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ABSTRACT: In the present study, Radial Basis Function (RBF) neural networks are 

applied to forecast the compressive strength and elastic modulus of Self-Compacting 

Concrete (SCC). To construct the models, different experimental specimens of diverse 

kinds of SCC are gathered from the literature. The data used in the networks are classified 

into two different sets of input parameters. The results revealed that the proposed RBF 

models can accurately forecast the properties of SCCs with low test error. Furthermore, 

a comparison between models with two different sets of inputs proves that the selected 

parameters as input variables, straightly impress the precision of the networks, in the 

prediction of the intended outputs. 

 

Keywords: Parameters, RBF Artificial Neural Networks, Self-Compacting Concrete, 

Test MSE. 

  
 

1. Introduction  

 

In recent years, self-compacting concrete 

(SCC) as a precious concrete has been 

widely welcomed in the construction 

industry. This concrete has a high 

flowability that can fill formwork without 

any additional vibration. SCC’s 

unparalleled property gives it remarkable 

advantages (Siddique, 2011; Mechaymech 

and Assaad, 2019).  

SCC has significant benefits to the 

construction industry, such as increasing 

the speed of construction, decreasing the 

efforts and cost of the placement and 

improvement in the working conditions. 

Furthermore, using of this concrete can 

conduct to a decrease in the noise pollution 

                                                 
* Corresponding author E-mail: b_gh_ch@yahoo.com   

in the plants, superior working conditions, 

and producing the concrete productions 

with great quality (Maarof et al., 2017; 

Ouchi et al., 2003; Dehwah, 2012).  

Like as other concretes, SCC has a lot of 

significant properties, which are obtained 

by experimental work. But the experimental 

work needs to spend a lot of cost, time and 

effort. For this reason, utilizing a new 

method to reduce these experiments can be 

very helpful. 

Recently, many researchers have made 

use of some techniques to forecast concrete 

properties. Among these techniques, 

Artificial Neural Networks (ANNs) are 

extremely famous to have these significant 

advantages: i) simple to apply, it means, the 

neural network has the potential to learn 
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straightly from examples and; ii) great 

precision, this network is able to endure 

rather incorrect or defective tasks, and 

approximate outcomes (Topçu and 

Sarıdemir, 2007).  

Nazari and Riahi (2012) predicted 

physical and mechanical properties of high 

strength concrete containing CuO 

nanoparticles with ANN and Genetic 

Programming. To prepare the models, 

experimental outcomes of 144 examples 

produced with 16 diverse mixture 

proportions were used. The data utilized in 

the feed-forward networks were classified 

into a collection of 8 inputs. Based upon the 

obtained result, artificial neural networks 

are powerful to forecast the flexural 

strength and the percentage of the water 

absorption of this concrete. In addition, 

ANNs can predict the desired outputs of this 

kind of concrete better than the Genetic 

Programming.  

Onikeku et al. (2019) designed both 

ANN and Multiple Linear Regression 

(MLR) models to predict the compressive 

strength and slump of concrete blending 

bamboo leaf ash and baggage ash. Three-

layer perceptron neural network was used 

for prediction. The outcome of this study 

showed that both models are reliable 

methods to forecast the desired outputs. 

Gupta (2013) utilized a back propagation 

neural network to forecast the compressive 

strength of concrete. To construct the 

network, 55 concrete mixtures were 

gathered from different sources. The ANN 

model was designed by using five input 

parameters including; cement, sand, coarse 

aggregate, water and fineness modulus. The 

study concluded that the model can forecast 

the compressive strength of concrete with 

good correlation coefficient. It was also 

found that ANN can be a beneficial 

modeling technique for engineers in the 

construction industry.  

Ghafari et al. (2015) designed two 

analytical models based on statistical 

mixture design (SMD) technique and ANN 

to approximate the performance of Ultra-

High Performance of Concrete (UHPC). 

