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ABSTRACT: The fundamental concepts of biogeography-based optimization (BBO), a 

meta-heuristic algorithm, have been inspired by the geographical distribution of animals. 

This algorithm does not need a starting point, and performs a random search instead of a 

gradient-based search. In this article, for the first time, the weights of 2D and 3D trusses 

with specific geometries and different stress and displacement constraints have been 

optimized by using the BBO approach. Also, in this work, the numerical results achieved 

by other researchers through various optimization techniques have been compared with 

the results obtained from the Particle Swarm Optimization (PSO), Differential Evolution 

(DE) and BBO algorithms. It has been demonstrated that the search and exploration 

capability of the BBO algorithm is superior to that of the DE and PSO algorithms, and 

that it achieves better results than the other optimization techniques considered in this 

paper. This superiority is due to the excellent exploration capability of the BBO algorithm 

and the fact that it achieves a favorable optimal solution in the initial iteration. 

 

Keywords: Biogeography-Based Optimization, Meta-Heuristic Algorithms, Weight 

Optimization. 

  
 

1. Introduction 

 

Different algorithms have been used in 

recent decades to solve various truss 

optimization problems. The truss 

optimization methods can be divided into 

three general categories: i) Optimization of 

truss size; ii) Optimization of truss shape 

and; iii) Optimization of truss topology 

 In the first method, the cross sectional 

area of truss elements is considered as the 

decision variable and the truss weight is 

usually the objective function. In the second 
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approach, the coordinates of nodes 

constitute the decision variable, and in the 

third approach, the issue of concern is the 

locations of joints connecting the truss 

elements. 

 Some researchers have employed 

various meta-heuristic methods (GA, PSO, 

ACO algorithms, etc.) for the optimization 

of trusses (Arora, 2012). Simon (2008) 

introduced an optimization algorithm 

(BBO) based on the geographical 

distribution of living organisms for solving 

constrained and unconstrained optimization 
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problems. The efficacy and superiority of 

the BBO algorithm was verified by 

comparing its results with those of the other 

algorithms including the genetic algorithm 

and the particle swarm optimization. 

 By employing the strain energy as the 

objective function, Nguyen and Lee (2015) 

were able to combine the size, shape and 

topology optimizations of truss structures.  

Artar (2016), Jalili and Hosseinzadeh 

(2015, 2018), Jalili et al. (2016) and 

Husseinzadeh Kashan et al. (2018) have 

conducted comparative studies on the 

optimal design of multi-element truss 

structures. Fedorik et al. (2015) have used 

the Finite Element method in the design 

optimization techniques for solving 

structural engineering problems. In a study 

by Massah and Ahmadi (2017), 

optimization techniques were employed to 

create a more regularized configuration and 

geometry for any structural plan by 

minimizing the types of elements 

considered in the design. Artar and Daloglu 

(2015) have investigated the optimal design 

of planar steel frames. Evolutionary 

algorithms have been widely used for 

engineering optimization. For instance, 

Khalkhali et al. (2014) applied the Genetic 

Algorithm to optimize the sandwich panels 

with corrugated cores. In another work, 

khalkhali et al. (2016) used the particle 

swarm optimization technique to optimize 

perforated square tubes. The PSO algorithm 

was also employed by Meshkat Razavi et al. 

(2015) for the optimization of tuned mass 

dampers and by Mousavian et al. (2015) for 

the optimal analysis of hydraulic systems. 

In the present study, the BBO algorithm 

is used for the first time to optimize the 

weights of 2D and 3D trusses with specific 

geometries and with different stress and 

displacement constraints. It is demonstrated 

that the BBO algorithm is superior to the 

PSO and DE algorithms in searching the 

solution space and finding the optimal 

solutions. The software programs of 

“SAP2000” and “MASTAN2” are 

employed to evaluate the results obtained in 

this investigation and to verify their 

accuracy. 

