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ABSTRACT: Like other structures, shallow domes have imperfections from the prescribed 

values obtained by specifications during the construction process. Specifications define some 

tolerance values for imperfections. Despite consideration of these values, the critical load of 

a dome varies for each imperfection pattern. So the reliability plays an important role in 

domes safety. Theoretical evaluation procedure is the most accurate one to obtain reliability 

function, but it is only applicable to small structures. Semi-empirical evaluation procedure, 

on the other hand, is more implemented. In the present research reliability of real domes with 

stochastic initial imperfections has been investigated by comparing finite elements method, 

theoretical and semi-empirical results. Also, it has been shown that the automatic perturbed 

analysis is not sufficiently reliable for domes. So it is recommend that a suitable safety factor 

be applied on the automatic perturbed load or the method utilized in this paper be used to 

obtain the critical load – reliability diagram. 

 

Keywords: Bifurcation, Finite Elements Method, Monte Carlo Method, Reliability, Shallow 

Domes. 

 

 

INTRODUCTION 

 

Shallow lattice domes due to their ease of 

installation and aesthetic appeal are useful 

and picturesque (Hassan, 2013; Liu and Ye, 

2014). Considerable interest has been paid on 

the analysis and design of these structures by 

researchers and there has been much research 

about these domes in last decades (Heidari et 

al., 2019; Kani and Heidari, 2007; Karimi and 

Kani, 2019). But domes are more susceptible 

to unavoidable presence of both geometric 

and material nonlinearities (Kitipornchai and 

Al-Bermani, 1992; Kiyohiro and Kazuo, 

1991). The existence of a bifurcation point 

which mainly aroused from the imperfection 

in material properties and geometrical 

configuration was a big problem. But 

nowadays by introducing the automatic 

perturbed analysis (Kani and Heidari, 2007) 

this problem has been resolved well. 

Although the problem has been well 

addressed, the safety of domes is still 

questioned. Despite the fact that many 

specifications and manufacturers documents 

have dictated tolerance for construction 

errors, different imperfection patterns may 

cause different critical load for the dome. 
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Because uncertainties are the inventible 

companions of structural engineering design 

(Fröderberg and Thelandersson, 2015), they 

play an important role in the safety and the 

reliability of structures (Keshtegar and Miri, 

2013). All aspects of uncertainties, however, 

cannot be recognized, but they can be treated 

in a safe manner. The critical load of shallow 

domes, like other structures, alters due to 

uncertainties. These alterations follow 

probability distribution functions varying 

from type to type of bifurcation. In the 

previous studies (Ikeda and Murota, 2010; 

Ikeda et al., 1996; Kiyohiro and Kazuo, 1993; 

Murota and Ikeda, 1992) theoretical form of 

the probability distribution and reliability 

functions for different types of bifurcation 

points had been derived. But using this form 

is not practical for the large scale domes due 

to high nonlinearity and computational costs. 

So another procedure was introduced 

(Kiyohiro and Kazuo, 1993) namely, the 

semi-empirical evaluation procedure. In this 

method approximations have been made to 

obtain some parameters from the empirical 

data. The most important parameter is the 

critical load of the dome and different 

material properties of the dome are from 

empirical data.  

The critical load is obtained by the Finite 

Elements Method (FEM). FEM (Jensen et al., 

2015; Kamiński and Świta, 2015) has been 

extensively applied to computational 

modeling to calculate the critical load. So in 

the work presented here by applying an in-

house nonlinear FEM software, the critical 

load has been found. The aforementioned in-

house software is a materially and 

geometrically combined nonlinear set of 

finite element analyses based on an 

incremental/iterative Newton–Raphson 

solution procedure (Karimi and Kani, 2019). 

This in-house software hereinafter is referred 

to as “CNASS”. In CNASS, joints are 

modeled just as the fully rigid or the pin 

connections and other behavior of joints 

(such as the semi-rigid connections 

(Ramalingam and Jayachandran, 2015)) is 

not considered. Also, just static load 

combinations are used in CNASS, hence 

seismic loads (Nie et al., 2014) are not 

performed. Bifurcation points play an 

important role in the post-buckling behavior 

of domes (Moghaddasie and Stanciulescu, 

2013). Tracing the post-buckling behavior of 

domes is one of the distinctive features of 

CNASS. It is worthwhile to note that the post-

buckling behavior of shallow lattice domes is 

mainly studied based on an incremental 

manner (Abatan and Holzer, 1978). 

