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ABSTRACT: A new macroscopic four node reinforced concrete shear wall element is 

presented. The element is capable of considering the effect of wall opening without any 

divisions in the element. Accordingly, the opening may be located arbitrary inside the 

element. Furthermore, three degrees of freedom are suggested here at each node, totally 

compatible with the surrounding frame elements. The element is considered only for in-plane 

stiffness of the wall. Therefore, the surrounding frame elements are assumed to be assembled 

separately which provides a suitable modeling condition. The element consists of vertical 

springs, horizontal springs and a shear membrane shell. No rigid element is used in the 

assembly for imposing the bending action; however, the compatibility is achieved using the 

definition of shape functions. The element is developed and evaluated in linear applications. 

The results indicate that some major defects of other macroscopic shear wall elements are 

removed by the proposed element. 
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INTRODUCTION 

 

Reinforced concrete (RC) walls are known as 

one of the most effective elements in 

providing resistance against lateral loads 

induced generally by earthquake or wind. 

Accordingly, the investigation of the damage 

to reinforced concrete shear walls is also of 

great importance, which has been the subject 

of numerous studies (Naderpour et al., 2017). 

The linear and nonlinear behavior of shear 

wall elements may be properly explained by 

standard Finite Element procedures based on 

continuum mechanics (Kotosovos et al., 

1992). However, the method leads to very 

large and expensive models in practical 

applications and it has been proved that a 

simplified formulation is needed to predict 

the wall's overall behavior with reasonable 

accuracy. These simplified models are 
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introduced as macroscopic models, which are 

suggested by several authors, mostly using 

several simple elements such as springs and 

beams (Shin and Kim, 2014; Kolozvari et al., 

2018; Rezapour and Ghassemieh, 2018; Wu 

et al., 2017; Fu, 2020). 

In the first macroscopic model, “the 

equivalent beam model”, wall member is 

considered as a line element at its centroidal 

axis which is connected by rigid links to the 

girders in a wall framed system. The model 

consists of a flexural elastic member with 

nonlinear rotational springs at each end for 

considering inelastic behavior of critical 

regions (Keshavarzian et al., 1984). The 

model is presented in common structural 

platforms such as DRAIN-2DX and 

SAP2000. Also the model is supported by 

some codes and prestandards like ASCE 41 

(2017) despite its restrictions. The main 

limitation of this method is that the neutral 

axis coincides with the center of the wall 

section. But in reality, the neutral axis 

changes during the analysis due to cracking 

and changing the axial force of the wall. 

Another macroscopic model was the 

equivalent truss system. Hiraishi (1983) 

introduced a non-prismatic truss member on 

the basis of experimental test results. Mazars 

et al. (2002) presented a new simplified truss 

system modeling to simulate nonlinear 

behavior of shear walls under dynamic 

loading. They also expressed that by using 

such modelling method, out of plane flexure 

and torsion phenomena are also possible. 

However, the use of this model is limited 

because of the difficulties in defining the 

element topology as well as the properties of 

truss elements. Several investigations have 

also been done on the different aspects of out 

of plane behavior in concrete shear walls 

(Dashti et al., 2014; Saahastaranshu et al., 

2017). 

The restrictions of the above mentioned 

models motivated the investigators to 

formulate more reliable models. Kabeyasawa 

et al. (1983) proposed three vertical line 

element model (TVLEM) to capture the 

hysteretic behavior of RC walls. In this 

model, each wall panel in each story is 

considered as three line vertical elements 

with infinite rigid beams at the top and 

bottom of floor levels. Vulcano et al. (1988) 

extended TVLEM to MVLEM (multiple 

vertical line element model), known as one of 

the most efficient models introduced so far. 

In this model the flexural and axial responses 

of a wall member are simulated by a 

collection of vertical line elements with rigid 

beams at the top and bottom story levels, 

shown in Figure 1. Here, the shear stiffness of 

wall member is considered by a horizontal 

shear spring as well. The location of this 

spring in the height of element is defined by 

parameter c. The proper value of c is based on 

the expected curvature distribution along the 

element height. This value is discussed by 

some researchers (e.g., Vulcano et al., 1988). 