 

2. Structure Optimization Method 

 

Some structure optimization problems can 

be classified as nonlinear programming 

problems (NLP). In truss optimization 

problems, the decision variables include the 

dimensions of the truss members’ cross 

sections. In these problems, the objective 

function is the truss weight, and the decision 

variables must satisfy certain constraints 

(e.g., stress constraints, displacement 

constraints, etc.). A general structure 

optimization problem can be expressed as:  

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑓(𝑥) =   𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑖), 
𝑖 =  1, 2, . . . , 𝑛 

(1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑔𝑗  (𝑥)  

=   𝑔𝑗(𝑥1, 𝑥2, . . . , 𝑥𝑗)  

≤  0 

𝑗 =  1, 2, . . . , 𝑚 

(2) 

ℎ𝑘 (𝑥) =   ℎ𝑘(𝑥1, 𝑥2, . . . , 𝑥𝑘), 
𝑘 =  𝑚 + 1, . . . , 𝑚 + 𝐿 

(3) 

 

where f(x): denotes the objective function 

(i.e., the truss weight), and x: is the vector 

comprising the design variables. The 

number of decision variables and the 

number of inequality constraints ( 𝑔𝑗(𝒙) ≤ 

0) are indicated by parameters n and m, 

respectively; and the number of equality 

constraints (hk(x) = 0) is represented by L. 

 

3. The Considered Optimization 

Algorithms  

 

In this study, the weights of some truss 

structures have been optimized by means of 

the Differential Evolution (DE), Particle 

Swarm Optimization (PSO) and 

Biogeography Based Optimization (BBO) 

algorithms, and the achieved results have 

been compared. These algorithms are 

introduced and described briefly in the 

following sections. 

 

3.1. The Biogeography-Based 

Optimization (BBO) Algorithm 

This algorithm has been inspired by the 
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natural world and it is based on the way 

animals migrate from a region or an island 

with lots of rivals to a less populated region 

with fewer rivals. Based on this algorithm, 

the more habitats a region has, the more 

suitable it is for living from a biological 

perspective and, thus, a higher fitness value 

it gets. In this algorithm, the optimization 

steps are implemented with the organisms 

migrating from the islands with higher 

fitness values to those with lower fitness 

values. The mathematical biogeography 

models express the way the organisms 

migrate and also indicate how a new 

organism emerges or becomes extinct. In 

this algorithm, the habitats with more 

suitable living conditions get a higher 

Habitat Suitability Index (HSI) than the 

other habitats. The ‘HSI’ in this case is 

equivalent to the fitness function or the 

objective function in the other algorithms; 

and the goal is to optimize the HSI value for 

each island or habitat. Also, the variables 

that define the habitability of a region are 

known as the Suitability Index Variables 

(SIVs). Hence, the SIVs are the 

independent parameters, while the HSI is 

the dependent parameter of a habitat 

(Massah and Ahmadi, 2017). The 

biogeography-based optimization 

algorithm runs through the following steps 

(Simon, 2008): 

1) Initialize a set of solutions for the 

problem; 

2) Compute a “fitness” (HSI) value for 

each solution; 

3) Compute the values of S, λ and µ for 

each solution; 

4) Modify the habitats (migration) based 

on the λ and µ values; 

5) Perform mutation; 

6) Implement typical elitism; 

7) Go back to Step 2 if necessary. 

 

3.2. The Particle Swarm Optimization 

(PSO) Algorithm  

This algorithm was presented by 

Kennedy and Eberhart (1995). The 

development of the PSO algorithm is based 

on the social lives of fish and birds that live 

in schools and colonies and fulfill many of 

their basic needs, including the search for 

food, collectively and by using the swarm 

intelligence. In this algorithm, any particle 

in the search space is considered to be a 

solution to the optimization problem, and a 

group of particles is called a swarm. 

Depending on the quality of each particle’s 

response, a certain fitness value is assigned 

to that particle. This value is determined by 

means of a fitness function or an objective 

function. Each particle also has a velocity 

vector, which is updated (in every iteration) 

based on the particle’s experience, the 

experience of other particles, and the 

particle’s last speed. 

 

3.3. The Differential Evolution (DE) 

Algorithm 

The Differential Evolution (DE) 

algorithm introduced by Storn and Price 

(1997) has been explained in detail by 

Arunachalam (2008). This algorithm uses 

the mutation and natural selection 

operations as the main tool for conducting a 

search and directing it toward the 

prospective regions in the solution space. 