Different material properties will be 

discussed and detailed in the following 

sections. Briefly, finite sets of random 

imperfection systems which are subject to the 

random distribution will be generated as 

initial parameters. This combination of FEM 

and random variables sometimes has been 

referred to as the stochastic finite element 

method (Kamiński and Świta, 2015; Liu et 

al., 2016) which itself is a branch of the 

Monte Carlo methods (Alvarez and Hurtado, 

2014; Hurtado and Alvarez, 2013). Members 

material properties are part of the initial 

parameters. In the present method the code-

based limits are used in order to make 

different material properties. In other words, 

the differences from the theoretical value in 

each imperfection mode (such as cross-

sectional area) are under the permissible 

limits of variation dictated by codes.  

Previously, the safety of structures had 

been studied based on deterministic values of 

the design parameters (Radoń, 2015), but 

nowadays, structural safety is ensured by 

reliability functions which are derived by 

numerical or experimental analyses. Due to 

the increasing number of designs based on 

reliability, in the present paper, the reliability 

functions of shallow lattice domes have been 

achieved with this approach. Although the 

focus of the present paper is on Live loads, it 

is possible to extend the study to many load 
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combinations with symmetry where some of 

these load combinations are described in 

Meimand and Schafer (2014). 

Historically, the worst imperfection 

patterns causing the maximum change 

(decrease) of critical load have been 

determined by employing lots of Monte Carlo 

simulations (Ikeda and Murota, 2010). In 

these simulations computational cost is far 

more than the accuracy. Besides 

computational cost, a design based on the 

worst imperfection pattern is not economical 

at all. Because the possibility of such a pattern 

is very rare, it is recommended only for very 

special structures. It is thus necessary to use a 

more cost-effective method such as the 

reliability method for structural design of 

common structures. 

Therefore, the reliability of shallow lattice 

domes with the stochastic finite element 

method has been investigated. In this regard, 

CNASS is used to compute the critical load 

corresponding to different imperfection 

patterns. Three examples have been 

investigated from simple structures to 

complicated one. Investigations on the 

behavior of simple structures are a basis for 

understanding the behavior of complicated 

structures (Akkas, 1976). 

The present paper shows that using the 

automatic perfect perturbed analysis is not 

sufficient in itself and reliability analysis 

should be additionally performed applying 

the Monte Carlo method. The analytical 

method for finding the reliability function is 

more accurate. However, in many cases it is 

not applicable due to the highly nonlinear 

situation. Therefore, the semi-empirical 

method is used instead in the present work. 

As another outcome of this work, a safety 

factor for the critical load of dome is 

introduced by taking the reliability function 

into account. Without considering this safety 

factor, the dome may be at risk. 

A brief outline of this paper is as follows. 

In section “Material and methods”, some 

governing equations and characteristics of 

critical points are discussed. Section 

“Theory” reviews theory of stochastic 

properties of members and describes how to 

apply these properties into the model. 

Numerical results in section “Results and 

discussions” show the robustness and 

accuracy of the proposed method for various 

types of critical points. Finally, concluding 

remarks, notation and references have been 

presented.  

 

MATERIAL AND METHODS 

 

In the present work shallow domes are 

analyzed numerically by the method of Kani 

and Heidari (Kani and Heidari, 2007). To 

apply the method, a materially and 

geometrically nonlinear finite element code 

(CNASS) is used (Kani and Heidari, 2007). 

A system of nonlinear equilibrium 

equations for a dome is considered (Ikeda et 

al., 1998): 

 

𝑭(𝜆, 𝒖, �⃑�) = 𝟎 (1) 

 

where 𝜆: interprets loading parameter, 𝒖 and 

�⃑�: are N- and p-dimensional vectors for nodal 

displacement and imperfection pattern, 

respectively. 𝑭: is assumed sufficiently 

smooth and Jacobian of 𝑭 (tangent stiffness 

matrix (Ghassemieh and Badrkhani Ajaei, 

2018)) for the perfect system has no negative 

or zero eigenvalues. Equilibrium paths for a 

fixed �⃑� can be solved by the aforementioned 

system of equations. After solving the 

equilibrium path for each fixed �⃑� a set of 𝜆𝑐 
and 𝒖𝒄 could be obtained. Here 𝜆𝑐 denotes the 

critical point on the equilibrium path. 