MVLEM captures the important features 

such as shifting of neutral axis as well as the 

effect of fluctuating axial force on the 

strength and stiffness which are ordinarily 

ignored in other macroscopic models. 

Moreover, the simulation of various material 

hysteretic models, the effect of confinement 

on material behavior and nonlinearity of 

shear behavior are considered in the model. 

Up to now, many researches have used this 

model; on the nonlinear behavior of vertical 

and horizontal springs (Fischinger et al., 

1990) and on the coupled walls modeling 

(Wallace et al., 2006). 

In definition of macroscopic element, 

several requirements should be satisfied in 

order to make the element accurate, useful 

and practical. The most important ones are as 

follows (Fischinger et al., 1990; Wallace et 

al., 2006; Vulcano et al., 1988): 

1) The element should be based on a 

simplified simulation, predicting the wall's 

overall behavior with reasonable accuracy;  
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Fig. 1. Multiple vertical line element model (Vulcano et al., 1988) 

 

2) The element should produce the resultant 

internal forces including moment, axial and 

shear force to be used in design procedure of 

shear walls according to design codes; 

3) The element should handle the nonlinear 

phenomena such as plasticity and concrete 

cracking; 

4) The element should be able to consider 

reinforcements in its  linear and nonlinear 

stiffness; 

5) The defined degrees of freedom of element 

nodes should be compatible with other 

elements, especially with surrounding beams 

and columns; 

6) The most important characteristic of the 

element is its capability of considering the 

openings without being divided into several 

elements. 

Numerous studies have been conducted on 

the effect of openings on steel and concrete 

shear walls (Mahmoudi et al., 2016; 

Abdollahzadeh et al., 2013). The opening in 

shear wall has two effects: i) changing the 

element's stiffness; ii) causing the stress 

concentrations around the opening. The latter 

effect is usually handled by code 

specifications (ACI318M-19) and does not 

enter the analytical macroscopic model; 

however, the former should be handled by the 

element formulation.  

Despite performing appropriately in many 

applications, MVLEM cannot handle the 

openings properly. This element handles the 

opening inside the wall by modeling each pier 

in each story with a MVLEM element and the 

coupling beam between two piers with a 

beam element. Besides, the location of shear 

spring in height of element is another 

difficulty in this element. 

In this paper, the implemented element is 

proposed based on MVLEM element with 

some advancement. Several characteristics of 

the proposed element are mentioned below: 

1) The element consists of vertical and 

horizontal springs and a shear membrane 

shell, instead of shear spring in MVLEM 

element. 

2) It has four nodes with two translational 

degrees of freedom and one rotational degree 

of freedom. 

3) The use of rotational degree of freedom in 

the presented formulation simplifies the 

connection of shear wall with other frame 

elements and causes compatibility of the 

proposed element with other elements, 

specially the surrounding beams and 

columns. 

4) No rigid element is used in the assembly 

for imposing the bending action; however, 

the compatibility is achieved by definition of 

shape functions. 

5) The element is considered only for in-
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plane stiffness of the wall. Therefore, the 

surrounding frame elements may be assumed 

separately. 

6) The element considers the openings inside 

the wall without dividing it to several 

elements. 

Also, it is tried to formulate the element in 

a way that it can be extended to nonlinear 

analysis with no restrictions. 

 

Implemented Macroscopic Wall Element 

The implemented macroscopic wall 

element consists of vertical springs, 

horizontal springs and a shear membrane 

shell, shown in Figure 2. In the proposed 

model the flexural and axial responses of the 

wall member are simulated by multiple 

vertical springs with axial stiffness of K1, K2, 

K3, …, Kn; where, n is the number of vertical 

springs. Axial stiffness of concrete and steel 

bars in the vertical direction is considered by 

these springs.  