The networks were trained by using 53 

different mixtures. Heat treatment and 

water storage were considered as curing 

conditions for specimens. The results 

showed that the ANN model can predict the 

slump flow and compressive strength of 

UHPC with higher precision than the SMD.  

Al-Khatib and Al-Martini (2019) 

predicted the rheology of SCC under hot 

weather. The input parameters were the 

mixing time, supplementary cementitious 

materials and the ambient temperature. In 

addition, the relative yield stress, slump 

flow and relative viscosity were selected as 

output variables. Akaike information 

criterion and mean absolute percentage 

error were applied to appraise the networks. 

The outcomes displayed that the created 

networks are able to forecast the rheological 

properties of this concrete.  

Li et al. (2011) predicted the workability 

of SCC with neural network. The data used 

in the ANN were classified into a format of 

six inputs, including fly ash, super 

plasticizer, cement, blast furnace slag, 

water/binder and sand ratio. The outputs of 

this concrete were V-test, slump and slump 

flow. Three models (ANN-1, ANN-2 and 

ANN-3) with 15, 11 and 5 neurons in the 

hidden layers were designed. Eventually, a 

comparison between the predicted and 

experimental outcomes indicated that 

ANN-2 had the greatest performance to 

predict the workability of SCC utilizing 

concrete ingredients as input variables. 

A review of the past studies reveals that 

in spite of the different work reported on 

utilizing neural networks, a limited amount 

of work has been done with the aim of 

developing SCC by using ANN method. 

Therefore, the main goals of this 

investigation are to estimate the potential of 

RBF ANNs to forecast the compressive 

strength and elastic modulus of SCC under 

conditions that:  

1) The scattering and diversity of the 

sources and specimens utilized in this study 

is high. The results of this study display that 

even in a complex situation along with the 

scattering of the specimens, an optimized 
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RBF neural network will be able to provide 

the optimal precision.  

2) The constructed comprehensive 

models cover diverse kinds of SCC 

containing different materials (i.e. SCC 

with various pozzolans, fibers, recycled 

materials, and lightweight aggregates). It 

means, in contrast with some researches, 

such as (Mlv and Prasenjit, 2019; Prasad 

Meesaraganda et al., 2019), this study does 

not focus on just one kind of SCC. The 

present research clearly illustrates the 

excellent ability of RBF neural networks to 

forecast the valuable properties of SCCs.  

3) The parameters that are selected as 

input variables in the RBF neural networks 

are different. This investigation exhibits the 

impact of the selected input factors on the 

performance of the RBF networks in the 

prediction of the desired outputs. 

For these goals, experimental data from 

various specimens of SCC were collected 

from literature. These data were used for 

training and testing the comprehensive 

models. Two different collections of input 

parameters were considered for networks. 

A comparison between the outcomes 

acquired from the models with different 

inputs was done and eventually, the 

forecasted outcomes from the best models 

were compared with the actual outcomes. 

 

2. Artificial Neural Networks 

 

The main unit of the human brain is neuron 

that each neuron acts as a numeric 

processing. Like as the human brain, ANNs 

consist of many interconnected artificial 

neurons, which known as processing 

elements, nodes or units (Barkhordari 

Bafghi and Entezari Zarch, 2015). The well-

organized processing elements working to 

solve the specific problems (Bhargava, 

2019). These elements interact with each 

other through weighted connections. The 

nature and the power of the influence 

between the interconnected processing 

elements are specified by the weights. 

There is an input layer where data are 

presented to the network and an output layer 

that represents the response of the network 

to the input (Goh, 1995; Bhargava, 2019). 

Another layer, which is called hidden layer 

helps network to prepare nonlinear mapping 

of the data to forecast the intended output 

(Ashtiani et al., 2018). An artificial neuron 

design is shown in Figure 1.  

ANN is a computer program that aims at 

simulating the behavior of the real brain 

(Shmelova et al., 2019; Kok et al., 2010). 