The major difference between GA and DE 

is that the former relies on crossover as a 

probabilistic mechanism for exchanging 

useful information among solutions to find 

better ones, while the latter uses mutation as 

the primary search mechanism. 

 

4. Numerical Examples 

 

The following examples show the higher 

accuracy, efficiency and execution speed of 

the “BBO” algorithm in the optimization of 

structures with respect to other considered 

methods. 

 

4.1. A 10-Bar Planar Truss with 6 Nodes 

The truss in Figure 1 has been 

numerically investigated by many 

researchers, including Ghasemi et al. 

(1997), Farshi and Ziazi (2010), Li et al. 

(2009) and others. The weight per unit 

volume of truss members is 0.1 lb/in3 and 

their elastic modulus is 104 ksi (68947.54 
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MPa). The allowable stress for each 

element, whether in tension or compression, 

is ± 25 ksi (± 172.37 MPa), and each node’s 

permitted displacement in any direction (x 

or y) is ± 2 in (± 5.08 cm). The weight of 

this truss with continuous variables is 

assessed with regards to P1 = 100 kips. The 

cross sections of all truss elements have a 

minimum area of 0.1 in2 and maximum area 

of 35 in2. The length ‘a’ in Figure 1 is equal 

to 360 in (9144 mm). Using the penalized 

technique, the objective function for this 

truss is obtained as: 

 

𝑓(𝐴) = (∑ 𝜌𝑖

10

𝑖=1

𝐿𝑖𝐴𝑖) ∗ (1 + 𝛽𝜗)𝛼 (4) 

𝜗 = ∑ 𝑚𝑎𝑥 (0, 𝑔𝑗

3

𝑗=2

) (5) 

𝐴 =  { 𝐴1, 𝐴2, . . . , 𝐴10 } (6) 

𝑔1 ∶        0.1 𝑖𝑛2 ≤  𝐴𝑖 ≤  35  𝑖𝑛2 

𝑖 =  1, 2, . . . , 10 
(7) 

𝑔2 ∶        (𝜎𝑖/𝜎𝑎𝑙𝑙)  − 1 ≤  0 

𝑖 =  1, 2, . . . , 10 
(8) 

𝑔3 ∶        (𝛿𝑗/𝛿𝑎𝑙𝑙)  − 1 ≤  0 

𝑗 =  1, 2, . . . , 6 
(9) 

 

After analyzing the problem and 

applying the constraints, the performance 

curves and data for the BBO algorithm are 

obtained and presented in Figure 2 and 

Table 1. By examining this figure and table, 

the efficiency of the BBO algorithm is 

confirmed. For example, in Figure 2, the 

BBO achieves a cost value of 5460 in 

iteration 50, while the PSO (which is a 

powerful algorithm) yields a value of 5780. 

It is also observed that even in the first 100 

iterations, the BBO algorithm achieves a 

good approximation of the solution. 

 

 
Fig. 1. The 10-bar 2D truss 

 

Table 1. Comparison of different optimization schemes for the 10-bar 2D truss 

V
a

ri
a
b

le
s Schmit 

and 

Farshi 

(1974) 

Schmit 

and 

Miura 

(1976) 

Gellatly 

and 

Berke 

(1971) 

Dobbs 

and 

Nelson 

(1976) 

Rizzi 

(1976) 

Khan 

et al. 

(1979) 

This work 

 

      DE PSO BBO 

A1 33.43 30.67 31.35 30.5 30.73 30.98 30.68 30.78 30.42 

A2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A3 24.26 23.76 20.03 23.93 23.93 24.17 23.08 23.37 23.14 

A4 14.26 14.59 15.6 15.43 14.73 14.81 15.13 14.98 15.19 

A5 0.1 0.1 0.14 0.1 0.1 0.1 0.1 0.1 0.1 

A6 0.1 0.1 0.24 0.21 0.1 0.41 0.53 0.51 0.54 

A7 8.39 8.58 8.35 7.65 8.54 7.547 7.49 7.53 7.46 

A8 20.74 21.07 22.21 20.98 20.95 21.05 21.10 21.59 21.07 

A9 19.69 20.96 22.06 21.82 21.84 20.94 21.49 20.84 21.64 

A10 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Weight 

(lb) 
5089 5076.85 5112 5080 5076.66 5066.98 5061.18 5060.99 5060.76 
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Fig. 2. The convergence of different algorithms to the optimal weight in the 10-bar 2D truss 

  

4.2. A 17-Bar Planar Truss with 9 Nodes 

Many researchers have investigated the 

17-bar 2D truss shown in Figure 3, 

including Lee and Geem (2004) and Adeli 

and Kumar (1995). The material density 

and the elastic modulus of this system are 

0.268 lb/in3 and 30,000 ksi, respectively. 