The imperfection vector �⃑� can be written 

as: 

 

�⃑� = 𝑣0⃑⃑⃑⃑⃑ + 𝜀𝑑 (2) 

 

where, 𝑑: is the imperfection pattern vector 

and ε: denotes the magnitude of imperfection. 
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It is also noted that 𝑣0⃑⃑⃑⃑⃑ and �⃑�: are perfect and 

imperfect system vectors, respectively (Ikeda 

and Murota, 2010; Ikeda et al., 1996; Ikeda et 

al., 1998; Kiyohiro and Kazuo, 1991, 1993; 

Murota and Ikeda, 1992). To be more 

specific, an imperfection pattern is added to 

the nominal state of the system which is 

called the perfect system. In this notation, 

each component of 𝑑,𝑑[𝑖], defines one of the 

initial imperfections mode such as geometric 

configurations, material properties or cross-

sectional area. In this paper, no geometrical 

imperfection is considered and just material 

properties such as modulus of elasticity and 

cross-sectional area are examined. Based on 

the report of steel profile manufacturers, the 

values of material properties are normal 

random variables (Taras and Huemer, 2015). 

In addition, the mean value of each property 

is its nominal one. In other words, 𝑑[𝑖], is 

normally distributed with mean value of zero. 

On the other hand, most of specifications and 

manufacturers define imperfection limits for 

construction errors. Here, construction errors 

are identical to imperfection systems. 

Therefore, the below constraint is used. 

 
|𝜀 𝑑[𝑖]| ≤ ∆𝑚𝑎𝑥 (3) 

 

where ∆𝑚𝑎𝑥: is a prescribed value obtained by 

specifications or manufacturers documents. 

 

Theory for Simple Critical Points  

Increment of the critical load in an 

imperfect system, �̃�𝑐, is introduced as Eq. (4) 

(Koiter, 1970).  

 

�̃�𝑐 = 𝜆𝑐 − 𝜆𝑐
0~𝐶(𝑑)𝜀𝜌 (4) 

 

According to the type of bifurcation point 

𝐶(𝑑) and 𝜌 is determined as Eq. (5), if 𝜀 is 

sufficiently small. 

 

{
 
 

 
 𝜌 = 1, 𝐶(𝑑) = −𝐶0𝑎, 𝑙𝑖𝑚𝑖𝑡 𝑝𝑜𝑖𝑛𝑡

𝜌 =
1

2
, 𝐶(𝑑) = −𝐶0|𝑎|

1

2 , 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡

𝜌 =
2

3
, 𝐶(𝑑) = 𝐶0. 𝑎

2

3, 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡

 (5) 

where 𝐶0: is a positive constant and may vary 

from type to type; 𝑎: depends on 𝑑 and had 

been defined as 𝑎 ≡ ∑ 𝑐𝑖𝑑𝑖
𝑝
𝑖=1  (Kiyohiro and 

Kazuo, 1993). If 𝜀𝑑 is subjected to normal 

distribution with mean value of zero and the 

variance of �̃�2, 𝑁(0, �̃�2), the following 

normalized value (Eq. 6) can be defined 

(Kiyohiro and Kazuo, 1993). 

 

�̃� =
𝑎

�̃�
 , 𝜎 = �̃�𝜀 (6) 

 

So, normalized critical load (increment) is 

defined as Eq. (7).  

 

𝜁 =
�̃�𝑐
𝐶0𝜎

𝜌
=

{
 
 

 
 
−�̃� 𝑙𝑖𝑚𝑖𝑡 𝑝𝑜𝑖𝑛𝑡  (𝜌 = 1)

−|�̃�|
1

2 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 (𝜌 =
1

2
)

−�̃�
2

3 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 (𝜌 =
2

3
)

 (7) 

  
Thus, the cumulative distribution function, 

𝐹𝜁(𝜁), and the reliability function, 𝑅𝜁(𝜁), for 

normalized critical load are evaluated. 

𝐹𝜁(𝜁) = ∫ 𝑓𝜁(𝜁)𝑑𝜁
𝜁

−∞

; 𝑅𝜁(𝜁) = 1 − 𝐹𝜁(𝜁) 

 (8) 
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where 𝑓𝜁 : is the probability density function 

of  𝜁. Without expressing further details 

(more details can be seen in (Ikeda and 

Murota, 2010; Ikeda et al., 1996; Kiyohiro 

and Kazuo, 1993)), the mean value 𝐸[𝜁] and 

the variance 𝑉𝑎𝑟[𝜁] for different types of 

critical points subjected to the standard 

normal distribution are as Eq. (9). 

 

{
  
 

  
 𝑙𝑖𝑚𝑖𝑡 𝑝𝑜𝑖𝑛𝑡 {

𝐸[𝜁] = 0

𝑉𝑎𝑟[𝜁] = 1

𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 {
𝐸[𝜁] =  −0.822

𝑉𝑎𝑟[𝜁] = (0.349)2

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 {
𝐸[𝜁] =  −0.802

𝑉𝑎𝑟[𝜁] = (0.432)2

 (9) 

 

Furthermore, the following equations for 

the mean and the variance of the ultimate load 

are computed. 
 