The horizontal springs with axial stiffness 

of KH1, KH2, KH3, …, KHm are added to 

include the effect of horizontal bars and the 

beam action in case of walls with opening; 

where, m is the number of horizontal springs. 

The axial stiffness of concrete and steel bars 

is modeled in the horizontal direction by such 

springs. The number of springs in both 

directions is arbitrary and can be increased to 

obtain more exact results and more refined 

description of wall cross section. 

Shear membrane shell is used to simulate 

shear stiffness of the wall member. The 

horizontal shear spring in MVLEM model is 

replaced by a shear membrane shell and 

therefore the parameter c which defines the 

location of shear spring in height of element 

in MVLEM model is omitted. 

The element is assembled without using 

any rigid elements to impose the bending 

action; however, the compatibility is 

achieved by definition of the shape functions. 

This characteristic is another main advantage 

of the element. Elimination of the rigid beams 

from the top and bottom of the wall causes 

implicit compatibility and provides a strong 

base to use the higher order shape functions, 

as well as, to add the rotational degree of 

freedom at each node. These advantages are 

in the nature of the Finite Element 

formulation which is presented in the 

following sections. 

The wall element has four nodes, with two 

translational degrees of freedom and one 

rotational degree of freedom in each node as 

shown in Figure 2. This element is very 

similar to membrane shell element except that 

the axial and the in-plane shear strains are 

decomposed here. Replacing the end rigid 

elements with shape functions has also made 

the formulation closer to standard Finite 

Element (Bathe, 2014; Seshu, 2004).  
              

 
Fig. 2. Implemented macroscopic wall model 
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The Element Formulation 

The standard membrane shell element 

does not consider in-plane rotation and the 

strain components are related to the 

translational displacement fields (Bathe, 

2014; Seshu, 2004). But beam elements are 

connected to the shell elements in various 

cases of structural engineering such as 

connection of beam to shear wall and moment 

transfer from beam to shell element is 

happening. As a result, in-plane rotation is 

highly required in the numerical models for 

providing the compatibility of membrane 

elements with surrounding frame elements. 

Many authors have established this degree of 

freedom such as Cook (1986) in rectangular 

elements. Based on Cook (1986) formulation, 

the eight-node element with sixteen 

translational DOFs ),( ii vu , shown in Figure 

3a, is reduced to four-node element with 

twelve DOFs ),,( iii vu  , shown in Figure 3b. 

Translational displacements of nodes with 

number 1 to 4 are the same in both elements. 

In the following equations, the displacements 

of eight-node element are determined based 

on the displacements of four-node element 

(Cook, 1986):  
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where, 
ix  and 

iy : are node coordinates.  

The nodal displacement vector of four 

node element is considered as below: 

 

   32211 uvuvuU
T


 
4321443 vuv  

(3) 

 

Also, nodal displacement vector of eight 

node element is considered as below: 

 

   4332211 uvuvuvuU
T
     

887766554 vuvuvuvuv  
(4) 

 

By using Eqs. (1-2), nodal displacements 

of eight node element U  can be found based 

on nodal displacements of four node element

 U : 

 

    UTU   (5) 

 

where,  T : is transformation matrix and 

expressed as: 

 

  







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QL

I
T

0  (6) 

 

where, I : is a unit matrix )88(  , 0 : is a null 

matrix )48(  ; L  and Q : are defined as 

follows:                                                         

 

  
(a) (b) 

Fig. 3. a) Nodal degrees of freedom in eight node element and; b) nodal degrees of freedom in reduced four node 

element (Bathe, 2014; Seshu, 2004) 
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The isoparametic mapping of the 

displacements is performed on  U   

components, although the displacement field 

is expressed in terms of U  components using 

T  transformation matrix: 

 

     UTu   (13) 

 

where,  u : is displacement vector of a point;  

  : is shape function matrix of isoparametric 

eight node element. 
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where, 1  to 8  are: 
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where, i  and i : are coordinates of nodes in

  ,  system, shown in Figure 4; u  and v : 

are the displacement components of a certain 

point in the element;   and  : are 

isoparametric coordinates of the point.  

