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ABSTRACT: Change in modal strain energy is one of the indicators used to detect 

damage in structures. However, in structures with high degrees of freedom, such as 

double-layer grids, this method requires a relatively large number of mode shapes which 

in practice is difficult to determine. Therefore, it is necessary to reduce the number of 

required mode shapes. In this study, a damage detection technique based on modal strain 

energy and Dempster-Shafer evidence theory is presented for locating damage in double 

layer grids using only a few number of mode shapes. First, by calculating mode shapes 

of the grid in undamaged and damaged states, the modal strain energy based index for 

each mode shape is determined. Then, the results obtained from separate mode shapes are 

combined using Dempster-Shafer theory to achieve better results. In order to investigate 

the effect of noise on damage detection, 3% random noise is added to mode shapes. To 

demonstrate the performance of the proposed method, different single and multiple 

damage cases with different damage intensities are considered. Numerical results show 

that using 5 mode shapes, the presented technique can detect up to 3 damaged elements 

with different damage intensities in different parts of the grid with good accuracy 

(probability of 92.3%). Considering the fact that the classical modal strain energy method 

fails to distinguish even 1 damaged element in the double layer grid, the result shows 

significant improvement. 

 

Keywords: Damage Detection, Dempster-Shafer Theory, Double Layer Grids, Modal 

Strain Energy. 

  
 

1. Introduction 

 

Double layer grids constitute a significant 

part of the space structure's family and are 

utilized for covering large spans without 

internal supports or with a few of them 

                                                 
* Corresponding author E-mail: amin.mostafavian@gmail.com   

(Arekar et al., 2016). Elements in double 

layer grids are dominated by axial forces 

and these structures usually are treated like 

space trusses. Double layer grids, like every 

other type of structure, may encounter 

damage due to natural or artificial reasons 
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during their service life. Early damage 

detection for these structures is important 

since it can prevent progressive or overall 

collapse of the structure.  

Damage in a structure changes physical 

properties (stiffness, mass and damping) of 

structure. Since the physical properties of a 

structure are equivalent to its dynamic 

properties (natural frequencies, mode 

shapes and damping ratios), usually 

changes in dynamics properties are used to 

detect damage in structures. These dynamic 

properties can be determined in practice by 

experimental modal analysis (Mahdavi et 

al., 2012; Davoodi et al., 2012; Mostafavian 

et al., 2012). Many damage detection 

techniques based on dynamic properties 

have been developed in recent decades 

(Dawari and Vesmawala, 2016; Ding et al., 

2017; Wei et al., 2017; Rezaifar and Doost 

mohammadi, 2016; Yasi and 

Mohammadizadeh, 2018). One of these 

methods which uses dynamic properties to 

identify damage is modal strain energy 

technique. Damage location in this method 

can be detected by comparison of modal 

strain energy of elements in undamaged and 

damaged states. 

Carrasco et al. (1997) used modal strain 

energy method to detect damage in a space 

truss structure with 300 elements. They 

were able to detect damaged elements when 

one or two elements were at least 50% 

damaged. Shi et al. (1998) used modal 

strain energy methods to detect damage in 

structures. They found that modal strain 

energy change index is at its highest in the 

damaged element and that the value 

becomes much smaller at elements far from 

the damaged elements. But, elements 

located at nodal points of the mode shape do 

not follow this rule and have unusually 

small or large values, at times leading to 

wrong detection of damage location. To 

overcome this problem, they proposed 

using multiple modes in calculating modal 

strain energy. Srinivas et al. (2011) used a 

method based on modal strain energy to 

detect damage in a 2D truss structure. In the 

damage localization stage they observed 

that even though the damage index has its 

largest value at the damaged element, the 

value is sometimes too close to that of 

adjacent elements.  