𝐸[𝜆𝑐] = 𝜆𝑐
0 + 𝐸[𝜁]𝐶0𝜎

𝜌; 
𝑉𝑎𝑟[𝜆𝑐] = 𝑉𝑎𝑟[𝜁](𝐶0𝜎

𝜌)2 

 (10) 

In many cases, it is not applicable to 

calculate the above-mentioned equations 

theoretically due to variety of reason such as 

the high nonlinearity. Thereupon, for finding 

the 𝐶0𝜎
𝜌 and 𝜆𝑐

0, the semi-empirical 

evaluation procedure is used. In this 

procedure, for a series of imperfection vector 

the equilibrium equation is solved and the 

critical load of structure is obtained. 

Afterward, the unknown values are computed 

by substituting the mean and the variance 

values of sample into the following 

equations.  

 

𝐶0𝜎
𝜌 =

{
 
 

 
 
(𝑉𝑎𝑟𝑠𝑎𝑚𝑝𝑙𝑒[𝜆𝑐])

1/2 𝑙𝑖𝑚𝑖𝑡 𝑝𝑜𝑖𝑛𝑡 (𝜌 = 1)

(𝑉𝑎𝑟𝑠𝑎𝑚𝑝𝑙𝑒[𝜆𝑐])
1

2/0.349 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 (𝜌 = 1/2)

(𝑉𝑎𝑟𝑠𝑎𝑚𝑝𝑙𝑒[𝜆𝑐])
1

2/0.432 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 (𝜌 = 2/3)
         

 (11) 

𝜆𝑐
0 =

{
 

 
𝐸𝑠𝑎𝑚𝑝𝑙𝑒[𝜆𝑐] 𝑙𝑖𝑚𝑖𝑡 𝑝𝑜𝑖𝑛𝑡

𝐸𝑠𝑎𝑚𝑝𝑙𝑒[𝜆𝑐] + 2.35(𝑉𝑎𝑟𝑠𝑎𝑚𝑝𝑙𝑒[𝜆𝑐])
1

2 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 (𝜌 = 1/2)

𝐸𝑠𝑎𝑚𝑝𝑙𝑒[𝜆𝑐] + 1.86(𝑉𝑎𝑟𝑠𝑎𝑚𝑝𝑙𝑒[𝜆𝑐])
1

2 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 (𝜌 = 2/3)

 (12) 

 

𝜆𝑐
0 is computed by substituting the values 

obtained from this method into Eq. (10). 

 

Theory for Double Critical Points  

In nature, systems typically have group 

symmetries, therefore, multiple critical points 

appear in them. In keeping with the general 

condition of Eq. (1), the equivariance of the 

equation can be rewritten mathematically to a 

finite group ‘G’ as below (Kiyohiro and 

Kazuo, 1993; Murota and Ikeda, 1992). 

 
𝑇(𝑔)𝑭(𝜆, 𝒖, 𝒗)
= 𝑭(𝜆, 𝑇(𝑔)𝒖, 𝑆(𝑔)𝒗), 𝑔 ∈ 𝐺 

(13) 

 

Again by avoiding further details, the 

values of 𝐶(𝑑) and 𝜌 in Eq. (4) for different 

types of critical points are obtained from the 

following equations. 
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{
 
 
 

 
 
 𝜌 =

2

3
, 𝐶(𝑑) = −𝐶0. 𝑎

2

3 𝑖𝑓
𝑛

𝑚
≥ 5 𝑎𝑛𝑑 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

𝜌 =
2

3
, 𝐶(𝑑) = 𝐶0. 𝑎

2

3 𝑖𝑓
𝑛

𝑚
≥ 5 𝑎𝑛𝑑 𝑠𝑡𝑎𝑏𝑙𝑒

𝜌 =
1

2
, 𝐶(𝑑) = −𝜏(𝑑)𝐶0. 𝑎

1

2 𝑖𝑓
𝑛

𝑚
= 3

𝜌 =
2

3
, 𝐶(𝑑) = −𝜏(𝑑)𝐶0. 𝑎

2

3 𝑖𝑓
𝑛

𝑚
= 4

 (14) 

 

where 𝜏(𝑑): is a positive-nonlinear function 

of 𝑑 and the ‘n’ indicates the invariance with 

respect to ‘n’ rotations and ‘n’ reflections as 

well. The ‘m’ is the greatest common divisor 

of ‘n’ and ‘j’. The ‘j’ is a positive number 

depending on subspace of ker ((𝐽0)𝑇). For 

further details follow the (Ikeda and Murota, 

2010; Ikeda et al., 1996; Kiyohiro and Kazuo, 

1993). 

