 29 Jan. 2021;               Revised: 04 Dec. 2021;             Accepted: 04 Dec. 2021 

ABSTRACT: In order to obtain accurate results from displacement-based Finite Element 

Method (FEM), it is crucial to introduce accurate shape functions that interpolate the 

displacement field within an element. This paper attempts to provide such a new 

component by using Finite Element method using Basic Displacement Function (BDFs) 

for the free vibration analysis of plates with in-plane Functionally Graded Material 

(FGM). The first step is to introduce displacement functions and compute them using the 

energy method. Later, new shape functions are developed based on stiffness and force 

methods used to model the mechanical behavior of the element, wherein the shape 

functions benefit from the generality and accuracy of the stiffness and force methods. 

Last, the plate is analyzed using Finite Element method to derive the structural matrices 

from new shape functions. Several numerical examples demonstrate the accuracy and 

efficiency of the method, and a special material graded index named Ns is introduced. 

 

Keywords: Basic Displacement Functions (BDFs), Finite Element Method (FEM), Free 

Vibration, Functionally Graded Materials (FGMs), Kirchhoff-Love Plate Theory. 

  
 

1. Introduction 

 

There are many applications of thin 

rectangular plates in modern engineering, 

such as in civil engineering, mechanical 

engineering, marine industry, and 

aeronautical engineering. (Hamrit and 

Necib, 2018). Over the last century, many 

research studies have been conducted on 

plates. A mathematical model of the 

membrane theory of plates was first 

presented by Euler in the eighteenth century 

 
* Corresponding author E-mail: Attarnjd@ut.ac.ir    

(Naumenko and Eremeyev, 2017). In later 

years, Lagrange devised differential 

equations to describe plate free vibrations 

(Ramkumar et al., 1987). Over the years, a 

great deal of investigation has been 

conducted on the dynamic analysis of thin 

plates (Wang et al., 2017) as well as 

dynamic analyses of variable thickness 

plates such as sandwich panels (Vatani 

Oskouei and Kiakojouri, 2015). Leissa 

provides a thorough documentation of 

many of them (Leissa, 1969). The Kirchhoff 
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hypothesis dictates that thin plates will 

vibrate as a result of their classical vibration 

behavior. The use of structural elements 

with variable thickness reduces the weight 

of structure elements and improves material 

utilization, resulting in more economic 

design of structures. Static and stability 

analysis is an essential component of the 

design of these structures (Tenenbaum et 

al., 2020). 

Material properties of Functionally 

Graded Materials (FGMs) are continuously 

variable according to spatial coordinates. 

FGMs display gradual variations in material 

properties, unlike laminated composites 

that can suffer from interfacial stresses 

leading to delamination and crack 

propagation (Das, 2010). Changing the 

thickness direction or changing the in-plane 

material can be used to achieve this. 

Initially, the idea of FGMs was proposed by 

Bever and Shen (1997) to produce polymer 

(Bever. Since there is no blunt conversion 

in material properties across the confluence 

of dissimilar materials, FGMs avoid 

problems associated with conventional 

composites, such as large inter-laminar 

stresses, crack initiation, and delamination 

(Gupta, 2020). Afterward application of 

FGMs noteworthy increased in aerospace 

engineering and micro-electrical industry. 

Since the mid-1990s, FGMs have been 

applied in many fields, such as optics, 

human implants, engine components, 

turbine blades, and many others. 

Researchers have also given these FGMs 

considerable attention (Miyamoto et al., 

1999). According to the wide application of 

FGMs, the behavior of FGM structures has 

been studied in several studies such as 

beams, plates, and shells (Vidal et al., 

2021). However, most of these studies deal 

with FGMs with material indices changing 

in thickness direction merely (Njim et al., 

2021). 

In recent years, many researchers have 

investigated the static and dynamic analyses 

of plates with different plate theories in 

conjunction with the study of their material 

property variation. For example, the static 

analysis of functionally graded rectangular 

plates using third-order shear deformation 

theory was presented by Reddy (2000). 

Based on Reddy’s theory, Cheng and Batra 

(2000) investigated the identical 

eigenvalues between the functionally 

graded plates and those of membranes 

subjected to uniform in-plane loads. They 

also related the deflection of FGM plates 

predicted by the first-order and the third-

order shear deformation theory to that of an 

substitute compatible Kirchhoff plate. 

Moreover, several studies have been done 

on bi-directional FGM beams (Şimşek, 

2016). Among them, Goupee and Vel 

(2006) developed a methodology for the 

simulation and optimization of the vibration 

response of bi-directional functionally 

graded beams. To the best of the author’s 

knowledge, there are a few papers in the 

literature that have considered the in-plane 

material inhomogeneity. For instance, Liu 

et al. (2010) presented the free vibration of 

FGM plates with in-plane material 

inhomogeneity and obtained a Levy-type 

solution in the specific case where the plate 

is merely supported alongside to the 

material gradient direction. In addition, an 

elastoplastic Mindlin-Reissner plate is 

analyzed using a non-layered Finite 

Volume formulation (Fallah et al., 2017). 

Recently, with the inclusion of porosity, 

free vibration analysis was carried out on 

tapered Functionally Graded Material 

(FGM) plates (Kumar et al., 2021). 

Numerical method is also used to analyse 

the performance of walls (Shahir and 

Delfan, 2021). Based on modal strain 

energy and Dempster-Shafer evidence 

theory, a damage detection method is 

presented for finding damage in two-layer 

grids using only a few mode shapes 

(Teimouri et al., 2021). An asymptotic 

framework for layered plates is developed 

with piecewise uniform problem 

parameters. As well as functionally graded 

shells, coatings and interfacial layers, it 

allows various extensions (Kaplunov et al., 

2021). A two-parameter model of Winkler-

Pasternak's elastic medium with Aluminum 
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and Alumina porosity is used to model the 

interaction between FGM plate and elastic 

foundation (Saidi and Sahla, 2019). 

Considering porosities that may occur 

inside functionally graded materials 

(FGMs) during their fabrication, a higher-

order shear deformation model is developed 

for static and free vibration analyses of 

functionally graded beams (Hadji et al., 

2019). Also, the nonlinear bending of 

functionally graded (FG) circular sector 

plates has been investigated when they are 

subjected to transverse mechanical loading 

(Fallah and Karimi, 2019). 