Ma et al. (2014) used modal strain 

energy method to detect damage in a seven 

story frame structure. Since damage index 

for some of the healthy elements was 

considerable, they proposed to use a 

threshold level to separate damaged and 

healthy elements, which means that only 

elements with damage index greater than 

threshold level were considered as damaged 

elements. Seyedpoor (2012) proposed a 

two-step damage detection technique on the 

basis of modal strain energy to find damage 

in structures. He used this method to 

identify damage in a 2D truss with 25 

degrees of freedom. Despite using five 

mode shapes in damage detection 

procedure, still some healthy elements had 

considerable damage index; therefore he 

used a threshold level of 0.05 to separate 

damaged and healthy elements.  

Wei et al. (2016) used modal strain 

energy technique to identify damage in 

plate like structures. At first, damage was 

localized by means of modal strain energy 

change ratio. Then a method was suggested 

to reduce the number of suspicious 

damaged elements entailed by the ‘Vicinity 

Effect’, in order to better results. Torkzadeh 

et al. (2013) presented a two-step damage 

detection technique on the basis of modal 

strain energy to indicate damage in double 

layer grids. They needed a relatively high 

number of mode shapes to detect damage. 

In practice determining many mode shapes 

is unfeasible and thus solution requiring 

fewer number of mode shapes is urged. 

Data fusion is a technique that combines 

data from different information sources to 

achieve better results. Recently, data fusion 

has appealed increasing consideration in 

structural health monitoring due to its 

abilities in taking out information from 

various sources and merging them into a 

consistent, precise and apprehensible data 

set (Zhao et al., 2014). Guo (2006) used 

three fusion approaches, including 

https://ceij.ut.ac.ir/?_action=article&au=245677&_au=Omid++Rezaifar
https://ceij.ut.ac.ir/?_action=article&au=579714&_au=Mohammad++Mohammadizadeh
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Dempster-Shafer evidence theory, Bayesian 

fusion and fuzzy fusion method to detect the 

damage in a two dimensional truss 

structure. The numerical results showed that 

the Dempster-Shafer evidence theory is the 

most efficient fusion method between the 

three. Guo and Li (2011) used the 

Dempster-Shafer evidence theory to detect 

damage in 2D and 3D truss structures. 

Grande and Imbimbo (2014) used 

Dempster-Shafer evidence theory to 

amalgamate information which was 

acquired from different mode shapes in 

modal strain energy method to detect 

damage location in a fixed end beam. 

Grande and Imbimbo (2016) proposed a 

technique based on flexibility method and 

Dempster-Shafer theory to detect damage in 

structures. The efficacy of this technique 

has been shown with reference to a fixed 

end beam and a 3D structure. Guo et al. 

(2019) used an enhanced Dempster-Shafer 

theory and a model in time domain to locate 

nonlinear damages in structures. They 

indicate that the enhanced Dempster-Shafer 

theory has great recognition accuracy and 

decent performance. Cheng et al. (2019) 

proposed a new damage detection technique 

based on the flexibility identification 

principle and Dempster-Shafer theory. 

They showed that the proposed method is 

more suitable to detect damage in beam 

structure in noisy environments in 

comparison to traditional methods. Ding et 

al. (2019) used an improved Dempster-

Shafer data fusion algorithm to detect 

damages in a spatial truss structure. 

As mentioned above, the results obtained 

solely from classic modal strain energy 

methods cannot clearly distinguish 

damaged elements from healthy ones and 

therefore demand further enhancement. 

This problem is exacerbated in high degrees 

of freedom structures which require many 

mode shapes for reliable damage detection. 

In this study, modal strain energy method 

and Dempster-Shafer evidence theory are 

used to detect damage location in a double 

layer grid. By performing modal analysis 

and calculating vibration mode shapes of 

the grid in undamaged and damaged states, 

the modal strain energy based index for 

each mode shape is determined. The indices 

are then combined with Dempster-Shafer 

evidence theory to improve the results. In 

practice, measurements are corrupted by 

noise and therefore we added random noise 

to mode shapes. A set of 1000 damage 

detection runs is performed for each 

damage case and the mean of results is 

considered. The complete process of 

damage detection has been implemented in 

MATLAB. 