The truss members undergo a maximum 

stress of ± 50 ksi, and the maximum 

displacement of truss nodes is considered to 

be ± 2.0 inches in both principal directions. 

A single vertical downward load of 100 kips 

is applied at node 9. No linking between 

design variables is considered, thus there 

are 17 independent design variables. The 

truss elements have a minimum cross-

sectional area of 0.1 in2. The results of this 

study and other analyses are compared in 

Figure 4 and Table 2. 

 

 
Fig. 3. The element and node numbering system for the 17-bar planar truss 

 

 
Fig. 4. The convergence of different algorithms to the optimal weight in the 17-bar planar truss 
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Table 2. Comparison of various optimization schemes for the 17-bar planar truss 

Variables 

Adeli and 

Kumar (1995) 

Khot and 

Berke (1984) 
This work 

  PSO BBO 

A1 16.03 15.93 16.05 15.94 

A2 0.11 0.1 0.1 0.1 

A3 12.18 12.07 12.07 12.09 

A4 0.11 0.1 0.1 0.1 

A5 8.42 8.07 8.08 8.04 

A6 5.72 5.56 5.59 5.57 

A7 11.33 11.93 11.88 11.92 

A8 0.11 0.1 0.1 0.1 

A9 7.30 7.95 7.86 7.94 

A10 0.12 0.1 0.1 0.1 

A11 4.05 4.06 4.11 4.05 

A12 0.10 0.1 0.1 0.1 

A13 5.61 5.66 5.70 5.66 

A14 4.05 4 4.01 4.01 

A15 5.15 5.56 5.50 5.56 

A16 0.11 0.1 0.1 0.1 

A17 5.29 5.58 5.53 5.58 

Weight 

(lb) 
2594.42 2581.89 2582.02 2581.89 

 

4.3. A 72-bar space truss with 20 nodes 

The 3D space truss displayed in Figure 5 

has also been studied by several 

investigators, including Adeli and Cheng 

(1993), and Schmit and Farshi (1974). In 

this example, the weight per unit volume of 

truss members is 0.1 lb/in3 and their elastic 

modulus is 10000 ksi. Two loading cases 

are applied to this space truss according to 

Table 3, and the optimization should be 

performed simultaneously for both of these 

loading cases. 
 

 
Fig. 5. The element and node numbering system for the 72-bar space truss 
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Table 3. Different loading conditions for the 72-bar space truss 

Load case 
Node 

No. 
Px (kips) Py (kips) Pz (kips) 

1 17 5 5 -5 

2 

17 0 0 -5 

18 0 0 -5 

19 0 0 -5 

20 0 0 -5 

 

Another constraint considered in this 

problem is that the 3D truss must remain 

simultaneously symmetrical about the ‘x’ 

and ‘y’ axes. To this end, the similar truss 

elements have been grouped together 

(Table 4). The elements are subjected to 

stress limitations of ± 25 ksi, and the upper 

nodes of the truss (nodes 17-20) are allowed 

to move only 0.25 in. Also, a minimum area 

of 0.1 in2 has been considered for the cross 

sections of truss members. The grouping of 

truss elements, for fulfilling the symmetry 

constraint, is shown in Table 4. The results 

pertaining to this and other studies are 

compared in Figure 6 and Table 5. 