In the case of general variations of the 

material and geometry of the plate, there is 

no closed-form solution, so alternative 

numerical techniques are required, e.g. the 

Rayleigh-Ritz method (Kumar, 2018), 

Differential Quadrature Method (DQM) 

(Bacciocchi et al., 2016), Differential Least-

Square-based Finite Difference (LSFD) 

(Liu et al., 2021), Differential Quadrature 

Element Method (DQEM) (Makvandi et al., 

2019), Transformed Differential 

Quadrature Method (TDQM) (Malekzadeh, 

2018), generalized differential quadrature 

rule (Lal and Siani, 2020), methods based 

on the Green Functions (Mora et al., 2016), 

2D Differential Transform Method (2D-

DTM) (Chiba, 2019). FEM is one of these 

techniques. 

The goal of this paper is to present an 

effective tool for analyzing plates with in-

plane Functionally Graded Materials 

(FGMs) using the FEM. A unit load method 

is used to derive Basic Displacement 

Functions (BDFs). Afterward, in terms of 

BDFs, new shape functions have been 

derived from a mechanical perspective. The 

Finite Element method is finally used in 

order to derive structural stiffness and a 

consistent mass matrix for the in-plane 

FGM plate. The present method has been 

illustrated using numerical examples and 

graphs to illustrate both its accuracy and 

economy. Moreover, a special material 

graded index has been presented, namely 

Ns. This method is really efficient for 

analyzing FGM plates and makes it possible 

to do a Finite Element analysis with lower 

segments. Thus, it will result to have the 

answers more quickly on a medium 

computer. 
 

2. Materials and Methods 
 

A general case is considered in this study. 

In Figure 1, a rectangular FGM plate with 

length a and width b is shown in a Cartesian 

coordinate system. Also, 

h(x,y)=h0×H(x)×H(y): is the variable 

thickness of the plate, where h0: is plate 

thickness at the coordinate center, and H(x) 

and H(y): stand for thickness abnormality 

along x and y directions, respectively. 

Figure 2 depicts positive signs for the shear 

forces and bending moments. The material 

properties, such as the elastic modulus, E  

and mass density,   are varying in-plane 

as follows: 
 

rrll EVEVE +=
    

(1) 

rrll VV  +=
      

(2) 

 

in which: 
 

1=+ rl VV
         

(3) 

 

where Vl and Vr: are the volumes of fraction 

in the left and right sides of the plate along 

the direction with material inhomogeneity 

which y : is the direction in this study. 

 In order to understand Kirchhoff-Love 

plate theory, the following assumptions has 

been made (Szilard, 2004): 

1. z is not affected by displacement along 

z-direction; 

2. Before deformation, portions of the plate 

that were parallel to its middle surface 

remain parallel to it after deflection; 

3. Deformation due to shear is ignored; 

4. The deflections and rotations of plates 

are small compared to their dimensions; 

5. Transverse stresses in the plate surface 

direction can be ignored. 

As a result of Kirchhoff-Love plate 

theory, the following relationships can be 

written as follows.  
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Fig. 1. FGM rectangular plate in a Cartesian coordinate system 

 

 
Fig. 2. Positive sign conventions for shear forces and bending moments 

 

Deranication in x, y and z directions are 

given as: 
 

x

w
zzu xx



−=−= 0

,  

y

w
zzu yy



−=−= 0

, 0wuz =    

(4) 

 

where x and y: stand for bending rotations 

about x and y axis, respectively, in the 

following manner: 
 

x

w
x




= 0

,     y

w
y




= 0

 
(5) 

 

and w0: is the displacement function. 
Strain/displacement relations give:  
 

2

0

2
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0
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y

w
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−=
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yx

w
zxy
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−= 0
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,   0=== zzyzxz 

 

(6) 

 Constitutive equations give: 
 

𝜎𝑥𝑥 =
𝐸

1−𝑣2 (𝜀𝑥𝑥 + 𝑣𝜀𝑦𝑦) =
−𝐸𝑧

1−𝑣2 (
𝜕2𝑤0

𝜕𝑥2 + 𝑣
𝜕2𝑤0

𝜕𝑦2 )   (7) 

𝜎𝑦𝑦 =
𝐸

1−𝑣2 (𝜀𝑦𝑦 + 𝑣𝜀𝑥𝑥) =
−𝐸𝑧

1−𝑣2 (
𝜕2𝑤0

𝜕𝑦2 + 𝑣
𝜕2𝑤0

𝜕𝑥2 )   (8) 

𝜎𝑥𝑦 =
𝐸

1−𝑣2
(

1−𝑣

2
𝜀𝑥𝑦) =

−𝐸𝑧

1+𝑣
(

𝜕2𝑤0

𝜕𝑥𝜕𝑦
)         (9) 

 

Applying Eqs. (7) to (9), moments per 

unit length are represented by 
 

𝑀𝑥𝑥 = ∫ 𝑧
ℎ/2

−ℎ/2
𝜎𝑥𝑥𝑑𝑧 = −𝐷(

𝜕2𝑤0

𝜕𝑥2 + 𝑣
𝜕2𝑤0

𝜕𝑦2 )  (10) 

𝑀𝑦𝑦 = ∫ 𝑧
ℎ/2

−ℎ/2
𝜎𝑦𝑦𝑑𝑧 = −𝐷(

𝜕2𝑤0

𝜕𝑥2 + 𝑣
𝜕2𝑤0

𝜕𝑦2 ) (11) 

𝑀𝑥𝑦 = ∫ 𝑧
ℎ/2

−ℎ/2
𝜎𝑥𝑦𝑑𝑧 = −𝐷(1 − 𝑣)(

𝜕2𝑤0

𝜕𝑥𝜕𝑦
)  (12) 

 

where 3

2
),(

)1(12
yxh

E
D

−
= : is the bending 

rigidity of the plate and  : is Poisson’s ratio 

which is consistent. 