With introducing the 𝑥 = (
𝑎

�̃�
)2 where 

subjected to the exponential distribution (𝜒
2
 

distribution of two degrees of freedom) the 

normalized critical load increment is obtained 

as Eq. (15).  

 

𝜁 =
�̃�𝑐
𝐶0𝜎

𝜌
=

{
 
 
 

 
 
 −𝑥

1

3 𝑖𝑓
𝑛

𝑚
≥ 5 𝑎𝑛𝑑 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 (𝜌 =

2

3
)

𝑥
1

3 𝑖𝑓
𝑛

𝑚
≥ 5 𝑎𝑛𝑑 𝑠𝑡𝑎𝑏𝑙𝑒 (𝜌 =

2

3
)

−𝜏𝑥
1

4 𝑖𝑓
𝑛

𝑚
= 3 (𝜌 =

1

2
)

−𝜏𝑥1/3 𝑖𝑓
𝑛

𝑚
= 4 (𝜌 =

2

3
)

 (15) 

 

So, by performing some mathematical 

calculations, the probability density function 

is calculated for different types of critical 

points. 

 

𝑓𝜁(𝜁) =

{
  
 

  
 
𝑛

𝑚
≥ 5

3𝜁2

2
exp (

−|𝜁|3

2
) −∞ < 𝜁 < 0

𝑛

𝑚
= 3 ∫ 𝑓𝑏 (

|𝜁|

𝜏
) 
𝑓𝜏(𝜏)

𝜏
𝑑𝜏

𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛

−∞ < 𝜁 < 0

𝑛

𝑚
= 4 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙𝑙𝑦 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

 (16) 

 

The mean 𝐸[𝜁] and the variance 𝑉𝑎𝑟[𝜁] 
for different types which are subjected to 

standard normal distribution are explained as 

Eq. (17), likewise the previous section. 

 

{
 
 

 
 
𝑛

𝑚
≥ 5 {

𝐸[𝜁] = −1.13

𝑉𝑎𝑟[𝜁] = (0.409)2

𝑛

𝑚
= 3 {

𝐸[𝜁] =  1.91

𝑉𝑎𝑟[𝜁] = (0.590)2

𝑛

𝑚
= 4  𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙𝑙𝑦 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

 (17) 

 

Consequently, semi-empirical equations are calculated in the form of Eq. (18). 
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𝐶0𝜎
𝜌 = {

(𝑉𝑎𝑟𝑠𝑎𝑚𝑝𝑙𝑒[𝜆𝑐])
1

2/0.409 𝑛/𝑚 ≥ 5

(𝑉𝑎𝑟𝑠𝑎𝑚𝑝𝑙𝑒[𝜆𝑐])
1

2/0.590 𝑛/𝑚 = 3

𝜆𝑐
0 = {

𝐸𝑠𝑎𝑚𝑝𝑙𝑒[𝜆𝑐] + 2.75(𝑉𝑎𝑟𝑠𝑎𝑚𝑝𝑙𝑒[𝜆𝑐])
1

2 𝑛/𝑚 ≥ 5

𝐸𝑠𝑎𝑚𝑝𝑙𝑒[𝜆𝑐] + 3.24(𝑉𝑎𝑟𝑠𝑎𝑚𝑝𝑙𝑒[𝜆𝑐])
1

2 𝑛/𝑚 = 3

 (18) 

 

THEORY  

 

As mentioned before, most of specifications 

and manufacturers documents define 

imperfection limits (∆𝑚𝑎𝑥) as a prescribed 

value (|𝜀 𝑑[𝑖]| ≤ ∆𝑚𝑎𝑥). Specification 

numbers of standard deviation can be 

obtained by using the normal distribution 

function. 

 

𝑆𝑚𝑎𝑥 =
∆𝑚𝑎𝑥 − 𝜇𝑘

𝜎𝑘
 (19) 

 

where 𝜇𝑘: is the mean value at any 

imperfection node k. 𝑆𝑚𝑎𝑥: is the 

specification numbers of standard deviation. 

As mentioned before, for each 𝑑[𝑖] the mean 

value, 𝜇𝑘, is equal to zero, so: 

 

𝑆𝑚𝑎𝑥 =
∆𝑚𝑎𝑥
𝜎𝑘

 𝑜𝑟 𝜎𝑘 =
∆𝑚𝑎𝑥
𝑆𝑚𝑎𝑥

 (20) 

 

Table 1 gives the probability of a statistical 

random variable between –S and S. 

 
Table 1. Probability of statistical random variable 

P (%) S 

68.26 1.00 

95.44 2.00 

97.74 3.00 

99.99 4.00 

 

The aim of this paper is to detect the type 

of bifurcation point and represent the critical 

load-reliability diagram for shallow lattice 

domes. For this purpose, the following steps 

are used for each example.  