The neural network is featured via self-

adaptive, self-learning, immense 

parallelism and extremely non-linear 

explanation, which can lead to discovering 

intricate relationships between input and 

output parameters (Zhang et al., 2010; 

Demirhan et al., 2007). A design of RBF 

network, which is utilized in this paper, is 

shown in Figure 2. 

 

 
 Fig. 1. An artificial neuron design  
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Fig. 2. A schematic of RBF neural network 

 

Among different types of the neural 

networks, one of the most used ANN 

models is the radial basis function (RBF) 

network, which is a kind of feed forward 

ANN that learns via a supervised training 

method. This network has a simple 

structure, fast learning convergence and the 

strength to estimate any nonlinear function 

(Bielecki and Wojcik, 2017). They are 

useful in function estimation, assortment, 

and modeling of dynamic systems and time 

series (Tsai and Chuang, 2004). The first 

time, Broomhead and Lowe (1998) used 

radial basis functions for the design of the 

artificial neural networks.  

Generally, the architecture of this 

network includes an input layer, a hidden 

layer along with a non-linear activation 

function and a linear output layer (Kopal et 

al., 2019). The input layer of the ANN gets 

signals from the outer environment. These 

signals transfer to the hidden layer. Finally, 

the hidden layer transfers an output signal 

to another layer based on a transfer function 

(Miller, 2011). The network structure is 

shown in Figure 3.  

In Figure 3, Xn, ym and 𝜙𝐻: are the input, 

the output and the activation function, 

respectively. For each hidden layer neuron, 

the output equation, 𝜓𝑖(𝑥), which can also 

be stated as Gaussian function, can be 

obtained from the below function (Eq. (1)) 

(Orak Boru et al., 2014):

 

 
Fig. 3. Architecture of RBF neural network 
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𝜓𝑖(𝑥) =
𝑒𝑥𝑝⁡(−∑ [𝑥𝑗 − 𝑐𝑖]

2𝑟
𝑗=1 )

𝜎𝑖
2  (1) 

 

where; 𝑥𝑗, 𝑐𝑖, 𝜎𝑖 and 𝑒𝑥𝑝: show the inputs 

of the network, center vector of each hidden 

layer neuron, spread value and the 

exponential function, respectively. For each 

neuron in the output layer, data come from 

hidden layer that are computed by Eq. (1). 

For each output neuron, the generalized 

output equation can be obtained as Eq. (2): 
 

𝑦𝑚 = 𝑏𝑚 +∑𝑤𝑖𝑚

𝐻

𝑖=1

𝜓𝑖(𝑥) (2) 

 

where 𝐻, 𝑤𝑖𝑚, 𝑏𝑚 and 𝑚: are the number of 

hidden layer neurons, the weights, the bias 

amount and the number of neuron in the 

output layer, respectively (Orak Boru et al., 

2014).  

In order to train the network, first, 

according to training algorithm, the centers 

of hidden layers are selected via various 

techniques such as, randomly, k-means 

clustering and so on. Then, for the output 

layer, linear functions with 𝑤𝑖 values are 

fitted (Schwenker et al., 2001). For hidden 

layer, the algorithm calculates the output 

values through specifying the centers with 

Eq. (1). After that, the output is estimated 

by utilizing Eq. (2). Finally, a comparison 

between the obtained outputs specify the 

error of the network. The training process of 

the network continues until the error 

reaches the desired value, through adding 

neurons to the ANN and with updating the 

weights and centers of neurons in each 

iteration (Xie et al., 2011). 
 

3. Details of the Networks Preparation 
 

3.1. Data Description  

To construct RBF models, experimental 

data from various sources were gathered 

(Adekunle et al., 2015; Omrane et al., 2017; 

Ozodabas, 2018; Kamal et al., 2015; Celik, 

2015; Alyousef, 2018;  Beigi et al., 2013; 

Krishna and Anil, 2018). For 28-day elastic 

modulus, 38 samples, and for compressive 

strength at 7, 28 and 90 days, 275, 549 and 

203 samples were utilized, respectively. For 

all of these mechanical properties, 85 

percent of all data were used for training the 

networks, and 15 percent of remaining data 

were used for testing ANNs. 