Based on a harmonic abnormality of 

w0(x,y,t) as the transverse displacement of 

the FGM plate, Eq. (13) can be written. 
 

tieyxwtyxw ),(),,(0 =
         

(13) 
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where  : denotes natural frequency. FGM 

variable thickness thin plates obey the 

following differential equation (Van Vinh 

et al., 2021): 

 

𝜕
2

𝜕𝑥2
[−𝐷 (

𝜕2𝑤

𝜕𝑥2
+ 𝑣

𝜕2𝑤

𝜕𝑦2
)]

+ 2
𝜕2𝑤0

𝜕𝑥𝜕𝑦
[−𝐷(1 − 𝑣) (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)]

+
𝜕2

𝜕𝑦2
[−𝐷 (

𝜕2𝑤

𝜕𝑦2
+ 𝑣

𝜕2𝑤

𝜕𝑦𝑥2
)]

= −𝜌ℎ𝑤𝜔2 +
𝜌ℎ3𝜔2

12
(

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) 

(14) 

 

2.1. BDFs Definition 

Various types of beams have been used 

in different ways with Basic Displacement 

Functions (BDFs) (Attarnejad et al., 2010). 

It discusses how to calculate BDFs for 

tapered FGM plates, followed by a 

discussion of their applications in deriving 

nodal flexibility matrices. 

Pachenari and Attarnejad (2014a) 

interpreted BDFs to be the nodal 

displacements of FGM plates whose 

boundary conditions are Clamped-

Clamped-Free-Free (C-C-F-F). Since it has 

only one free node and other conditions 

derived from it, they assumed this 

condition. An element's x- or y-axis 

transverse displacement or rotation angle is 

the result of a unit load acting at x- or y-

distance. It is possible to specify detail 

BDFs for node i as below (the edges 

adjacent to node i are free, whereas the 

edges adjacent to the other are clamped): 

wib : is load acting at x, y causes a transverse 

displacement of node i (Figure 3a); xib : is 

a unit load acting at x, y bends rotation of 

node i in the x-direction (Figure 3b); yib : is 

a unit load acting at x, y bends the rotation 

of node i in the y-direction (Figure 3c). 

nodes i = 1, 2, 3 and 4 are respectively 

shown in Figure 3. The reciprocal theorem 

is applied to all the BDFs in order to 

determine their equivalent systems. BDFs 

are the transverse displacements of an 

element due to a unit nodal load or moment. 

An arbitrary point (such as point(x, y)) on 

the element is considered. As a result, BDFs 

in node i are equivalent since edges that end 

at node i are free, but others are clamped: 

wib : is an acting unit load at node i causes 

transverse displacement at distances x and y 

(Figure 4a); 
xib : is an x-directed moment 

acting on node i for distance x and y will 

result in a transverse displacement at 

distances x and y; 
yib : is the y-axis motion 

of the unit moment at node i at distances x 

and y is the result of transverse 

displacement at distances x and y (Figure 

4c). 

 

2.2. Nodal Flexibility Matrices 

According to the concept of equivalent 

definitions of BDFs, nodal flexibility 

matrices can be derived for node i of the 

FGM plate element. 

On the basis of the equivalent definitions 

of BDFs and its first derivative, nodal 

flexibility matrices can be determined for 

all nodes in terms of BDFs: 

 

 
Fig. 3. The transverse displacements of an arbitrary point due to a unit nodal load: a) Load acting at x, y causes a 

transverse displacement of node; b) Unit load acting at x, y bends rotation of node 1 in the x-direction; and c) 

unit load acting at x, y bends the rotation of node 1 in the y-direction 
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𝐹𝑖𝑖 = [

𝑏𝑤𝑖(𝑥,𝑦) 𝑏𝜃𝑥𝑖(𝑥,𝑦) 𝑏𝜃𝑦𝑖(𝑥,𝑦)

𝑑𝑏𝑤𝑖(𝑥,𝑦)

𝑑𝑥
|𝑥𝑖,𝑦𝑖

𝑑𝑏𝜃𝑥𝑖(𝑥,𝑦)

𝑑𝑥
|𝑥𝑖,𝑦𝑖

𝑑𝑏𝜃𝑦𝑖(𝑥,𝑦)

𝑑𝑥
|𝑥𝑖,𝑦𝑖

𝑑𝑏𝑤𝑖(𝑥,𝑦)

𝑑𝑦
|𝑥𝑖,𝑦𝑖

𝑑𝑏𝜃𝑥𝑖(𝑥,𝑦)

𝑑𝑦
|𝑥𝑖,𝑦𝑖

𝑑𝑏𝜃𝑦𝑖(𝑥,𝑦)

𝑑𝑦
|𝑥𝑖,𝑦𝑖

] 

 

By multiplication of flexibility matrix 

and force matrix, the displacement of each 

node obtains.  

 

2.3. BDFs Computation 

BDFs can be calculated for each node 

using methods based on energy because 

they contain pure mechanical essence. In 

this study the unit load method (virtual 

work) is employed as follow (Zakeri et al., 

2016): 

 

Node 1: 
𝑏𝑤1(𝑥,𝑦)

=
1

𝑚
∫ ∫

(𝐴 − 𝑠)(𝑥 − 𝑠)

𝑠3𝑟𝑡3𝑙 (
𝑥 − 𝐴

𝑘
)

𝑐
𝑥

𝛼𝐴

(
𝑦 − 𝐵

𝑗
)

𝑑
𝑦

𝛽𝐵

𝑑𝑠𝑑𝑡 

+
1

𝑚
∫ ∫

(𝐵 − 𝑡)(𝑦 − 𝑡)

𝑠3𝑟𝑡3𝑙
(

𝑥 − 𝐴

𝑘
)

𝑐
𝑥

𝛼𝐴

(
𝑦 − 𝐵

𝑗
)

𝑑
𝑦

𝛽𝐵

𝑑𝑠𝑑𝑡 

𝑏𝜃1(𝑥,𝑦) =
1

𝑚
∫ ∫

(𝑥 − 𝑠)