The strains of the point are calculated as 

below: 

 

     UTB  (19) 

 

where,   : is the strain matrix of the point 

and is achieved as: 
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Fig. 4. The coordinates of nodes in   ,  system 

 

where, 
x  and 

y : are axial strains of the 

point in x  and y  directions; 
xy : is shear strain 

of the point;  B : is the standard relation of 

nodal displacements to strain matrix for 

isoparametric eight node element: 
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where,  J : is the Jacobian matrix;  
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below: 
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x
,
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,
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y
 and



y
: are determined 

by defining x  and y based on shape functions 

on the node coordinates. 

The stiffness matrix of element is 

calculated as: 
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where  k : is the stiffness matrix of the 

element, A : is the area of the element, h: is 

the thickness of the element and ][D : is the 

elasticity matrix. The elasticity matrix has the 

following form for plane stress problems 

(Bathe, 2014; Seshu, 2004). 
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According to Eq. (19), shear strain at 

Gauss points in shear membrane shell and 

axial strain in each vertical and horizontal 

spring can be found. The stiffness matrix of 

element is obtained based on Eq. (30). The 

shear stiffness of element is obtained by exact 

integration based on shear term of ][D . The 

axial stiffness of the element in both 

directions is obtained by summing stiffness of 

vertical and horizontal springs instead of 

integration on Eq. (30). 

It should be noted that in the mentioned 

formulation, due to the nature of macro 

elements, the element size has no effect on the 

results. Several examples with different 

dimensions of walls and openings are 

discussed in the following sections which 

confirm this issue. 

 

The Element Application in Shear Walls 

without Opening 

Static analysis of a structure is conducted 

to verify the efficiency and accuracy of the 
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proposed element where no opening is 

presented. Figure 5 shows a six-story shear 

wall with a thickness of 20 cm in all stories 

and the nodal forces applied to it. In the 

macroscopic model the two nodes of the 

bottom of the wall is restrained at horizontal 

and vertical directions (u
 
and v ). Also, each 

node of the bottom of the wall in the 

microscopic model is restrained at horizontal 

and vertical directions. 

This structure is analyzed using three 

approaches: 

1. A fine mesh model subdivided into a large 

number of elements. Analysis of this model is 

assumed to be the most accurate. 

2. MVLEM model. 

3. Proposed element. 

 

 
Fig. 5. Example shear wall without opening 

 

Each panel of the wall is simulated as one 

element in each story in both MVLEM model 

and the proposed element. The structure is 

also analyzed with different number of 

springs (n) to study the effect of the element 

subdivisions in both models. Definition of 

springs is shown in Figure 6 for n=3, 6.  

The lateral displacements of story levels 

are compared in these three approaches and 

shown in Figure 7. The vertical 

displacements of left joints at story levels are 

also compared in these three approaches and 

presented in Figure 8.  

As it is observed in this example, almost 

accurate responses are offered by the 

proposed element for the walls without 

opening, considering a rational number of 

springs, like MVLEM model. When number 

of springs is 3, the error values are high in 

both macroscopic models; however, the error 

values are low in both models when number 

of springs increase to 6. The maximum 

percent values of errors in vertical and 

horizontal displacements in both macroscopic 

models with different spring number are 

mentioned in Table 1. 
 

Table 1. Comparing the maximum error percentages 

in proposed element and MVLEM model in the shear 

wall structure without opening 

Model 
Horizontal 

displacement 

Vertical 

displacement 

MVLEM 

(ns=3) 
101.3% 102.6% 

Proposed 

element 

(ns=3) 

99.2% 104.3% 

MVLEM 

(ns=6) 
3.96% 2.91% 

Proposed 

element 

(ns=6) 

1.93% 2.68% 

 

 
(a) 
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(b) 

Fig. 6. Definition of springs in MVLEM model and the proposed element when number of springs is: A) 3 and; b) 6 
 

 
Fig. 7. Lateral displacements of shear wall structure without opening at story levels 

 

Modeling of Openings 

Openings may be formed inside the 

reinforced concrete walls because of many 

functional reasons such as doors, windows 

and ducts. Therefore, the reliable and 

simplified analysis seems necessary for 

studying general shear wall structural 

systems, including openings. 