At the first time, in order to simulate a 

real laboratory conditions, a more complete 

set of key factors affecting the intended 

outputs, as input variables, were selected 

for models. These variables were arranged 

in a format of 140 efficient inputs, 

including: 

 Maximum size of gravel and lightweight 

aggregates (mm);  

 The amounts of sand, gravel, recycled 

materials, lightweight aggregates, cement, 

limestone powder, fibers basalt, polyvinyl 

alcohol (PVA), high toughness poly-

propylene (PPHT), carbon and steel), 

pozzolans (fly ash, basaltic ash, sawdust 

ash, ground granulated blast furnace slag 

(GGBFS), metakaolin, silica fume and 

zeolite.), water, polymer and nano-silica, 

(Kg/m3); 

 The shapes of gravel, including: fully 

rounded corner, rounded corner, relatively 

rounded corner, relatively sharp corner and 

sharp corner; 

 Specific gravity of sand, gravel, 

pozzolan, lightweight aggregates, recycled 

materials, cement, fiber, limestone powder,  

super plasticizer, nano-silica, high water 

reduction agent (HWRA) and viscosity-

modifying agent (VMA), (gr/cm3); 

 Diameter (mm), length (mm), tensile 

strength (MPa) and the shapes of the fibers, 

including: fiber with straight end and fiber 

with hooked end; 

 Grading of lightweight aggregates, sand 

and gravel; 

 Water absorption of lightweight 

aggregates, sand and gravel (%); 

 Chemical properties of cement, 

pozzolan, recycled materials, and limestone 

powder; 

 Temperature operation (°C); 

 Solid contents of nano-silica and super 

plasticizer (%); 

 PH of super plasticizer; 

 Dosage of viscosity-modifying agent 
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(VMA), super plasticizer, and high water 

reduction agent (HWRA), (Kg/m3); 

 Concrete’s delivery time (min); 

 Curing conditions (wet, dry, sealed). 

It is worth mentioning that introducing 

the different shapes of fiber, sand and also 

various curing conditions to the ANNs were 

carried out by devoting constant digits for 

each parameter according to Table 1.  

At the second time, some of the 

parameters affecting the properties of 

concrete were ignored. In the other words, 

first, to take prediction conditions closer to 

laboratory conditions, the authors selected 

input parameters more sensitively. But, at 

the second time, this sensitivity was 

reduced and they just tried to collect the 

parameters, which have been selected 

repeatedly as the input factors among 

similar investigations in this field. Then, 

these gathered parameters were classified 

into a set of 8 inputs, namely: the amounts 

of sand, gravel and cement, water-to-

cement materials ratio, super plasticizer 

dosages and specific gravity of sand, gravel 

and cement (Khademi and jamal, 2016; Das 

et al., 2015; Shah et al., 2018; Rajaram et 

al., 2018; Yuan et al., 2014). For each 

network, compressive strength or elastic 

modulus of SCCs was determined as output 

parameter. 

 

3.2. Designs of Models 

To construct and train the models, the 

MATLAB Neural Network Toolbox was 

used. For the structure of the models, one 

input layer, one hidden layer along with a 

non-linear RBF activation function that is 

called Gaussian activation function, and 

one output layer with a linear activation 

function namely Purelin were considered. 

The number of input and output layer 

neurons are equivalent to the number of 

input and output parameters (Kazemi Elaki 

et al., 2016). Therefore, for networks with 8 

and 140 input variables, the number of input 

layer neurons were 8 and 140 with one 

neuron in the output layer. Furthermore, for 

this network, the MATLAB software 

automatically determined the number of 

hidden layer neurons, similar to the number 

of data that were considered for network 

training (i.e. 85 percent of all data for each 

mechanical property). The number of 

neurons in each layer and their activation 

functions are shown in Table 2. 