𝑠3𝑟𝑡3𝑙 (
𝑥 − 𝐴

𝑘
)𝑐

𝑥

𝛼𝐴

(
𝑦 − 𝐵

𝑗
)𝑑

𝑦

𝛽𝐵

𝑑𝑠𝑑𝑡 

𝑏𝜃1(𝑥,𝑦) =
1

𝑚
∫ ∫

(𝑦 − 𝑡)

𝑠3𝑟𝑡3𝑙
(
𝑥 − 𝐴

𝑘
)𝑐

𝑥

𝛼𝐴

(
𝑦 − 𝐵

𝑗
)𝑑

𝑦

𝛽𝐵

𝑑𝑠𝑑𝑡 

 

Node 2: 
𝑏𝑤2(𝑥,𝑦)

=
1

𝑚
∫ ∫

𝑠(𝑥 − 𝑠)

𝑠3𝑟𝑡3𝑙 (
𝑥 − 𝐴

𝑘
)

𝑐
𝐴

𝑥

(
𝑦 − 𝐵

𝑗
)

𝑑
𝑦

𝛽𝐵

𝑑𝑠𝑑𝑡 

+
1

𝑚
∫ ∫

(𝐵 − 𝑡)(𝑦 − 𝑡)

𝑠3𝑟𝑡3𝑙 (
𝑥 − 𝐴

𝑘
)

𝑐
𝑥

𝛼𝐴

(
𝑦 − 𝐵

𝑗
)

𝑑
𝑦

𝛽𝐵

𝑑𝑠𝑑𝑡 

𝑏𝜃𝑥2(𝑥,𝑦)

=
1

𝑚
∫ ∫

(𝑥 − 𝑠)

𝑠3𝑟𝑡3𝑙 (
𝑥 − 𝐴

𝑘
)𝑐

𝑥

𝛼𝐴

(
𝑦 − 𝐵

𝑗
)𝑑

𝑦

𝛽𝐵

𝑑𝑠𝑑𝑡 

𝑏𝜃𝑦2(𝑥,𝑦)

=
1

𝑚
∫ ∫

(𝑦 − 𝑡)

𝑠3𝑟𝑡3𝑙 (
𝑥 − 𝐴

𝑘
)𝑐

𝐴

𝑥

(
𝑦 − 𝐵

𝑗
)𝑑

𝑦

𝛽𝐵

𝑑𝑠𝑑𝑡 

 

Node 3: 

𝑏𝑤3(𝑥,𝑦)

=
1

𝑚
∫ ∫

𝑠(𝑥 − 𝑠)

𝑠3𝑟𝑡3𝑙 (
𝑥 − 𝐴

𝑘
)

𝑐
𝐴

𝑥

(
𝑦 − 𝐵

𝑗
)

𝑑
𝐵

𝑦

𝑑𝑠𝑑𝑡 

+
1

𝑚
∫ ∫

−𝑡(𝑦 − 𝑡)

𝑠3𝑟𝑡3𝑙 (
𝑥 − 𝐴

𝑘
)

𝑐
𝑥

𝛼𝐴

(
𝑦 − 𝐵

𝑗
)

𝑑
𝑦

𝛽𝐵

𝑑𝑠𝑑𝑡 

𝑏𝜃𝑥3(𝑥,𝑦)

=
1

𝑚
∫ ∫

(𝑥 − 𝑠)

𝑠3𝑟𝑡3𝑙 (
𝑥 − 𝐴

𝑘
)𝑐

𝐴

𝑥

(
𝑦 − 𝐵

𝑗
)𝑑

𝐵

𝑦

𝑑𝑠𝑑𝑡 

𝑏𝜃𝑦3(𝑥,𝑦)

=
1

𝑚
∫ ∫

(𝑦 − 𝑡)

𝑠3𝑟𝑡3𝑙 (
𝑥 − 𝐴

𝑘
)𝑐

𝐴

𝑥

(
𝑦 − 𝐵

𝑗
)𝑑

𝐵

𝑦

𝑑𝑠𝑑𝑡 

 

Node 4: 
𝑏𝑤4(𝑥,𝑦)

=
1

𝑚
∫ ∫

(𝐴 − 𝑠)(𝑥 − 𝑠)

𝑠3𝑟𝑡3𝑙
(

𝑥 − 𝐴

𝑘
)

𝑐
𝑥

𝛼𝐴

(
𝑦 − 𝐵

𝑗
)

𝑑
𝐵

𝑦

𝑑𝑠𝑑𝑡 

+
1

𝑚
∫ ∫

−𝑡(𝑦 − 𝑡)

𝑠3𝑟𝑡3𝑙 (
𝑥 − 𝐴

𝑘
)

𝑐
𝑥

𝛼𝐴

(
𝑦 − 𝐵

𝑗
)

𝑑
𝑦

𝛽𝐵

𝑑𝑠𝑑𝑡 

𝑏𝜃𝑥4(𝑥,𝑦)

=
1

𝑚
∫ ∫

(𝑥 − 𝑠)

𝑠3𝑟𝑡3𝑙
(
𝑥 − 𝐴

𝑘
)𝑐

𝑥

𝛼𝐴

(
𝑦 − 𝐵

𝑗
)𝑑

𝐵

𝑦

𝑑𝑠𝑑𝑡 

𝑏𝜃𝑦4(𝑥,𝑦)

=
1

𝑚
∫ ∫

(𝑦 − 𝑡)

𝑠3𝑟𝑡3𝑙
(
𝑥 − 𝐴

𝑘
)𝑐

𝑥

𝛼𝐴

(
𝑦 − 𝐵

𝑗
)𝑑

𝐵

𝑦

𝑑𝑠𝑑𝑡 

 

where A: is the length, B: is the width of the 

plate, s and t: are integral variables, r and l: 

are thickness parameters, k and j: are 

stiffnesses (EI) in the x-direction and y-

direction, c/d: is the inhomogeneous ratio in 

x and y directions (Ex/Ey and c+d=1. The 

following properties are assumed for the 

FGM plate: 
 

 lr

B

y

A

x
hyxh )()(),( 1= and 1,

3

1
r , 1,

3

1
l  

2

1
, =dc  

 

 m is defined as: 

)1(12 2

333

10

−
=

lr BAhE
m

  

(16) 
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Figure 4 shows the parameters of Eq. 