The element, proposed here, can simulate 

the openings inside the wall without being 

divided into several elements. Each panel of 

the wall in each story can be modeled by one 

element as shown in Figures 9a and 9b. 

However, MVLEM model as one of the most 

effective models handles the opening inside 

the wall by at least three elements (two 

MVLEM elements and a beam element) in 

each panel, shown in Figure 9c. Besides, in 

modeling by MVLEM element when number 

of openings is more than one in each panel, 

the number of elements becomes more as 

shown in Figure 9d. Therefore, the openings 

can be modeled more easily by using the 

proposed element especially in tall and large 

structures.  

Given that in the presence of one openning 

in each panel, the number of elements of the 

proposed model is one-third of the MVLEM 

model; it is estimated that the run time and in-

core storage will be reduced to one-third. 

Obviously, with the increase in the number of 

openings, the above cases will decrease 

further. 
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Fig. 8. Vertical displacements of left joints of shear wall structure without opening at story levels 

 

 
(a) (b) 

 
(c) (d) 

Fig. 9. Modeling of openings with: a) the proposed element (one opening in each panel); b) the proposed element 

(two openings in each panel); c) MVLEM model (one opening in each panel) and; d) MVLEM model (two openings 

in each panel) 
  

Here in the proposed element, the vertical 

and horizontal springs should be omitted in 

the location of opening for considering the 

effect of opening on axial stiffness of wall in 

both directions, shown in Figure 10.  
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Fig. 10. Modeling vertical and horizontal springs in the proposed element in walls with opening 

 

Moreover, a decreasing shear stiffness 

coefficient    is defined for concerning the 

effect of opening on shear stiffness of the 

wall. This coefficient is considered to be a 

function of the ratio of opening area to panel 

area   , the position of opening in X 

direction    and the position of opening in 

Y direction   . These three parameters are 

expressed as below: 

 

A

A
  (32) 

L

l
  (33) 

H

h
  (34) 

 

where, A : is the area of opening; A : is the 

area of panel; l  and h: are the coordinates of 

the center of opening and L and H: are length 

and height of wall panel as shown in Figure 

11.  

The effects of these parameters on shear 

coefficient    were found by numerical tests 

with different quantities of the parameters. In 

this paper, some different numerical tests 

with different values of  ,,  parameters 

are performed and the walls are modeled in 

these tests through two approaches: i) fine 

mesh model and ii) modeling with the 

element without any divisions in each panel 

of the wall. The coefficient    is obtained by 

equalizing the horizontal displacement results 

in two ways. These numerical tests indicated 

changes in   and 
 
with same   had no 

effective change on shear coefficient   . 

Therefore the position of opening in the wall 

has almost no effect on the shear stiffness of 

the wall and the opening area is the most 

effective parameter in shear stiffness of the 

wall. The variation diagram of shear 

coefficient    versus   parameter is shown 

in Figure 12. 

 

 
Fig. 11. Defining effective parameters on shear 

stiffness of the wall with opening 
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Consequently, modeling of the opening 

with the presented element includes the 

following procedures: 

i) The effect of openings is considered by 

removing the vertical and horizontal springs. 

Accordingly, all horizontal and vertical 

springs passing through the range of openings 

are omitted as shown in Figure 10. 

ii) The ratio of opening area to panel area 

(Parameter  ) is calculated based on the 

geometry of the problem.  

iii) Based on the parameter   obtained in 

step 2, the value of   is obtained according 

to Figure 12. 

iv) Based on the coefficient   obtained in 

stage 3 the wall shear modulus G is reduced 

to G  ( .GG  ). 