It should be noted that optimizing the 

spread parameter of RBF ANN is so 

important and it can directly influence the 

degree of estimation (Lihui et al., 2008). 

Therefore, in this study, in order to obtain 

the optimal spread, which leads to the 

minimum test error, the spread values of the 

radial basis function networks have been set 

between 0.1 and 109. This domain was 

selected by trial and error method. 

 

3.3. Data Normalization 

Before training the neural networks, the 

values of the training and test data were 

normalized between 0 and 1 by using the 

following codes in MATLAB software: 
 

Table 1. Introducing the various shapes of fiber, sand and also different curing conditions to the networks 

Sand Fiber Curing conditions 

Fully rounded corner = 0 Fiber with straight end = 0.5 Dry conditions = 0 

Rounded corner = 0.25 Fiber with hooked end = 1 Wet conditions = 1 

Relatively rounded corner = 0.5  Sealed conditions = 2 

Relatively sharp corner = 0.75   

Sharp corner = 1   
 

Table 2. Characteristics of the designed ANNs 

Outputs 

Number of 

neurons in 

the input 

layer 

Number of 

neurons in 

the hidden 

layer 

Number of 

neurons in 

the output 

layer 

Activation 

function in 

the hidden 

layer 

Activation 

function in 

the output 

layer 

7-day Compressive strength 8 or 140 234 1 Gaussian Purelin 

28-day Compressive strength 8 or 140 466 1 Gaussian Purelin 

90-day Compressive strength 8 or 140 173 1 Gaussian Purelin 

28-day Elastic modulus 8 or 140 32 1 Gaussian Purelin 
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⁡[𝑝𝑛, 𝑝𝑠] = 𝑚𝑎𝑝𝑚𝑖𝑛𝑚𝑎𝑥⁡(𝑝, 0, 1)   (3) 

[𝑡𝑛, 𝑡𝑠] = 𝑚𝑎𝑝𝑚𝑖𝑛𝑚𝑎𝑥⁡(𝑡, 0, 1) (4) 

 

where 𝑝, 𝑡, 𝑝𝑛, 𝑡𝑛: illustrate the original 

inputs, the original targets, the normalized 

inputs, and the normalized targets, 

respectively. Furthermore, 𝑝𝑠 and 𝑡𝑠: show 

the minimum and maximum amounts of the 

original inputs and targets (MATLAB 

Software, 2013).  

 

3.4. ANN Model Performance 

To appraise the outcomes of the models, 

Mean Square Error (MSE) and the 

Correlation Coefficient (R) were exerted. 

These functions are determined as Eqs. (5-

6): 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑋𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙(𝑖)

𝑁

𝑖=1

− 𝑋𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑖))
2 

(5) 

𝑅

= [1 −
∑ (𝑋𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙(𝑖)

− 𝑋𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑖))
2𝑁

𝑖=1

∑ (𝑋𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙⁡(𝑖)
− 𝑋𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2𝑁

𝑖=1

]
1
2⁄  

 (6) 

 

where 𝑁;⁡𝑋𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑⁡, 𝑋𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙⁡, and 

𝑋𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ : are the number of data sets, 

calculated amount, experimental amount, 

and average of experimental amounts, 

respectively (Badrnezhad and Mirza, 2014). 

The correlation coefficient (R) varies 

between -1 and +1. It means, this 

characteristic will be either 1 or –1, when 

two parameters are in full linear correlation. 

The correlation coefficient 0 shows that the 

parameters have no linear correlation with 

each other (Schober et al., 2018). 

 

4. Results and Discussions 

 

The ANN models developed in this 

research were used to forecast the 

compressive strength and elastic modulus 

of SCCs. To assess the impact of the 

selected input factors on the network 

accuracy in the prediction of the intended 

properties, the data were classified into two 

sets of 8 and 140 inputs. As mentioned 

earlier, 85 percent of all samples (chosen 

randomly) were applied for training the 

networks and 15 percent of remaining 

samples were used to test the prediction.  