(15). 

Thus, the equations could be rewritten 

as: 

 

Node 1: 

𝑏𝑤1(𝑥,𝑦) =
1

𝑚

𝑥2(𝑥 − 𝑘)−3𝑟

(1 − 3𝑟)(3 − 3𝑟)

(2𝐴 − 𝑥)𝑦(𝑦 − 𝑗)−3𝑙

1 − 3𝑙
 

+
1

𝑚

𝑦2(𝑦 − 𝑗)−3𝑟

(1 − 3𝑙)(3 − 3𝑙)

(2𝐵 − 𝑦)𝑥(𝑥 − 𝑘)−3𝑟

1 − 3𝑟
 

𝑏𝜃𝑥1(𝑥,𝑦) =
1

𝑚

𝑥2(𝑥 − 𝑘)−3𝑟

(2 − 3𝑟)(1 − 3𝑟)

𝑦(𝑦 − 𝑗)−3𝑙

(1 − 3𝑙)
 

𝑏𝜃𝑦1(𝑥,𝑦) =
1

𝑚

𝑥(𝑥 − 𝑘)−3𝑟

(1 − 3𝑟)

𝑦2(𝑦 − 𝑗)−3𝑙

(1 − 3𝑙)(2 − 3𝑙)
 

 

Node 2: 

𝑏𝑤2(𝑥,𝑦) =
1

𝑚
(𝐴2−3𝑟 (

𝐴

3 − 3𝑟
−

𝑥

2 − 3𝑟
)

+
𝑥3(𝑥 − 𝑘)−3𝑟

(3 − 3𝑟)(2 − 3𝑟)
)

𝑦(𝑦 − 𝑗)−3𝑙

(1 − 3𝑙)
 

+
1

𝑚

𝑦2(𝑦 − 𝑗)−3𝑟

(2 − 3𝑙)
(

𝐵

1 − 3𝑙
−

𝑦

3 − 3𝑙
)

+
𝐴1−3𝑟 − 𝑥3(𝑥 − 𝑘)−3𝑟

(1 − 3𝑙)
 

𝑏𝜃𝑥2(𝑥,𝑦) =
1

𝑚
(𝐴1−3𝑟 (

−𝐴

2 − 3𝑟
+

𝑥

1 − 3𝑟
)

+
𝑥2(𝑥 − 𝑘)−3𝑟

(2 − 3𝑟)(1 − 3𝑟)
)

𝑦(𝑦 − 𝑗)−3𝑙

(1 − 3𝑙)
 

𝑏𝜃𝑦2(𝑥,𝑦) =
1

𝑚

𝐴1−3𝑟 − 𝑥(𝑥 − 𝑘)−3𝑟

(1 − 3𝑟)

𝑦2(𝑦 − 𝑗)−3𝑙

(1 − 3𝑙)(2 − 3𝑙)
 

 

Node 3: 
𝑏𝑤3(𝑥,𝑦)

=
1

𝑚
(𝐴2−3𝑟 (

𝐴

3 − 3𝑟
−

𝑥

2 − 3𝑟
)

+
𝑥3(𝑥 − 𝑘)−3𝑟

(3 − 3𝑟)(2 − 3𝑟)
)

𝐵1−3𝑙𝑦(𝑦 − 𝑗)−3𝑙

(1 − 3𝑙)
 

+
1

𝑚
(𝐵2−3𝑙 (

𝐵

3 − 3𝑙
−

𝑦

2 − 3𝑙
)

+
𝑦3(𝑦 − 𝑗)−3𝑟

(3 − 3𝑙)(2 − 3𝑙)
)(

𝐴1−3𝑟 − 𝑥3(𝑥 − 𝑘)−3𝑟

(1 − 3𝑙)
) 

𝑏𝜃𝑥3(𝑥,𝑦)

=
1

𝑚
(𝐴1−3𝑟 (

−𝐴

2 − 3𝑟
+

𝑥

1 − 3𝑟
)

−
𝑥2(𝑥 − 𝑘)−3𝑟

(2 − 3𝑟)(1 − 3𝑟)
)

𝐵1−3𝑙 − 𝑦(𝑦 − 𝑗)−3𝑙

(1 − 3𝑙)
 

𝑏𝜃𝑦3(𝑥,𝑦) =
1

𝑚

𝐴1−3𝑟 − 𝑥(𝑥 − 𝑘)−3𝑟

(1 − 3𝑟)
(𝐵1−3𝑙(

−𝐵

2 − 3𝑙

−
𝑦

1 − 3𝑙
)

𝑦2(𝑦 − 𝑗)−3𝑙

(1 − 3𝑙)(2 − 3𝑙)
) 

 

Node 4: 
𝑏𝑤4(𝑥,𝑦)

=
1

𝑚
(

𝐴𝑥2(𝑥 − 𝑘)−3𝑟

(1 − 3𝑟)(2 − 3𝑟)

−
𝑥3(𝑥 − 𝑘)−3𝑟

(3 − 3𝑟)(2 − 3𝑟)
)

𝐵1−3𝑙𝑦(𝑦 − 𝑗)−3𝑙

(1 − 3𝑙)
 

+
1

𝑚
(𝐵2−3𝑙 (

𝐵

3 − 3𝑙
−

𝑦

2 − 3𝑙
)

+
𝑦3(𝑦 − 𝑗)−3𝑟

(3 − 3𝑙)(2 − 3𝑙)
)(

𝑥(𝑥 − 𝑘)−3𝑟

(1 − 3𝑟)
) 

𝑏𝜃𝑥4(𝑥,𝑦) =
1

𝑚

𝑥2(𝑥 − 𝑘)−3𝑟

(2 − 3𝑟)(1 − 3𝑟)

𝐵1−3𝑙 − 𝑦(𝑦 − 𝑗)−3𝑙

(1 − 3𝑙)
 

𝑏𝜃𝑦4(𝑥,𝑦) =
1

𝑚

𝑥2(𝑥 − 𝑘)−3𝑟

(1 − 3𝑟)
(𝐵1−3𝑙(

−𝐵

2 − 3𝑙

−
𝑦

1 − 3𝑙
)