 

2. Modal Strain Energy Based Damage 

Localization 

 

The modal characteristics of an undamaged 

structure are described by the eigenvalue 

equations (Ren and Roeck, 2002): 

 

𝐾𝜑𝑖 = 𝜔𝑖
2𝑀𝜑𝑖 ,        𝑖 = 1, … , 𝑛 (1) 

 

where 𝐾 and 𝑀: are stiffness and mass 

matrices, respectively; 𝜔𝑖 and 𝜑𝑖: are the 𝑖th  

natural frequency and mode shape of the 

structure, respectively.  

The Modal Strain Energy of element j in 

mode i before damage and after that is 

denoted as (Shi et al., 1998): 

 

𝑀𝑆𝐸𝑖𝑗
𝑢 = 𝜑𝑖

𝑢𝑇
𝐾𝑗𝜑𝑖

𝑢

𝑀𝑆𝐸𝑖𝑗
𝑑 = 𝜑𝑖

𝑑𝑇
𝐾𝑗𝜑𝑖

𝑑
 (2) 

 

where 𝑀𝑆𝐸𝑖𝑗
𝑢  and 𝑀𝑆𝐸𝑖𝑗

𝑑 : are the 

undamaged and damaged modal strain 

energy of the 𝑗th element in 𝑖th mode 

respectively; 𝜑𝑖
𝑢 and 𝜑𝑖

𝑑: are the partial 

mode shape vectors before and after 

damage respectively, containing the 𝑖th 

mode shape elements related to the degrees 

of freedom of 𝑗th element. As the damage 

locations are unknown, the undamaged 

elemental stiffness matrix 𝐾𝑗 is used for 

estimating 𝑀𝑆𝐸𝑖𝑗
𝑑  (Shi et al., 2000). 

The whole modal strain energy of 𝑖th 

mode of the structure is calculated by the 

summation of modal strain energy of all 

structural elements as follows: 
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𝑀𝑆𝐸𝑖 = ∑ 𝑀𝑆𝐸𝑖𝑗

𝑛𝑒

𝑗=1

 (3) 

 

where 𝑀𝑆𝐸𝑖: is the total MSE of the 

structure in mode i and 𝑛𝑒: is the total 

number of elements. The normalized modal 

strain energy of 𝑗th element for mode i will 

be determined by dividing 𝑀𝑆𝐸𝑖𝑗 by 𝑀𝑆𝐸𝑖 

as: 

 

𝑁𝑀𝑆𝐸𝑖𝑗 =
𝑀𝑆𝐸𝑖𝑗

𝑀𝑆𝐸𝑖
 (4) 

 

where 𝑁𝑀𝑆𝐸𝑖𝑗: is the normalized modal 

strain energy of 𝑗th element in mode i. Since 

damage changes the dynamic properties of 

the structure, normalized MSE of an 

element in each mode will change after 

damage occurs. Modal Strain Energy Based 

Index (MSEBI) is an efficient indicator for 

damage localization which can be 

determined as: 

 
𝑀𝑆𝐸𝐵𝐼𝑖𝑗

= 𝑚𝑎𝑥 [0,
𝑁𝑀𝑆𝐸𝑖𝑗

𝑑 − 𝑁𝑀𝑆𝐸𝑖𝑗
𝑢

𝑁𝑀𝑆𝐸𝑖𝑗
𝑢 ] 

(5) 

 

where 𝑁𝑀𝑆𝐸𝑖𝑗
𝑢  and 𝑁𝑀𝑆𝐸𝑖𝑗

𝑑 : are the 

undamaged and damaged normalized modal 

strain energy of 𝑗th element in 𝑖th mode, 

respectively. 𝑀𝑆𝐸𝐵𝐼𝑖𝑗: is the modal strain 

energy based index of 𝑗th element in 𝑖th 

mode. 𝑀𝑆𝐸𝐵𝐼𝑖𝑗 will be zero for undamaged 

elements and greater than zero for damaged 

ones. Elements with higher  𝑀𝑆𝐸𝐵𝐼 are thus 

more likely to be the damaged ones. 