The statistical values of the developed 

ANN models at different spreads are shown 

in Tables 3 and 4. The specified column in 

each table for each output shows that the 

network at this spread has the minimum test 

error and consequently the highest accuracy 

in predicting the desired outputs. It means, 

at these specified spreads, the predicted 

outcomes have a very good agreement with 

the experimental outcomes. For each 

output, this spread is called the Network’s 

optimal spread. Furthermore, it is worth 

mentioning that, this network can be made 

in a very short time and also can be trained 

much faster than other kinds of ANNs. 

In Table 5, the outcomes of RBF 

networks with two different sets of inputs 

were compared with each other. As it can be 

seen, the created RBF networks with 140 

inputs have lower test error and 

consequently a greater accuracy than 

networks with 8 inputs in forecasting the 

intended outputs. In fact, by deleting some 

of the input factors, a relatively large 

variation has been created in the forecasted 

outcomes.  

In addition, for both elastic modulus and 

compressive strength, RBF networks with 

140 inputs compared to ones with 8, have 

85.65 (for 28-day elastic modulus) and, 

64.48, 63.25, and 83.53 (for 7, 28 and 90-

day compressive strength, respectively) 

percent improvement regarding their test 

MSE. This demonstrates that by the more 

simulation of the forecasted conditions to 

the laboratory conditions, through selecting 

a more perfect set of key variables affecting 

the intended properties, as input factors, the 

network performance can significantly be 

improved. For this reason, in this 

investigation, owing to have the minimum 

test MSE and the highest correlation 

coefficients, the optimized models with 140 

variables are selected as the best models. 
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Table 3. Statistical values of the developed ANN models with 8 inputs 
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Table 4. Statistical values of the developed ANN models with 140 inputs 
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  The performance of training and testing 

data sets of the best models of RBF neural 

networks with 140 input variables is 

displayed in Figures 4-7. Based on these 

figures, the values of R in training and test 

sets, were obtained (0.95, 0.94, 0.98, 0.96, 

0.99, 0.97) for 7, 28 and 90-day 

compressive strength, and (0.98, 0.99) for 

28-day elastic modulus, respectively. As 

mentioned earlier, the correlation 

coefficient (R) determines the power of the 

relationship between the parameters. The R 

value close to one shows an excellent 

agreement between two parameters. 

Therefore, pursuant to these figures, for 

both compressive strength and elastic 

modulus, the values obtained through the 

training and testing of RBF models are in a 

good correlation with actual values. It 

indicates the optimized networks 

successfully learned the relationship 

between the selected input and outputs. In 

the other words, the obtained R values 

proves that there is a great fitness between 

the forecasted and experimental outcomes 

at all the operating conditions considered in 

this study. Therefore, without requirement 

to do any experiment, a finely-trained and 

tested neural network, as a valuable tool, is 

able to forecast the various properties of 

SCCs, along with a notable reduction in 

time and cost. 
 

  
(a) (b) 

Fig. 4. Predicted outcomes vs. experimental outcomes for 7-day compressive strength: a) Training set and; b) 

Testing set 
 

  
(a) (b) 

Fig. 5. Predicted outcomes vs. experimental outcomes for 28-day compressive strength: a) Training set and; b) 

Testing set 
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(a) (b) 

Fig. 6. Predicted outcomes vs. experimental outcomes for 90-day compressive strength: a) Training set; b) 

Testing set 

 

  
(a) (b) 

Fig. 7. Predicted outcomes vs. experimental outcomes for 28-day elastic modulus: a) Training set and; b) Testing 

set 

 

Table 5. Comparison between the outcomes of the optimized models with 8 and 140 inputs 