Step 1: In this step, the initial geometry of 

the perfect system is formed and the 

corresponding critical load is calculated by 

the method of Kani and Heidari (2007). In 

this method the first critical load, 𝜆𝑐
0, is 

obtained using an automatic technique and 

examining the eigenvalues during the 

incremental process (Magnusson, 2000). This 

automatic technique named as automatic 

perturbed analysis is described in their work 

in detail (Kani and Heidari, 2007). Finding 

the critical load of perfect system is the aim 

of this step. This load is the upper bound of 

the load which could be carried by the 

structure. 

Step 2: An imperfection vector according 

to Eq. (2) will be created in this step. For this 

purpose, 𝜎𝑘 should be determined for each 

imperfection element. So, in Eq. (20) ‘S’ is 

set to 4. It is notable to mention again that the 

imperfect elements are subject to normal 

distribution with mean value of zero.  

Step 3: The dome which is created in the 

above-mentioned steps is numerically solved 

and the corresponding critical load is 

obtained.  

Step 4: Steps 2 and 3 are repeated for a 

finite series of random imperfection system.  

Step 5: At this stage, the average value of 

critical load of the samples is calculated and 

compared with the semi-empirical one for 

various types of critical points. Eq. (21) 

shows the formula for the mean value which 

is carried out by semi-empirical method. 

After determining the mean-value error 

between the semi-empirical method and 

samples, type of the bifurcation point is 

demonstrated.  

The following equation for various kinds 

of critical points can be obtained by 

performing some simple mathematical 

operations.  
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𝐸[𝜆𝑐] =

{
 
 
 

 
 
 
𝑠𝑖𝑚𝑝𝑙𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 {

𝜆𝑐
0 𝑙𝑖𝑚𝑖𝑡 𝑝𝑜𝑖𝑛𝑡

𝜆𝑐
0 − 0.822�̂� 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡

𝜆𝑐
0 − 0.802�̂� 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 

𝑑𝑜𝑢𝑏𝑙𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 {
𝜆𝑐
0 − 1.125�̂�

𝑛

𝑚
≥ 5

𝜆𝑐
0 − 1.911�̂�

𝑛

𝑚
= 3

 (21) 

 

where �̂� = 𝐶0𝜎
𝜌 and can be obtained by Eq. 

(11) or (18) based on the point type. 

Step 6: In the last step, the histogram and 

critical load-reliability diagram are 

established. Furthermore, the safety factor of 

dome is determined based on semi-empirical 

method. 

 

RESULTS AND DISCUSSIONS 

 

The purpose of the present work is to bring 

forward the critical load-reliability diagram 

by studying the semi-empirical method and 

detecting the type of critical point for shallow 

lattice domes. As mentioned earlier using 

theoretical evaluation for large-scale 

structures is not applicable. Therefore, using 

the semi-empirical evaluation procedure is 

suggested when using the theoretical one is 

not possible, as is usually the case with high 

nonlinearity (Kiyohiro and Kazuo, 1993).  

To achieve this goal, first, three small tents 

(Kiyohiro and Kazuo, 1993) have been 

analyzed to assess the capabilities of the 

present code. Afterward, two shallow lattice 

domes with fully-rigid connections (beam-

column elements) has been analyzed and the 

results are presented. 

 

N-Bar Truss Tents 

For initial examples three tents with 3-

member to 5-member and following 

geometry (Figure 1) have been analyzed. 

They are elastic n-bar truss tents (n = 3, 4, 5) 

which are subjected to a vertical load 𝜆 

applied to the top node. In perfect system all 

members have the same modulus of elasticity 

and same cross-sectional area as E and A, 

respectively. Accordingly, the equations of n-

bar truss tents are 𝐷𝑛 − equivariant (Ikeda et 

al., 1998). These examples were also used in 

Murota and Ikeda (1992). 

In these examples the imperfection vector 

is 𝑣 = (𝐴1, … , 𝐴𝑝)
𝑇. In the perfect system, 𝐴𝑖 

are all the same. Finite Elements solutions for 

1000 samples in each example were carried 

out. Imperfection vectors are subjected to 

normal distribution of 𝑁(𝑜, 𝜀2𝐼𝑝) and 

magnitude of 𝜀 =  10−4. According to the 

definition of section “Theory for double 

critical points” in these examples n/m are 3, 4 

and 5, respectively. Therefore, theoretical and 

semi-empirical probability density functions 

for n-bar truss tent are as Eqs. (16) and (18).  