𝑀𝑆𝐸𝐵𝐼 for an element can be evaluated 

with several first mode shapes as follows: 

 
𝑀𝑆𝐸𝐵𝐼𝑗

= 𝑚𝑎𝑥 [0,
∑ 𝑁𝑀𝑆𝐸𝑖𝑗

𝑑𝑛𝑚
𝑖=1 − ∑ 𝑁𝑀𝑆𝐸𝑖𝑗

𝑢𝑛𝑚
𝑖=1

∑ 𝑁𝑀𝑆𝐸𝑖𝑗
𝑢𝑛𝑚

𝑖=1

] 

 (6) 

 

where 𝑀𝑆𝐸𝐵𝐼𝑗: is the modal strain energy 

based index of 𝑗th element evaluated by 

considering 𝑛𝑚 first mode shapes. 

 

3. Dempster-Shafer Evidence Theory 

 

Information fusion methods can incorporate 

data from numerous information sources 

and corresponding information from 

dependent databases, to attain better 

accuracies and more particular deductions 

than could be attained by using only one 

source (Guo, 2006). Dempster-Shafer 

evidence theory is a data fusion technique 

based on mathematical theory first 

suggested by Dempster (1967) and then 

developed by Shafer (1976). 

Considering a finite set 𝜃 of mutually 

exclusive and exhaustive proportions, the 

power set 2𝜃 is the set of all the subsets of 

𝜃 containing itself and an empty set ∅. For 

instance, if 𝜃 = {𝑎, 𝑏, 𝑐}, then 2𝜃 =
{∅, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}}. 

Dempster-Shafer theory is based on 

probability and allocates a Basic Probability 

Assignment (BPA) function to any subset of 

2𝜃. m which represents the BPA, describes 

a map of the power set to the range [0, 1], 

so that BPA of the empty set is equal to 0 

and BPAs of all the subsets of the power set 

have a total of 1. This can be 

mathematically represented by: 

 
𝑚: 2𝛩 → [0,1]

𝑚(𝜙) = 0

∑ 𝑚(𝑥)

𝑥⊂2𝛩

= 1
 (7) 

 

Since the subset 𝑋 has 2 data sources, 𝑠1 

and 𝑠2, let 𝑚1(𝑠1) and 𝑚2(𝑠2) be BPAs 

given by the sources 𝑠1 and 𝑠2, respectively. 

The composition, namely the joint 𝑚12 is 

computed by the orthogonal sum of 2 BPAs 

𝑚1(𝑠1) and 𝑚2(𝑠2): 

 
𝑚12(𝜙) = 0

𝑚12(𝑋) =
∑ 𝑚1(𝑠1). 𝑚2(𝑠2)𝑠1∩𝑠2=𝑋

1 − 𝐾′
 

𝐾′ = ∑ 𝑚1(𝑠1). 𝑚2(𝑠2)

𝑠1∩𝑠2=∅

 

𝑤ℎ𝑒𝑛      𝑋 ≠ ∅ 

(8) 

 

where 𝐾′: is a basic probability mass related 
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to conflicts which is evaluated by summing 

the products of the BPAs of all the sets in 

which the intersection is null (Chen and 

Xia, 2011).  

 

4. Application of Modal Strain Energy 

Method and Dempster-Shafer Theory in 

Damage Localization 

 

Dempster-Shafer theory and modal strain 

energy method can be used to detect 

damage in structures. Let 𝜃 =
{𝐷1, 𝐷2, … , 𝐷𝑛𝑒} be a set which shows 

damage condition of a structure with ne 

elements. The power set 2𝜃 can be shown as 

follows: 
 

2𝛩 = {∅, {𝐷1}, {𝐷2}, {𝐷3}, … , {𝐷𝑛} , …,  
{𝐷1, 𝐷2}, {𝐷1, 𝐷3}, … } 

(9) 

Since modal strain energy method gives 

only damage index of each element, only n 

members of 2𝜃 which have one element e.g. 

({𝐷1}, {𝐷2}, {𝐷3}, … , {𝐷𝑛}) are considered. 

Let 𝑠1and 𝑠2be two information sources 

which containing MSEBI evaluated by 

considering mode shapes 1 and 2, 

respectively. 