 
Table 4. Grouping the similar elements in the 72-bar space truss 

Group 

IDs 
Area of group elements 

1 A1 ~ A4 

2 A5 ~ A12 

3 A13 ~ A16 

4 A17 ~ A18 

5 A19 ~ A22 

6 A23 ~ A30 

7 A31 ~ A34 

8 A35 ~ A36 

9 A37 ~ A40 

10 A41 ~ A48 

11 A49 ~ A52 

12 A53 ~ A54 

13 A55 ~ A58 

14 A59 ~ A66 

15 A67 ~ A70 

16 A71 ~ A72 

 

 
Fig. 6. The convergence of different algorithms to the optimal weight in the 72-bar space truss 
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Table 5. Comparison of various optimization schemes for the 72-bar space truss 

Variables 

(in²) 

Schmit and 

Farshi 

(1974) 

Gellatly and 

Berke  

(1971) 

Khan 

et al. 

(1979) 

Erbatur 

et al. 

(2000) 

Kaveh and 

Talatahari  

(2009) 

This work 

PSO BBO 

A1 ~ A4 2.08 1.46 1.79 1.76 1.90 1.81 1.90 

A5 ~ A12 0.50 0.52 0.52 0.51 0.52 0.51 0.51 

A13 ~ A16 0.1 0.1 0.1 0.11 0.1 0.1 0.1 

A17 ~ A18 0.1 0.1 0.1 0.16 0.1 0.1 0.1 

A19 ~ A22 1.11 1.02 1.21 1.16 1.26 1.31 1.25 

A23 ~ A30 0.58 0.54 0.52 0.59 0.50 0.51 0.51 

A31 ~ A34 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A35 ~ A36 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A37 ~ A40 0.26 0.55 0.62 0.46 0.52 0.51 0.54 

A41 ~ A48 0.55 0.61 0.52 0.53 0.52 0.53 0.52 

A49 ~ A52 0.1 0.1 0.1 0.12 0.1 0.1 0.1 

A53 ~ A54 0.15 0.1 0.2 0.177 0.1 0.1 0.1 

A55 ~ A58 0.16 0.15 0.15 0.16 0.16 0.16 0.16 

A59 ~ A66 0.59 0.77 0.57 0.54 0.54 0.54 0.54 

A67 ~ A70 0.34 0.45 0.44 0.48 0.41 0.41 0.41 

A71 ~ A72 0.61 0.34 0.52 0.52 0.58 0.59 0.57 

Weight 

(lb) 
388.63 395.97 381.72 385.76 379.66 379.83 379.64 

 

4.4. A 200-Bar Planar Truss with 77 

Nodes 

Researchers such as Lee and Geem 

(2004), Kaveh and Talatahari (2009), and 

Lamberti (2008) have employed different 

methods to optimize the size of the 200-bar 

2D truss shown in Figure 7. The material 

density and the elastic modulus of truss 

members are 0.283 lb/in2 and 30,000 ksi, 

respectively. The members of this truss are 

subjected to stress limitations of ±10 ksi. 

The other constraint of this problem is that 

the 2D truss must remain symmetric about 

the ‘y’ axis. To this end, the identical truss 

elements have been grouped together. The 

following loading conditions have been 

applied to the 200-member truss structure: 

a) 1000 lbf in the positive x-direction at 

nodes: 1, 6, 15, 20, 29, 34, 43, 48, 57, 62 

and 71; 

b) 10000 lbf in the negative y-direction 

at nodes: 1, 2 , 3, 4, 5, 6, 8, 10, 12, 14, 15, 

16, 17, 18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 

32, 33, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 

48, 50, 52, 54, 56, 58, 59, 60, 61, 62, 64, 66, 

68, 70, 71, 72, 73, 74, 75; 

c) The loading conditions (a) and (b) are 

simultaneously applied to the truss. 

A minimum area of 0.1 in2 has been 

considered for the cross sections of truss 

members. The grouping of the truss 

elements, for fulfilling the mentioned 

symmetry constraint, is illustrated in Table 

6. 

The convergence trends of the BBO and 

PSO algorithms are demonstrated in Figure 

8. These performance curves indicate that 

the BBO algorithm achieves more uniform 

and faster convergence than the PSO 

algorithm. The BBO algorithm reaches an 

acceptable convergence after about 100 

iterations, while it takes almost 350 

iterations for the PSO to get to this level of 

convergence. This alone shows the more 

efficient searching capability of the BBO 

algorithm. 