 

The Element Applications in Shear Walls 

with Openings 

In this section static analyses are 

performed on some structures with different 

openings and different number of stories in 

order to verify the efficiency and accuracy of 

the proposed element in term of the ability to 

consider the opening effects. The example 

structures are analyzed using three 

approaches as follows: 

1. A fine mesh model subdivided into a large 

number of Finite Elements. Analysis of this 

model is assumed to have the highest 

accuracy. 

2. MVLEM model. 

3. The proposed element. 

 

Shear Wall with Door Type Openings 

This example structure is an eight story 

shear wall with door type openings, shown in 

Figure 13a. The openings are modeled by 

MVLEM model and the proposed element, 

shown in Figures 13b and 13c. The wall 

model is made by sixteen MVLEM elements 

in the central axis of each pier and eight beam 

elements, presented in Figure 13b. The wall 

model is also simulated by eight proposed 

elements, shown in Figure 13c. As it is 

observed in Figures 13b and 13c, the 

openings are modeled by the proposed 

element simpler and more realistic compared 

to MVLEM model. The openings are 

symmetric to central axis of wall panel. The 

thickness of the wall is 20 cm in all stories 

like last example. Three vertical springs (n) 

are considered for each pier in the proposed 

element as well as MVLEM model. 

Furthermore, regarding the element proposed 

here, four horizontal springs (m) are taken 

into account for each coupling beam in each 

story. 
 

 
Fig. 12. Variation diagram of shear coefficient    versus   parameter in the wall with opening 
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(a) (b) (c) 

Fig. 13. a) Example shear wall with door type opening; b) modeling of shear wall by using MVLEM elements and; 

c) modeling of shear wall by using proposed element 

 

The lateral displacements of story levels 

and the vertical displacements of left joints at 

story levels are compared in these three 

approaches and shown in Figures 14 and 15, 

respectively. As shown in Figure 14, the 

lateral displacement error of the wall in the 

case of using the proposed element is less 

than the MVLEM element in all stories. 

Figure 15 shows that the vertical 

displacement in model using the MVLEM 

element is more accurate than the proposed 

element from the base to the fourth story. But 

the proposed element is more accurate from 

the fourth story to roof. However, the error 

rate in both models is negligible and the use 

of the proposed model is preferable due to 

lesser number of elements. 

Maximum percent of errors, occurring in 

both macroscopic models used for vertical 

and horizontal displacements are listed in 

Table 2. As it is observed in this example, the 

proposed element can model door type 

openings inside the wall without dividing it 

into several elements with rational accuracy 

in stiffness. 

 
Table 2. Comparing the maximum error percentages 

in the proposed element and MVLEM model in the 

shear wall structure with door type opening 

Model 
Horizontal 

displacement 

Vertical 

displacement 

MVLEM 4.5% 3.7% 

 3.9% 3.7% 

 

Shear Wall with Window Type Openings 

This example structure is a seven story 

shear wall with window type openings in the 

third, sixth and seventh stories as shown in 

Figure 16a. Here, the openings are modeled 

by MVLEM element as well as the proposed 

element as presented in Figures 16b and 16c. 

The wall model is made by eleven MVLEM 

elements in central axis of each pier and two 

beam elements and eight rigid beams, shown 

in Figure 16b. The wall model is made by 

seven proposed elements, as shown in Figure 

16c. As it is observed in the figures, the 

modeling of the openings by MVLEM model 

is very difficult when the number of the 
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openings in each panel of wall is more than 

one and the location of openings differs in the 

height of wall. On the other hand the 

modeling of the openings by the proposed 

element is very easy. The openings are not 

symmetric to central axis of wall panel. The 

wall thickness is 20 cm in all stories like the 

last example. 

 

 
 

Fig. 14. Lateral displacements in the shear wall structure with door type opening at story levels 

 
Fig. 15. Vertical displacements of left joints in the shear wall structure with door type opening at story levels 
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The lateral displacements of story levels 

are compared using different solutions and 

are shown in Figure 17. The vertical 

displacements of left joints at story levels are 

also compared applying different solutions 

and are presented in Figure 18. As shown in 

this figure, the proposed element and the 

MVLEM element have the same accuracy in 

estimating the vertical displacement up to 

fourth story. The MVLEM element is more 

accurate on the fifth story, but the proposed 

element is more accurate on the sixth and 

seventh stories. Here it is also observed that 

the difference in results with the fine mesh 

model is negligible. 