 
𝑠1 = {𝑀𝑆𝐸𝐵𝐼11, 𝑀𝑆𝐸𝐵𝐼12, … , 𝑀𝑆𝐸𝐵𝐼1𝑗}

𝑠2 = {𝑀𝑆𝐸𝐵𝐼21, 𝑀𝑆𝐸𝐵𝐼22, … , 𝑀𝑆𝐸𝐵𝐼2𝑗}
 ,  

𝑗 = 1, … , 𝑛𝑒 

(10) 

 

BPA can be determined by dividing 

MSEBI of each element in 𝑖th mode by the 

summation of the MSEBI of all elements in 

that mode.

  

𝑚1(𝑠1) = {
𝑀𝑆𝐸𝐵𝐼11

∑ 𝑀𝑆𝐸𝐵𝐼1𝑖
𝑛
𝑖=1

,
𝑀𝑆𝐸𝐵𝐼12

∑ 𝑀𝑆𝐸𝐵𝐼1𝑖
𝑛
𝑖=1

, … ,
𝑀𝑆𝐸𝐵𝐼1𝑗

∑ 𝑀𝑆𝐸𝐵𝐼1𝑖
𝑛
𝑖=1

}

𝑚2(𝑠2) = {
𝑀𝑆𝐸𝐵𝐼21

∑ 𝑀𝑆𝐸𝐵𝐼2𝑖
𝑛
𝑖=1

,
𝑀𝑆𝐸𝐵𝐼22

∑ 𝑀𝑆𝐸𝐵𝐼2𝑖
𝑛
𝑖=1

, … ,
𝑀𝑆𝐸𝐵𝐼2𝑗

∑ 𝑀𝑆𝐸𝐵𝐼2𝑖
𝑛
𝑖=1

}

 ,   𝑗 = 1, … , 𝑛𝑒 (11) 

 

Each member of 𝑚1(𝑠1) and 𝑚2(𝑠2) 

shows damage probability of elements 

determined from modes 1 and 2, 

respectively. 𝑠1 and 𝑠2 can be merged with 

Dempster’s combination rule as follows: 

 
𝑚12(𝑠12)

=
∑ 𝑚1(𝑠1). 𝑚2(𝑠2)𝑠1∩𝑠2=𝑠12

1 − ∑ 𝑚1(𝑠1). 𝑚2(𝑠2)𝑠1∩𝑠2=∅
 

𝑤ℎ𝑒𝑛       𝑠12 ≠ ∅ 

(12) 

 

where 𝑚12(𝑠12): is the combination of 

𝑚1(𝑠1) and 𝑚2(𝑠2). To improve the results, 

𝑚12(𝑠12) can be combined with damage 

probability of elements obtained from mode 

3, represented by 𝑚3(𝑠3), as follows: 

 
𝑚12(𝑠123)

=
∑ 𝑚12(𝑠12). 𝑚3(𝑠3)𝑠12∩𝑠3=𝑠123

1 − ∑ 𝑚12(𝑠12). 𝑚3(𝑠3)𝑠12∩𝑠3=∅
 

𝑤ℎ𝑒𝑛        𝑠123 ≠ ∅ 

(13) 

 

where 𝑚12(𝑠123): is the combination of 

𝑚1(𝑠1), 𝑚2(𝑠2) and 𝑚3(𝑠3) which are first, 

second and third information sources, 

respectively. Data fusion can be continued 

until reaching desirable results. 

 

5. Damage Detection in a Double Layer 

Grid 

 

The feasibility of the Dempster-Shafer 

theory and modal strain energy method in 

damage detection is demonstrated by 

detecting damage in a double layer grid. 

The model chosen for this study is a double 

layer grid with 32 nodes and 96 elements as 

shown in Figure 1. 