𝑦2(𝑦 − 𝑗)−3𝑙

(1 − 3𝑙)(2 − 3𝑙)
) 

 

Considering a tapered FGM plate under 

transverse load q(x,y), a two-determinate 

analysis can be used to calculate the support 

reactions, i.e. C-C-F-F plates (Figure 5). It 

can be written using the superposition 

principle: 
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(17) 

 

 

 
Fig. 4. Plate parameters: a) Three-dimensional view of the plate; b) Plate with fixed thickness; c) Plate with 

gradually increasing thickness; and d) Plate with gradually decreasing thickness 
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Fig. 5. Positive directions: a) Load acting at x, y causes a transverse displacement of Node 1; b) Unit load acting 

at x, y bends rotation of Node 1 in the x-direction; c) Unit load acting at x, y bends the rotation of Node 1 in the 

y-direction; d) Load acting at x, y causes a transverse displacement of Node 2; e) Unit load acting at x, y bends 

rotation of Node 2 in the x-direction; f) Unit load acting at x, y bends the rotation of Node 2 in the y-direction; g) 

Load acting at x, y causes a transverse displacement of Node 3; h) Unit load acting at x, y bends rotation of Node 

3 in the x-direction; i) Unit load acting at x, y bends the rotation of Node 3 in the y-direction; j) Load acting at x, 

y causes a transverse displacement of Node 4; k) unit load acting at x, y bends rotation of Node 4 in the x-

direction; and l) Unit load acting at x, y bends the rotation of Node 4 in the y-direction 

 

in cases (a) - (c), 
11 , xw  : stand for the nodal 

displacements at node i in Figures 5a-5c, 

respectively. BDFs can be used to measure 

nodal displacements at node 1: 

 

dxdy

yxb

yxb

yxb

yxq

w
B

B

A

A

y

x

w

z

b

y

x  
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(18) 
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


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
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1
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F
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(19) 

The matrix F11 represents the nodal 

flexibility of node 1 in Eq. (8). By using 

Eqs. (18) to (20), one obtains: 
 

dxdy

yxb

yxb

yxb

yxqF

M

M

F
B

B

A

A

y

x

w

z

y

x  

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1

1

11

1

1
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 (20) 
 

in which 1

11

−F  is the nodal stiffness matrix of 

node 1. Similarly, other nodes also receive 

support reactions. Thus the support 

reactions of node i (i =1, .., 4) are: 
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dxdy

yxb

yxb
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yxqF

M
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 (21) 

 

Support reactions with opposite signs 

have the same magnitude as nodal 

equivalent forces, so the vector F 

containing nodal equivalent forces is equal: 

 

 =

B

B

A

A

z bdxdyyxqF
 

),(

  

(22) 

 

where  and 

 Tyxwyxwyxwyxw bbbbbbbbbbbbb 444333222111 =  

are the matrices indicating nodal stiffness 

and nodal BDFs for nodes 1 to 4. 

Comparing Eq. (7) with Eq. (22), based 

on the BDFs, new shape functions are 

created: 

 

= TbN   
(23) 

 

The stiffness matrices are determined by 

using Eq. (7) to Eq. (9). Any analysis should 

follow these steps. A program developed in 

MATLAB to do these steps automatically 

and make it practical and economical. 

The shape function of Figure 5a is shown 

in MATLAB as an example in Figure 6. 

Based on Figure 6 the displacement of node 

1 is the superposition of the three forces (P, 

Mx and My) that are calculated by this 

multiplication. In the case of rotation, the 

derivative is needed. The nodal stiffness 

matrix is evaluated after inverting the nodal 

flexibility matrix. Using a superposition of 

the shape functions, each edge's movement 

can be calculated. 

FEM can calculate shapes such as 

circular, triangular, or trapezoidal by using 

rectangular elements. (Bramble and Zlámal, 

1970). The examples of the other shapes are 

outside the scope of this paper. 

 

 
Fig. 6. First Shape function of Node 1 

 

3. Results and Discussion 
 

A step-by-step procedure is described 

below for performing a structural analysis 

of FGM plates using BDFs: 

Step 1: Calculation of BDFs using Section 

2.2. 

Step 2: Matrix analysis of nodal flexibility 

using Eq. (15). 

Step 3: Computation of   using Eq. (22). 

Step 4: Reaching the shape functions using 

Eq. (23). 

Step 5: Formulation of stiffness matrices 

using Eq. (7) to Eq. (9). 

 Demonstrating the accuracy and 

applicability of 2D-DTM in free vibration 

analysis of Kirchhoff plate with in-plane 

functionally graded material, the following 

examples are given numerically as a 

validation test of the method. To achieve 

this, consider a rectangular in-plane FGM 

plate, with a length of a and a width of b, is 

shown in Figure 1. The material properties 

such as the elastic modulus E and mass 

density  are varying in-plane as mentioned 

in Section 2.1. 

 

rrll EVEVE +=
              (24) 

rrll VV  +=
 

(25) 

1=+ rl VV
       

(26) 

 

The most appropriate and simplest 

distribution of materials property is power-

low distribution as follows 
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n

l byV )(=
   ,   

])(1[ n

r byV −=
      

(27) 

 

where n: is the material graded index which 

is a real number such as 0, 0.5, 1, 2. 

Consequently, Eq. (24) and Eq. (25) can be 

represented as: 
 

r

n

l

n EbyEbyE ])(1[)( −+=
   ,   

r

n

l

n byby  ])(1[)( −+=
      

(28) 

 

Assuming the constant Poisson’s ratio 

and substituting Eq. (28) in Eq. (24), Eq. 