Maximum percent of errors, occurring in 

both macroscopic models used for vertical 

and horizontal displacements are mentioned 

in Table 3.  As it is observed in this example, 

the proposed element can model easily 

window type openings which differs the 

height of wall without dividing it into several 

elements with rational accuracy in the 

stiffness. The errors emerged in the model 

using the proposed element are lower in 

comparison with those of the model using 

MVLEM element. This example shows that 

the type of opening and number of stories 

have no effect on the accuracies of the results 

obtained by proposed method like MVLEM 

model. 
 

Table 3. Comparing the maximum error percentages 

in the proposed element and MVLEM model in shear 

wall structure with window type opening 

Model 
Horizontal 

displacement 

Vertical 

displacement 

MVLEM 2.7% 3.4% 

Proposed 

element 
1.8% 1.7% 

 

Table 4 shows the number of elements 

needed in analysis of the example for 

different methods. The number of elements in 

fine mesh model is determined based on the 

mesh dimensions of about 0.5×0.5 meter. It is 

observed that if the proposed element is used, 

the number of elements is significantly 

reduced compared to the fine mesh method 

and the MVLEM method, which reduces run-

time and in-core storage. 

 
Table 4. Comparison of the number of elements 

needed in different models 

Model 
Fine 

mesh 
MVLEM 

Proposed 

element 

Number of 

elements 
298 21 7 

 
 

   
(a) (b) (c) 

Fig. 16. a) Example shear wall with window type opening,; b) modeling of shear wall by using MVLEM elements 

and; c) modeling of shear wall by using proposed element 
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Fig. 17. Lateral displacements of shear wall structure with window opening at story levels 

 

 
Fig. 18. Vertical displacements of left joints of shear wall structure with window type opening at story levels 

 

Shear Wall with Opening in Combination 

with Moment Frame  

This example structure is a seven story 

shear wall in combination with a moment 

frame structure, shown in Figure 19a. The 

structure is modeled by MVLEM model and 

the proposed element, shown in Figures 19b 

and 19c. The wall model is made by nine 

MVLEM elements in the central axis of each 

pier and two spandrel beam elements and two 

rigid beams, presented in Figure 19b. The 

wall model is also simulated by seven 

proposed elements, shown in Figure 19c. As 

it is observed in Figures 19b and 19c, the 

openings are modeled much simpler and 

more realistic using the proposed element in 

comparison with MVLEM element. The 

thickness of the wall is 20 cm in all stories 

similar to the previous examples. The width 

of all beams is 40 cm in all stories and the 

height of beams is 50 cm from first to fourth 

story and 40 cm from fifth to seventh story. 
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The width and height of all columns are 50 

cm from first to fourth story and 40 cm from 

fifth story to seventh story. It should be noted 

that by using MVLEM element, the columns 

surrounding the wall panel cannot be 

modelled by frame elements because in this 

way, both ends of such columns are 

connected to rigid beams which is different 

from its real behavior. Consequently, these 

columns should be modeled by vertical 

springs that only can consider axial behavior. 

However, with the proposed element they can 

be modeled by frame elements like fine mesh 

model. 

The lateral displacements of story levels 

and the vertical displacements of left joints at 

story levels are compared in these three 

approaches. As shown in Figures 20 and 21, 

the proposed model error in vertical and 

lateral displacements of the wall is much 

lower than MVLEM model in all stories. The 

main reasons for such accuracy are the 

possibility of modeling the columns 

surrounding the wall panel as beam elements 

and considering the rotation degree of 

freedom of the element nodes using the 

proposed model. Maximum percent of errors, 

occurring in both macroscopic models used 

for vertical and horizontal displacements are 

listed in Table 5. 
 