Width, length and height of grid are 7.5 

m, 10 m and 1.77 m, respectively. Each 

element is 2.5 m long with 0.004 m2 cross 

section. In the grid, the Young’s modulus is 

200 GPa and mass density of each element 

is 7850 kg/m3, respectively. In Figure 1 the 

top, bottom and middle elements are shown 

with thick, thin and dash lines, respectively 

and the grid has 4 supports. 
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Fig. 1. Double layer grid chosen for study 

 

To simulate a damaged grid, Young’s 

modulus of material is decreased as follows: 

 

𝐸𝑗
𝑑 = (1 − 𝛼𝑗)𝐸𝑗

𝑢 (14) 

 

where 𝐸𝑗
𝑢 and 𝐸𝑗

𝑑: are the undamaged and 

damaged Young’s modulus of 𝑗th element, 

respectively; and 𝛼𝑗: is the damage 

percentage of 𝑗th element.  

To study the effect of noise on the 

efficiency of the suggested damage 

detection technique, 3% random noise 

(Messina et al., 1998) is added to mode 

shape as follows: 

 
𝑖𝑛𝑝𝑢𝑡̅̅ ̅̅ ̅̅ ̅ = 𝑖𝑛𝑝𝑢𝑡(1 + 0.03 ∗ 𝑟𝑎𝑛𝑑) (15) 

 

where 𝑟𝑎𝑛𝑑: is a random number which is 

normally distributed with mean 0, variance 

𝜎2 = 1, and standard deviation 𝜎 = 1. 𝑖𝑛𝑝𝑢𝑡: 

is each component of mode shape matrices  

and 𝑖𝑛𝑝𝑢𝑡̅̅ ̅̅ ̅̅ ̅: is the noise polluted input. Due 

to the random characteristics of noise, a set 

of 1000 damage detection runs is performed 

for each damage case and the average is 

considered. 

Three single and four multiple damage 

cases shown in Table 1 are considered. For 

all cases, damage simulation is done by 

reducing the Young’s modulus of damaged 

elements. Damaged elements are shown in 

Figure 2 with thick lines. For all damage 

cases 3% random noise is added to mode 

shapes and a set of 1000 damage detection 

runs is performed. 

 
Table 1. Damage cases 

Case Damage type Damaged element and intensity (%) 

D1 Single Element 16 with 40% 

D2 Single Element 48 with 40% 

D3 Single Element 81 with 40% 

D4 Multiple Element 16 with 50% and Element 48 with 40% 

D5 Multiple Element 48 with 50% and Element 81 with 40% 

D6 Multiple Element 16 with 50% and Element 81 with 40% 

D7 Multiple Element 16 with 50% and Element 48 with 40% and Element 81 with 50% 
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Fig. 2. Damaged elements 

 

In the first damage case D1, damage 

occurs at element 16 from the bottom layer. 

The value of MSEBI is evaluated by 

considering only the first mode shape. 

Figure 3a shows the mean value of MSEBI 

for a set of 1000 runs evaluated by 

considering first mode shape. As it is 

shown, by considering only first mode 

shape, a lot of healthy elements have high 

value of MSEBI which leads to 

misdiagnosis in damage detection 

procedure. The value of MSEBI can also be 

evaluated by considering other mode 

shapes. Figure 3b-3e show the mean value 

of MSEBI for a set of 1000 runs when mode 

shapes 2-5 are considered, respectively. 

According to Figure 3a-3e, by considering 

only one mode shape to evaluate the value 

of MSEBI, a lot of healthy elements are 

introduced as potentially damaged 

elements. The figure clearly shows that 

MSEBI for the damaged element depends 

on the mode shape used; MSEBI for the 

damaged element is highest using mode 5 

and lowest using mode 4. The result also 

depends on the location of the damaged 

element in the double layer grid. Moreover, 

the value and distribution of MSEBI for 

healthy elements are different among mode 

shapes; some mode shapes yield higher 

MSEBI values for fewer elements (Figure 

3e), and other mode shapes give lower 

MSEBI value for more elements (Figure 

3a). 
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Fig. 3. MSEBI values for damage case D1 considering: a) Mode1; b) Mode 2; c) Mode 3; d) Mode 4; e) Mode 5; 

and f) Modes 1 to 5 

 

The MSEBI value can also be evaluated 

by considering several first mode shapes 

according to Eq. (6). Figure 3f shows the 

mean value of MSEBI for a set of 1000 runs 

evaluated by considering five first mode 

shapes. As shown in Figure 3f, considering 

the first five mode shapes to evaluate the 

MSEBI gives better results, however still 

some healthy elements have considerable 

MSEBI which may lead to misdiagnosis in 

damage localization.  