Consequently, values 𝜆𝑐
0 and 𝐶0𝜎

𝜌 can be 

obtained. It is worth mentioning that the 

theoretical function is not applicable for the 

4-bar truss and the semi-empirical one will be 

obtained through numerical integration 

(Kiyohiro and Kazuo, 1993). Theoretical (if 

applicable), semi-empirical, and histogram 

results for n-bar truss tents is depicted in 

Figure 2. As shown in this figure theoretical 

and empirical functions are in fair agreement 

with the histogram in each case. The present 

numerical results in comparison with the 

results presented by (Kiyohiro and Kazuo, 

1993) are in relatively good agreement, as 

well.  
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a b c 

Fig. 1. Geometry of n-bar truss tents: a) n = 3, b) n = 4, c) n = 5 
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 (b) n = 4 

 

 
 (c) n = 5 

Fig. 2. Comparison of theoretical and semi-empirical probability density function and histogram of n-bar truss tents 
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24-Member Dome 

In the next example, a 24-member lattice 

dome is studied. The undeformed shape of 

dome is depicted in Figure 4 and theoretical 

coordinates of nodes are described in Table 2. 

All joints in this example are assumed fully 

rigid and a vertical load in –Y direction is 

applied to the center node. Members are made 

from steel of square cross-sectional shape 

with dimensions of 6 mm and material 

properties which are listed in Table 3.  

 
Table 2. Theoretical coordinates of nodes for 24-

member dome 
Node number X (mm) Y (mm) Z (mm) 

1 0.00 82.16 0.00 

2 250.00 62.16 0.00 

3 125.00 62.16 -216.50 

4 -125.00 62.16 -216.50 

5 -250.00 62.16 0.00 

6 -125.00 62.16 216.50 

7 125.00 62.16 216.50 

8 433.00 0.00 -250.00 

9 0.00 0.00 -500.00 

10 -433.00 0.00 -250.00 

11 -433.00 0.00 250.00 

12 0.00 0.00 500.00 

13 433.00 0.00 250.00 

 

Table 3. Steel properties of domes 
Properties Value Unit 

E 201.81 kN/mm2 

𝛔𝐲 0.72±0.14 kN/mm2 

H' 2.21 kN/mm2 

In this example, it is assumed that nodes 

are at their perfect coordinates and only the 

section properties and the cross sectional 

dimensions of members are not perfect. For 

each member, the dimensions (length and 

width of sectional area), modulus of 

elasticity, and yield stress are imperfect. 

Perfect and imperfect sectional area of 

members is shown in Figure 3 schematically. 

It is worthwhile to discuss that the modulus 

of elasticity does not vary noticeably from 

sample to sample. Indeed, the deviation of 

this parameter is small, but yield stress and 

cross-sectional dimensions’ deviations are 

considerable. So, each member has 3 

parameters in imperfection vector and the 

whole dome have 72 parameters of 

imperfection. It is noteworthy to remark that 

the high value of yield stress is probably due 

to the cold drawing of the material (Kani and 

Heidari, 2007). 
 

 
Fig. 3. Perfect and imperfect cross-sectional 

dimensions (mm) 

 

 

 
(a) (b) 

Fig. 4. a) Plan, b) view of 24-member dome 
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The Finite Element analysis was 

performed for the first critical load which is 

governed by unstable group-theoretic double 

points of bifurcation. The result for this 

critical load is 0.728 kN. Afterward, 

numerical analyses had been performed for 

1000 imperfect samples. The minimum and 

maximum load which are carried out by 

analyses are 0.714 kN and near to 0.728 kN, 

respectively. The histogram of numerical 

results is pictured in Figure 5. However 

corresponding to the definition of section 

“Theory for double critical points” 
𝑛

𝑚
≥ 5; 

but for comparison between different types, 

the value of �̂� = 𝐶0𝜎
𝜌 is calculated. �̂� is 

calculated by assuming limit, asymmetric and 

Unstable-symmetric for simple critical point, 

and 
𝑛

𝑚
≥ 5 and 

𝑛

𝑚
= 3 for double critical 

point. Then the mean value, 𝐸𝑠𝑒𝑚𝑖−𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙, 
from semi-empirical evaluation procedure is 

obtained and compared with the mean of 

samples, 𝐸𝑠𝑎𝑚𝑝𝑙𝑒 = 0.7206 𝑘𝑁, then the 

relative error is computed. As expected and 

shown in Table 4, relative error for 
𝑛

𝑚
≥ 5 is 

the least and equal to 0.07%. In Figure 5, in 

addition to displaying the histogram, semi-

empirical curve which has the least relative 

error is depicted.  