 

4.5. The 970-Bar Space Truss 

In this example, the 970-bar space truss 

shown in Figures 9-11 is investigated. The 

weight per unit volume and the elastic 

modulus of truss members are 7850 kg/m3 

and 210 GPa, respectively. The allowable 

stress for each element, whether in tension 

or compression, is 150 MPa (≈ 0.6 Fy). A 

displacement of 20 cm (height/500) is 

allowed for each structure node in any 

direction (x, y or z). The truss elements have 

a minimum cross sectional area of 20 cm2 

and a maximum area of 1000 cm2. 

In order to add to the complexity of this 

example problem, a large exploration 
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limitation has been considered to better 

demonstrate the exploration and searching 

capability of the BBO algorithm. This space 

truss is composed of 251 nodes and 37 

member groups, which are considered as 

design variables. The tower is assumed to 

be symmetric about both the ‘x’ and ‘y’ 

axes; therefore, the same cross-sectional 

area is used for the vertical, horizontal, and 

inclined members at every two stories.  
 

 
Fig. 7. The element and node numbering system for the 200-bar planar truss 
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Table 6. Grouping the similar elements in the 200-bar planar truss 
Group IDs Member IDs 

1 1,2,3,4 

2 5,8,11,14,17 

3 19,20,21,22,23,24 

4 18,25,56,63,94,101,132,139,170,177 

5 26,29,32,35,38 

6 6,7,9,10,12,13,15,16,27,28,30,31,33,34,36,37 

7 39,40,41,42 

8 43,46,49,52,55 

9 57,58,59,60,61,62 

10 64,67,70,73,76 

11 44,45,47,48,50,51,53,54,65,66,68,69,71,72,74,75 

12 77,78,79,80 

13 81,84,87,90,93 

14 95,96,97,98,99,100 

15 102,105,108,111,114 

16 82,83,85,86,88,89,91,92,103,104,106,107,109,110,112,113 

17 115,116,117,118 

18 119,122,125,128,131 

19 133,134,135,136,137,000 

20 140,143,146,149,152 

21 120,121,123,124,126,127,129,130,141,142,144,145,147,148,150,151 

22 153,154,155,156 

23 157,160,163,166,169 

24 171,172,173,174,175,176 

25 178,181,184,187,190 

26 158,159,161,162,164,165,167,168,179,180,182,183,185,186,188,189 

27 191,192,193,194 

28 195,197,198,200 

29 196,199 

 

Table 7. Comparison of various optimization schemes for the 200-bar planar truss 

Variables 

(in²) 

Farshi 

and Ziazi 

(2010) 

Rahami 

et al. 

(2011) 

This 

work 

A1 0.15 0.15 0.14 

A2 0.95 0.94 0.95 

A3 0.10 0.11 0.12 

A4 0.10 0.11 0.10 

A5 1.95 1.95 1.91 

A6 0.30 0.30 0.30 

A7 0.10 0.10 0.12 

A8 3.11 3.11 3.06 

A9 0.10 0.11 0.12 

A10 4.11 4.11 4.06 

A11 0.40 0.40 0.43 

A12 0.19 0.20 0.16 

A13 5.43 5.42 5.37 

A14 0.10 0.10 0.10 

A15 6.43 6.43 6.33 

A16 0.58 0.58 0.57 

A17 0.13 0.13 0.13 

A18 7.97 7.98 7.84 

A19 0.10 0.10 0.10 

A20 8.97 8.96 8.84 

A21 0.71 0.70 0.62 

A22 0.42 0.43 0.88 

A23 10.87 10.86 10.93 

A24 0.10 0.10 0.10 

A25 11.87 11.86 11.90 

A26 1.04 1.03 1.32 

A27 6.69 6.68 5.37 

A28 10.81 10.82 9.95 

A29 13.84 13.83 14.15 

Weight 

(lb) 
25456.57 25449.27 24958.02 
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Fig. 8. The convergence of different algorithms to the optimal weight in the 200-bar planar truss 

 

A vertical load of 50 KN in the 

downward z direction and horizontal loads 

of 10 KN in both the ‘x’ and ‘y’ directions 

are applied to all the free nodes of the tower 

structure. To show the superiority of the 

BBO algorithm over the PSO algorithm, it 

was necessary to apply equal and similar 

conditions to both algorithms. Therefore, a 

total population of 50 and a maximum 

number of 1000 iterations have been 

considered for this simulation. The results 

obtained for both algorithms are illustrated 

and compared in Figure 1 and Table 8. 