Dempster-Shafer theory is used to 

improve damage identification results. In 

the first stage, the value of MSEBI 

evaluated by mode shapes 1 and 2 are 

combined by Eq. (12). The result of the 

combination is damage probability and is 

shown in Figure 4a. As can be seen in thid 

figure, damage probability for element 16 is 

18.61% and summation of the damage 

probability of other 95 elements is 81.39%. 

In this case, the damage probability of 

element 16 is not sufficiently high to be 

considered as a damaged element. The 

value of MSEBI evaluated by mode shapes 

1 and 2 are combined with the value of 

MSEBI evaluated by mode shape 3 and the 

result is shown in Figure 4b. Combining the 

MSEBI evaluated by mode shapes 1-4 using 

Dempster-Shafer theory leads to better 

results, as shown in Figure 4c. Finally, 

Figure 4d shows damage probability 

obtained from combining the MSEBI 

evaluated from mode shapes 1-5. 
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Comparing Figures 4a-4d show that as the 

number of used mode shapes increases, the 

damage probability of the damaged element 

increases and the number of healthy 

elements with a damage probability 

decreases. As shown in Figure 4d the 

damaged element is distinct and no more 

elements have considerable damage 

probability, therefore no more data 

combination is needed. Here, damage 

probability of element 16 is 77.19% and 

summation of the damage probability of 

other 95 elements is 22.81% which is not a 

considerable value. 

Element 48 from the top layer is 

considered as the second damage case D2. 

The mean value of MSEBI for a set of 1000 

runs by considering first five mode shapes 

is evaluated and is shown in Figure 5a. It 

can be seen that, damaged element is 

detected but still some healthy elements 

have considerable value. The damage 

probability obtained from combining the 

MSEBI evaluated from mode shapes 1-5 is 

shown in Figure 5b. As can be seen in this 

figure, damage probability of element 48 is 

81.54% and the summation of the damage 

probability of other 95 elements is 18.46% 

which is not a considerable value.  

 

 
Fig. 4. Dempster-Shafer theory damage probabilities for damage case D1 considering: a) Modes 1 and 2; b) 

Modes 1 to 3; c) Modes 1 to 4; and d) Modes 1 to 5 
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Fig. 5. Damage case D2 considering modes 1 to 5: a) MSEBI values; and b) Dempster-Shafer theory damage 

probabilities 
 

In damage case D3, element 81 from the 

middle layer is considered as a damaged 

element. The mean value of MSEBI for a set 

of 1000 runs is shown in Figure 6a and 

damage probability obtained from 

Dempster-Shafer theory is shown in Figure 

6b. First five mode shapes are considered in 

both MSEBI evaluation and Dempster-

Shafer combination. As shown in Figures 

6a-6b, by using Dempster-Shafer theory, 

the results are improved compared to the 

classical modal strain energy method. 

Damage probability of element 81 is 

84.77% and the summation of the damage 

probability of other 95 elements is 15.23% 

which is not a considerable value.  

Comparing the damage probability 

obtained for the damaged element in 

damage cases D1, D2 and D3 (respectively 

77.19%, 81.54% and 84.77%) shows that 

the technique is relatively insensitive to the 

location of damaged element in the double 

layer grid and can find the damaged element 

anywhere in the grid with a sufficiently high 

damage probability. 

D4, D5 and D6 are multiple damage 

cases where two elements are damaged. 

Figures 7a-7b, 8a-8b and 9a-9b show the 

mean value of MSEBI and damage 

probability obtained from Dempster-Shafer 

combination for damage cases D4, D5 and 

D6, respectively. Similar to the other 

damage cases, a set of 1000 damage 

detection runs and first five mode shapes 

are considered in both MSEBI evaluation 

and Dempster-Shafer combination. 
 