(25) can be rewritten as follows, which is 

the general differential equation of the FGM 

plates, after replacing all parameters: 
 

𝜕2

𝜕𝜉2
[−

(
𝑦
𝑏

)
𝑛

𝐸1 + [1 − (
𝑦
𝑏

)
𝑛

] 𝐸𝑟

12(1 − 𝑣2)
ℎ𝑦3 (𝑏4

𝜕2𝑤

𝜕𝜉2

+ 𝑣𝑎2𝑏2
𝜕2𝑤

𝜕𝜂2
)] 

+2
𝜕2

𝜕𝜉𝜕𝜂
[−

(
𝑦
𝑏

)
𝑛

𝐸1 + [1 − (
𝑦
𝑏

)
𝑛

] 𝐸𝑟

12(1 − 𝑣2)
ℎ𝑦3𝑎2𝑏2(1

− 𝑣) (
𝜕2𝑤

𝜕𝜉𝜕𝜂
)] 

+
𝜕2

𝜕𝜂2
[−

(
𝑦
𝑏

)
𝑛

𝐸1 + [1 − (
𝑦
𝑏

)
𝑛

] 𝐸𝑟

12(1 − 𝑣2)
ℎ𝑦3(𝑎4

𝜕2𝑤

𝜕𝜂2

+ 𝑣𝑎2𝑏2 (
𝜕2𝑤

𝜕𝜉2
)] 

+[(
𝑦

𝑏
)

𝑛

𝜌1 + [1 − (
𝑦

𝑏
)

𝑛

] 𝜌𝑟]ℎ𝑤𝑎4𝑏4𝜔2 

−
(

𝑦
𝑏

)
𝑛

𝜌1 + [1 − (
𝑦
𝑏

)
𝑛

] 𝜌1

12
ℎ3𝜔2 (𝑎2𝑏4

𝜕2𝑤

𝜕𝜉2

+ 𝑎4𝑏2
𝜕2𝑤

𝜕𝜂2
) = 0 

(29) 
 

The FGM plate considered here is made 

from ceramic and metal, in which the 

material is fully ceramic (Ec = 7.65 × 1010 

Pa  and ρc = 2.5 × 103 kg/m3) at 

)0(0 == y  and fully metal (Em = 

2.06×1011 Pa and ρm = 7.85 × 103 kg/m3) at 

)1( == by  and the constant Poisson’s 

ratio is assumed as 3.0= . 

Considering different boundary 

conditions of the various edges of a square 

plate such as Simply supported (S), 

Clamped (C) and Free edge (F), the 

presented general procedure has been 

employed to calculate the first non-

dimensional transverse natural frequency 

(  which is followed up 
0

022

D

h
l


= in 

which 3

2

0
0

)1(12
h

E
D

−
= , c =0  and 

cEE =0
) of the considered plate for different 

values of the n material graded index, and a , 

plate width. The results are shown in Tables 

1-4 and compared with those reported by 

Liu et al. (2010). In these tables, all the 

plates are simply supported 0=x  and 
ax =  which are denoted by the two first 

letters. Similarly, the boundaries conditions 

at 0=y  and by =  are shown by the third 

and fourth letters respectively. As it is 

demonstrated in the tables, the results have 

excellent agreement with those of Levy-

type solution obtained by Liu et al. (2010). 

This close agreement clearly demonstrates 

the capability of the present general method 

in calculating the non-dimensional natural 

frequency of in-plane FGM plates.  This 

general method can be applied for any other 

recursive formula which is obtained from 

the governing differential equation of the 

plate with arbitrary material and 

geometrical properties. 
 

 

Table 1. The values of non-dimensional natural frequency  for different boundary conditions  
α = 1 

n Method SSCS SSCF SSCC SSSF SSSC SSSS SSFS SSFC SSFF 

0 
Differ. Eq. 4.863 3.562 5.381 3.418 4.863 4.443 3.418 3.562 3.104 

BDFs 4.863 3.563 5.380 3.419 4.863 4.443 3.417 3.562 3.103 

0.5 
Differ. Eq. 4.644 3.369 5.143 3.419 4.717 4.277 3.380 3.555 3.940 

BDFs 4.645 3.370 5.143 3.418 4.718 4.275 3.382 3.556 3.942 

1 
Differ. Eq. 4.641 3.349 5.199 3.243 4.777 4.306 3.433 3.624 3.016 

BDFs 4.643 3.348 5.202 3.245 4.780 4.307 3.432 3.623 3.016 

2.5 
Differ. Eq. 4.769 3.347 5.408 3.247 4.941 4.413 3.480 3.671 3.039 

BDFs 4.768 3.347 5.410 3.248 4.941 4.412 3.481 3.672 3.042 
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Table 2. The values of non-dimensional natural frequency  for different boundary conditions 

α = 5 

n Method SSCS SSCF SSCC SSSF SSSC SSSS SSFS SSFC SSFF 

0 
Differ. Eq. 3.964 1.963 4.753 1.159 3.964 3.204 1.160 1.964 0.614 

BDFs 3.964 1.964 4.756 1.162 3.964 3.205 1.162 1.965 0.614 

0.5 
Differ. Eq. 3.707 1.727 4.531 1.160 3.894 3.095 1.178 2.097 0.595 

BDFs 3.706 1.730 4.533 1.160 3.893 3.095 1.178 2.097 0.595 

1 
Differ. Eq. 3.703 1.665 4.583 1.068 3.960 3.101 1.209 2.198 0.597 

BDFs 3.706 1.667 4.585 1.071 3.962 3.103 1.212 2.199 0.598 

2.5 
Differ. Eq. 3.801 1.652 4.806 1.059 4.112 3.139 1.230 2.246 0.602 

BDFs 3.803 1.584 4.805 1.062 4.113 3.141 1.229 2.246 0.603 
 

Table 3. The values of non-dimensional natural frequency  for different boundary conditions  

α = 20 

n Method SSCS SSCF SSCC SSSF SSSC SSSS SSFS SSFC SSFF 

0 
Differ. Eq. 3.929 1.881 4.732 0.562 3.929 3.146 0.568 1.881 0.153 

BDFs 3.930 1.883 4.735 0.563 3.930 3.146 0.568 1.882 0.153 

0.5 
Differ. Eq. 3.669 1.631 4.511 0.569 3.863 3.040 0.579 2.028 0.148 

BDFs 3.671 1.632 4.513 0.570 3.863 3.042 0.580 2.031 0.148 

1 
Differ. Eq. 3.665 1.562 4.562 0.522 3.929 3.045 0.595 2.133 0.149 

BDFs 3.667 1.565 4.565 0.523 3.930 3.046 0.596 2.136 0.149 

2.5 
Differ. Eq. 3.760 1.547 4.785 0.517 4.081 3.075 0.606 2.183 0.150 

BDFs 3.761 1.546 4.784 0.519 4.084 3.075 0.608 2.183 0.150 
 

Table 4. The values of non-dimensional natural frequency  for different boundary conditions 