Table 5. Maximum error percentages in the proposed 

element and MVLEM model in the shear wall 

structure in combination with moment frame 

Model 
Horizontal 

displacement 

Vertical 

displacement 

MVLEM 32.1% 22.9% 

Proposed element 2.2% 6.1% 

 

Extending the Formulation to Nonlinear 

Problems and Out-Of-Plane Behavior 

Several nonlinear phenomena such as: i) 

plastic behavior of concrete and bars; ii) 

concrete cracking; iii) separations of bars 

from concrete; iv) coupling material effect of 

shear and axial stresses; v) the change in 

material constant due to confinement and vi) 

nonlinear shear behavior; are involved in 

shear wall analysis. As it can be observed, all 

of these effects are material dependent and 

some of them such as the first, the second and 

the sixth play an essential role in analytical 

response of shear walls. 

 

  
(a) (b) 
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(c) 

 Fig. 19. a) Example shear wall with opening in combination with moment frame; b) modeling of the structure 

using MVLEM element and; c) modeling of the structure using proposed element  
 

The basic formulation of the proposed 

element may handle the important effects 

without any major effort. The material 

constants of the springs are defined separately 

for each spring either for the concrete or the 

steel bars. The axial or flexural stiffness of the 

wall is integrated internally. The cracking of 

concrete is controlled by the strain level in 

each panel and is applied in material property 

of springs. Finally the material can 

experience the nonlinear shear strength 

totally independent of axial and flexural one 

in shear membrane. 

Axial nonlinear behaviors of vertical and 

horizontal springs can be modified by all 

axial force-deformation relations used in 

MVLEM model such as axial-element-in-

series model (AESM), introduced by Vulcano 

et al. (1986); modified version of AESM, 

offered by Vulcano et al. (1988); simplified 

hysteretic rule, proposed by Fischinger et al. 

(1990). Also nonlinear flexural or axial 

response of the wall can be predicted directly 

by uniaxial material behavior (concrete and 

steel reinforcement) without incorporating 

any additional empirical relations. 
 

 
Fig. 20. Lateral displacements of the shear wall structure in combination with moment frame at story levels 
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Fig. 21. Vertical displacements of left joints of the shear wall structure in combination with moment frame at story 

levels 
 

The nonlinear behavior of shear 

membrane shell can be modified by all shear 

force-deformation relations used in MVLEM 

model such as origin-oriented hysteresis 

model (OOHM) introduced by Kabeyasawa 

et al. (1983).  

The current form of this element cannot 

handle out of plane behavior and further 

investigations should be performed to 

consider such effects.  

 

CONCLUSIONS 

 

A new microscopic shear wall element is 

presented in this paper using Finite Element 

formulation. The main advantages of the 

proposed elements are discussed as follows:  

1. The element is totally compatible with 

adjacent elements, especially surrounding 

beams and columns by considering rotation 

of the element nodes. 

2. Pervious microscopic elements such as 

MVLEM require rigid beams at the top and 

bottom of the elements, but such beams are 

removed in the proposed elements. 

3.  Since horizontal and vertical 

reinforcements of the wall are also introduced 

in the proposed elements by springs, it is 

possible to consider the effect of 

reinforcement on the stiffness of the element. 

4. The proposed shear wall element does not 

need to be subdivided in each panel due to 

better accuracy or existence of the wall 

opening. Consequently, the number of 

elements in the shear walls with openings is 

decreased extremely by using the proposed 

element which leads to less run time and in-

core storage. 

5. The effect of opening on the in-plane 

flexural and axial behavior of the wall is 

considered by omitting the vertical and 

horizontal springs in the location of the 

opening 

6. The effect of opening on shear stiffness of 

the wall is considered by a decreasing 

coefficient    defined as a function of the 

ratio of the opening area to the panel area. 

7. The element formulation has been made 

totally compatible with the existing general 

nonlinear algorithms and it is recommended 

to be extended to nonlinear problems in the 

future researches.  
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8. Results of different examples with 

different sizes of the elements shows that the 

proposed element is independent of size 

effect. 
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