 
Fig. 6. Damage case D3 considering modes 1 to 5: a) MSEBI values; and b) Dempster-Shafer theory damage 

probabilities 



Civil Engineering Infrastructures Journal 2021, 54(2): 253-266 263 

 

 
Fig. 7. Damage case D4 considering modes 1 to 5: a) MSEBI values; and b) Dempster-Shafer theory damage 

probabilities 
 

 
Fig. 8. Damage case D5 considering modes 1 to 5: a) MSEBI values; and b) Dempster-Shafer theory damage 

probabilities 
 

As can be seen in Figures 7-9, the 

MSEBI value of some of the healthy 

elements is near that of the two damaged 

elements and therefore it is not possible to 

identify damaged elements only based on 

the MSEBI values. However, Dempster-

Shafer damage probabilities clearly 

distinguished damaged elements from other 

healthy elements. In these two damaged 

elements cases, the probability of damaged 

elements are not related to the values of 

damage intensity. Sum of the probability of 

damaged elements are 88.11%, 89.57% and 

90.23% for cases D4, D5 and D6 

respectively, which indicate a high 

probability of damage has been obtained for 

damaged elements. These values are higher 

than the values obtained for single damage 

cases. 

Damage case D7 is a multiple damage 

case where elements 16, 48 and 81 have 

50%, 40% and 50% stiffness reduction, 

respectively. Figures 10a-10b show the 

mean value of MSEBI and Dempster-

Shafer combination results for a set of 1000 

damage detection runs. First five mode 

shapes are considered in both MSEBI 

evaluation and Dempster-Shafer 

combination. As shown in Figure 10a, 

separating damaged and healthy elements is 

not possible, because MSEBI values for 

some of the healthy elements is at the same 

level as the damaged elements. Figure 10b 

shows that by using Dempster-Shafer 

combination, the summation of the damage 

probability of damaged elements is 92.31% 

and the summation of the damage 

probability of other 93 elements is 7.69%, 

which means the combination was able to 

detect three simultaneously damaged 

elements with different damage intensities 

with good accuracy. 
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Fig. 9. Damage case D6 considering modes 1 to 5: a) MSEBI values; and b) Dempster-Shafer theory damage 

probabilities 
 

 
Fig. 10. Damage case D7 considering modes 1 to 5: a) MSEBI values; and b) Dempster-Shafer theory damage 

probabilities 
 

6. Conclusions 

 

Damage detection methods for structures 

with high degrees of freedom, usually 

requires a large number of mode shapes to 

locate damage. In practice, however, only a 

few first mode shapes of structures can be 

measured. In this paper, a damage detection 

technique based on modal strain energy and 

Dempster-Shafer theory has been presented 

for detecting damage in double layer grids 

using only a few number of mode shapes. 

To study the effect of noise on the 

efficiency of the suggested damage 

detection technique, 3% random noise was 

considered. The modal strain energy based 

index was calculated for each mode shape. 

Then, Dempster-Shafer theory was used to 

combine the value of indices obtained from 

each mode. Three single and four multiple 

damage cases were considered with 

different damage intensities in different 

elements of the grid. Using the first five 

mode shapes of the grid, the modal strain 

energy based index could not distinguish 

the damaged element(s) in any of the 

damage cases. This was mainly because in 

addition to the damaged element(s), many 

of the other healthy elements showed a 

considerable index value. However, 

combining the value of the indices with 

Dempster-Shafer theory and calculating 

damage probabilities of the elements, gave 

far better results compared to the classical 
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modal strain energy method. In the cases 

with one damaged element, damage 

probability of 77.19%, 81.54% and 84.77% 

was obtained for the damaged element. In 

the cases with two damaged elements, the 

sums of the damage probabilities were 

88.11%, 89.57% and 90.23%. In the case 

with three damaged elements, the sum was 

92.31%. From this point of view, the 

Dempster-Shafer combination performed 

better with a larger number of damaged 

elements. Unlike classical modal strain 

energy methods, damaged elements were 

distinct and none of healthy elements had 

considerable damage probability. The 

presented damage detection technique 

performed very well for a relatively high 

degree of freedom structure with multiple 

damaged elements using a limited number 

of noise contaminated vibration mode 

shapes. 
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