α = 1000 

n Method SSCS SSCF SSCC SSSF SSSC SSSS SSFS SSFC SSFF 

0 
Differ. Eq. 3.926 1.875 4.730 0.080 3.927 3.142 0.080 1.875 0.003 

BDFs 3.927 1.875 4.730 0.080 3.927 3.142 0.080 1.875 0.003 

0.5 
Differ. Eq. 3.666 1.624 4.509 0.080 3.861 3.036 0.082 2.023 0.003 

BDFs 3.666 1.626 4.510 0.080 3.862 3.036 0.082 2.024 0.003 

1 
Differ. Eq. 3.662 1.555 4.561 0.074 3.927 3.041 0.084 2.129 0.003 

BDFs 3.663 1.556 4.561 0.074 3.927 3.042 0.084 2.129 0.003 

2.5 
Differ. Eq. 3.757 1.539 4.784 0.073 4.078 3.071 0.086 2.178 0.003 

BDFs 3.757 1.539 4.785 0.073 4.078 3.071 0.086 2.179 0.003 

For testing, results are compared to those 

of Liu et al. (2010) shown in Table 1 to 

Table 4. Nevertheless, new results had to be 

presented that had not been computed 

before. For this reason, the added boundary 

conditions CCFF and CCCC which were 

not shown in Liu et al. (2010) are calculated 

in this research. 

The results in this paper confirm that the 

free vibrations of the FGM plate match the 

homogeny plate in specific Ns. This is the 

frequency that equals that of the homogeny 

plate. This can be useful for replacing some 

cheaper material in the specific Ω0, if it is 

needed. The results of the Ns, for several 

cases, are shown in Table 7.  

Another important issue is convergence. 

Figures 7 and 8 show how many elements 

are needed in FEM in order to arrive at the 

answer for n = 1 and 2.5, respectively. For 

both of them, α is equal to one and they are 

in SSSS condition. Upon selecting 48 

elements, the graph begins to converge to 

the answer after a dramatic growth while in 

n = 2.5, a fracturing can be observed. 

The graph of Ω based on α is represented 

in Figure 9. It shows a significant drop in 

the frequency before α = 5 but a slight 

decrease after that. 

 

Table 5. The values of non-dimensional natural frequency  for different CCFFs 

CCFF α 

n  1 5 20 1000 

0 BDFs 3.136 2.786 2.757 2.692 

0.5 BDFs 2.997 2.640 2.629 2.566 

1 BDFs 3.030 2.671 2.658 2.596 

2.5 BDFs 3.125 2.791 2.748 2.682 
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Table 6. The values of non-dimensional natural frequency  for different CCCCs 

CCCC α 

n  1 5 20 1000 

0 BDFs 8.021 6.915 6.896 6.611 

0.5 BDFs 7.781 6.854 6.825 6.492 

1 BDFs 7.866 6.934 6.902 6.576 

2.5 BDFs 8.282 7.921 7.639 7.388 
 

Table 7. The values of Ns for different boundary conditions 

Ns Boundary Conditions (BCs) 

α SSCS SSCC SSSC SSSS CCCC CCFF 

1 3.64 2.28 1.77 2.94 1.55 2.67 

5 5.19 2.14 1.02 5.02 0.97 2.43 

20 5.17 2.16 1 6.17 0.98 2.65 

1000 5.17 2.13 1 6.17 1.08 2.67 
   

 
Fig. 7. Convergence of frequency for α =1, n = 0.5 and SSSS condition 

 

 
Fig. 8. Convergence of frequency for α = 1, n = 2.5 and SSSS condition 

 

 
Fig. 9. The impact of α on Ω
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4. Conclusions 

 

Using the Finite Element Method (FEM) 

and Basic Displacement Functions (BDFs), 

this paper presented an efficient element for 

in-plane Functionally Graded Materials 

(FGMs) plates vibration analysis. The first 

step was to define and generate BDFs. New 

shape functions could be derived 

mechanically by expressing them as derived 

BDFs. Furthermore, the Finite Element 

method was used to compute the structural 

stiffness and the mass matrix of the 

considered beams. This method was tested 

on several numerical examples, which 

showed excellent agreement with the 

literature with regard to accuracy and 

economy. Several examples demonstrated 

that the method is super-convergent for 

either free vibration or bent beams with 

different boundary conditions. 

The following benefits can be attributed 

to this method: 

- Through the presented method, any 

variations in the taper ratio and mechanical 

properties of the plate can be incorporated 

into the design. 

- The generality of stiffness methods and 

the accuracy of forces methods are 

combined to create a new element. 

- Implementing the new element, free 

vibration analyses are performed with lower 

elements. As a result, the time and cost of 

the analyses are significantly reduced. 

Different structural applications have 

proven the concept of BDFs' competency. 

In order to facilitate the study of these other 

complex structural elements as well as the 

application of BDFs and other advanced 

materials, such as functionally graded 

materials (FGMs), the authors are 

extending BDFs to shells. 

 

5. Symbol List 

 

a 
length of the plate along x 
direction 

b 
length of the plate along y 
direction 

b vector of BDFs 

E modulus of elasticity 
F vector of nodal forces 

Fii 
nodal flexibility matrices of ith 

node 

h(xj , yj) 
thickness of the plate at point j 
(xj, yj) 

K stiffness matrix 
M mass matrix 
N vector of shape functions 

Ns special material graded-index 
qz(x,y) external transverse load 

r 
taper factor of the plate in x 
direction 

s 
taper factor of the plate in y 
direction 

w transverse displacement 

w0 the displacement function 

x, y 
longitudinal coordinates along 

plate 

 angle of rotation 

Σ 
matrix containing nodal 

stiffness matrices 

 
non-dimensional Eigen 

frequency 

 Eigen frequency 
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