Outputs 
Number of 

inputs 

Optimum 

spreads 

Test  

MSE 

Train 

MSE 

Test  

R 

Train 

 R 

Percentage of 

improvement in test MSE 

FC7 
8 102 47.17 41.41 0.82 0.84 

64.48 
140* 104 16.59 13.52 0.94 0.95 

FC28 
8 10 64.42 33.31 0.89 0.94 

63.25 
140* 103 23.67 11.91 0.96 0.98 

FC90 
8 102 92.70 59.40 0.88 0.92 

83.53 
140* 103 15.26 7.35 0.97 0.99 

ES28 
8 1 7.25 1.03 0.96 0.98 

85.65 
140* 104 1.04 1.20 0.99 0.98 

*: The best models 
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 Furthermore, a comparison between the 

actual and predicted outcomes of the best 

models with 140 variables are illustrated in 

Figures 8-11. As can be observed in these 

figures, the predicted outcomes of the RBF 

networks have an excellent conformity with 

the actual results. The performance and the 

prediction accuracy of these optimized 

networks is suitable, and for this reason the 

outputs of the models are close to the actual 

values. This case proves that the designed 

RBF networks, which contain a more perfect 

set of key factors affecting the desired 

outputs, are fully powerful to forecast all of 

the properties of this concrete. In fact, RBF 

networks, as a reliable tool, can predict the 

properties of SCCs in a quite short period of 

time with low error values. 
 

 
Fig. 8. Comparison between the predicted and experimental values of 7-day compressive strength 

 

 
Fig. 9. Comparison between the predicted and experimental values of 28-day compressive strength 

 

 
Fig. 10. Comparison between the predicted and experimental values of 90-day compressive strength 
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Fig. 11. Comparison between the predicted and experimental values of 28-day elastic modulus 

 

5. Conclusions 

 

Self-compacting concrete is a very valuable 

type of concrete that has a lot of significant 

benefits in the construction industry. 

Similar to other concretes, the valuable 

mechanical properties of this concrete, such 

as compressive strength and elastic 

modulus, are obtained in the laboratory, 

which is time-consuming and costly. The 

remarkable aim of the current paper is to 

design and develop comprehensive models 

of RBF neural networks to forecast the 

compressive strength and elastic modulus 

of self-compacting concretes. Experimental 

data from the different concrete mix-

designs of SCC were collected from various 

sources to design the models. The data 

utilized in RBF networks were classified 

into two different sets of input parameters. 

The spread values of the constructed 

networks were set between 0.1 and 109 to 

obtain the optimal spread.  

Based on the present research, the 

following conclusions are drawn: 

1. The RBF artificial neural network, as a 

smart tool, has a high potential to 

forecast the properties of SCCs. It is 

clearly seen from this study that, in spite 

of the fact that the dispersal of the 

utilized data can cause a decrease in the 

prediction precision of the models, the 

optimized models of RBF networks can 

estimate the properties of different kinds 

of self-compacting concretes with a 

fairly good precision. 

2. The RBF neural network can be made 

and trained much faster than other types 

of neural networks. This network is able 

to be optimized in a very short time. All 

of the designed networks were optimized 

through finding an optimum spread 

value for each output. The great 

conformity between the forecasted and 

experimental outcomes proves that the 

optimized RBF neural networks can 

learn well the relationship between the 

selected input and output parameters.  

3. In comparison with experimental work, 

which needs to spend a lot of time, cost 

and material, radial basis function neural 

networks can predict the essential 

properties of this useful concrete without 

performing any experiments along with 

a high accuracy. In the other words, these 

developed networks will save time, 

decrease waste material and reduce the 

design expense in predicting the desired 

outputs of SSCs. 

4. For all of the intended properties, 

developed RBF neural networks with 

140 variables, have a better performance 

than networks with 8 variables. It reveals 

that whatever the conditions of 

predicting the neural networks get closer 

to laboratory conditions, via using a 

more perfect set of input variables 

affecting the intended outputs, the RBF 

ANNs can forecast the outputs more 

correctly. Therefore, if input variables 

are selected more sensitively, this 

selection straightly influences the 

network errors and consequently, the 

created networks present a highly 

satisfying performance to forecast the 

outputs. 
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