The allowable and the existing 

displacements and stresses obtained for the 

970-bar truss structure by the BBO and PSO 

algorithms are compared in Figures 13-15. 

The maximum amount of displacement 

permitted for the truss nodes in the ‘x’, ‘y’ 

or ‘z’ directions is 20 cm, and the maximum 

allowable stress is 150 MPa. It should be 

mentioned that there is only a marginal 

difference between the analysis results of 

the SAP2000, MASTAN2 and MATLAB 

software programs. 

 

 
Fig. 9. The plan view of the 970-bar space truss 
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Fig. 10. The lateral view of the 970-bar space truss Fig. 11. The 3D view of the 970-bar space truss 

 

 
Fig. 12. The convergence of different algorithms to the optimal weight in the 970-bar space truss 
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Table 8. Comparison of various optimization schemes for the 970-bar space truss 

Variables (cm2) PSO BBO 

A1 321.94 323.82 

A2 30.51 29.10 

A3 20.24 20.06 

A4 253.58 273.59 

A5 25.82 27.29 

A6 20.00 20.08 

A7 251.19 235.14 

A8 28.18 24.98 

A9 20.26 20.00 

A10 345.60 197.44 

A11 20.88 23.83 

A12 20.00 20.01 

A13 148.04 168.55 

A14 20.10 22.67 

A15 20.00 20.05 

A16 149.92 131.51 

A17 20.09 20.86 

A18 20.20 20.07 

A19 93.70 103.86 

A20 20.08 20.47 

A21 20.00 20.18 

A22 70.10 87.82 

A23 20.22 20.09 

A24 20.00 20.02 

A25 54.42 56.26 

A26 20.00 20.23 

A27 476.27 20.00 

A28 41.58 39.47 

A29 20.00 20.12 

A30 20.00 20.00 

A31 20.00 20.00 

A32 20.08 20.09 

A33 60.42 20.01 

A34 20.44 20.70 

A35 20.00 20.00 

A36 20.00 20.00 

A37 20.38 20.17 

Volume (m3) 31.33 24.40 

Weight (ton) 245.94 191.52 

σmax (MPa) 149.54 146.92 

Δmax (cm) 19.75 20.00 
  

 
Fig. 13. Comparing the allowable and the existing displacements in the x or y direction obtained by the BBO and 

PSO algorithms 
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Fig. 14. Comparing the allowable and the existing displacements in the z direction obtained by the BBO and 

PSO algorithms 
 

 
Fig. 15. Comparing the allowable and the existing stress ratios obtained by the BBO and PSO algorithms 

 

5. Conclusions 

 

In this article, the biogeography-based 

optimization algorithm, which is based on 

the geographical distribution of animals in 

their natural habitats, has been used for the 

weight optimization of 2D and 3D trusses 

with continuous decision variables. Of 

course, the use of this algorithm is not 

limited to continuous variables or truss 

structures, and it can be easily applied to 

frames, plates, and other structures with 

discrete or continuous variables. Based on 

the results obtained from the analysis of 

benchmark problems in this paper, it is 

concluded that the BBO algorithm is ranked 

among the effective optimization 

algorithms. Moreover, because of using the 

solutions of the preceding steps at each 

current step, and also using the mutation 

operator by the BBO algorithm, the 

probability of its getting trapped in local 

minima and maxima is greatly reduced and 

the algorithm achieves a high rate of 

convergence. Also, in view of the results 

presented in the given figures and tables, 

this algorithm has a good search and 

exploration capability and achieves a 

favorable optimal solution in the initial 

iterations. All the results obtained in this 

investigation have been evaluated by means 

of software programs such as “SAP2000” 

and “MASTAN2”, and their accuracy has 

been verified. The results obtained by the 

BBO algorithm are superior to those of the 

other optimization techniques considered in 

this paper.  
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