 

 
Table 4. Comparison of mean value from semi-empirical method and sample for different type of bifurcation point 

for 24-member dome 
Type of bifurcation point 𝑪𝟎𝝈

𝝆 𝑬[𝝀𝒄] (kN) Error 

Simple critical 

Limit point 0.0023 0.7276 0.97% 

Asymmetric bifurcation point 0.0067 0.7220 0.20% 

Symmetric bifurcation point 0.0054 0.7232 0.37% 

Double critical 

𝑛

𝑚
= 3 0.0040 0.7199 0.09% 

𝑛

𝑚
≥ 5 0.0058 0.7211 0.07% 

 

 
Fig. 5. Comparison of semi-empirical probability density function and histogram for 24-member dome 
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Real-Size Dome 
Compared to the previous examples, this 

one is a real-size dome with I-shaped section. 

It has 133 members and 61 nodes. 

Characteristics of steel I-shaped section are 

described in Figure 6 and Table 3. Cross-

sectional area is A = 2328 mm2 and moment 

of inertia about x and y axes are Ix = 

14616736 mm4 and Iy = 1003384 mm4, 

respectively. Theoretical geometry of the 

dome in millimeters is illustrated in Figure 7. 

Additionally, nine points of integration are 

used to monitor the spread of plasticity along 

the section of members. Not only the joints 

but also support nodes of dome are taken to 

be fully rigid. Furthermore, a vertical 

concentrated load on central node is 

considered in –Z direction. 

The result for the first critical load is 

computed as 591.28 kN by performing the 

finite element analysis. Then an ensemble of 

1000 sets of initial imperfections following 

the normal distribution was employed and the 

numerical solution was performed. The 

minimum and maximum load which were 

obtained out by analyses are 558 kN and near 

to 591 kN, respectively. The histogram of 

numerical results is depicted in Figure 8. The 

mean value for these sets, 𝐸𝑠𝑎𝑚𝑝𝑙𝑒, are 572.32 

kN. Although n/m is greater than 5, the value 

of �̂� is calculated for comparison. �̂� is 

calculated by assuming limit, asymmetric and 

Unstable-symmetric for simple critical point, 

and 
𝑛

𝑚
≥ 5 and 

𝑛

𝑚
= 3 for double critical 

point. Afterward, the 𝐸𝑠𝑒𝑚𝑖−𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 is 

obtained and compared with the 𝐸𝑠𝑎𝑚𝑝𝑙𝑒, and 

thereupon relative error is computed. As was 

predicted and shown in Table 5, relative error 

for 
𝑛

𝑚
≥ 5 is the least and equal to 0.02%. In 

Figure 8, in addition to displaying the 

histogram, semi-empirical curve which has 

the least relative error is presented. 

 
Table 5. Comparison of semi-empirical probability density function and histogram for 24-member dome 

Type of bifurcation point 𝑪𝟎𝝈
𝝆 𝑬[𝝀𝒄] (kN) Error 

Simple critical 

Limit point 6.8050 591.19 3.30 % 

Asymmetric bifurcation point 19.4988 575.16 0.50% 

Symmetric bifurcation point 15.7525 578.55 1.09% 

Double critical 

𝑛

𝑚
= 3 11.5340 569.15 0.55% 

𝑛

𝑚
≥ 5 16.6383 572.47 0.02% 

 

 
Fig. 6. Perfect and imperfect cross-sectional dimensions (mm) of 133-member dome 
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(a) (b) 

Fig. 7. a) Plan, b) view of 133-member dome (all dimensions in mm) 
 

As previously noted, finding the worst 

imperfection pattern (TWIP) is not only 

difficult but also is uneconomical in many 

situations. Because the probability of such an 

event is seldom practical. Using TWIP is 

recommended only for designing very special 

structures and using reliability function is 

sufficient for common structures. The 

reliability function and the histogram are 

plotted in Figure 9. Thus, from this figure it 

can be found that the allowable load is 564 

kN for 95% level of confidence. The present 

analysis shows that using automatic 

perturbed critical load is not safe enough for 

shallow lattice domes and reliability function 

should be brought into play.  

 

 
Fig. 8. Comparison of semi-empirical probability density function and corresponded histogram for 133-member 

dome 
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Fig. 9. Comparison of semi-empirical reliability and corresponded histogram for 133-member dome 

 

CONCLUSIONS 
 

The purpose of this paper is to present the 

reliability function for shallow lattice domes 

by studying different types of bifurcation. 

Bifurcation plays a significant role in the 

safety of structures, albeit this is not 

systematically reflected in common design 

rules especially for shallow lattice domes. It 

is a well-known fact that the material 

properties and the cross-sectional area are not 

deterministic. In this light, it shall be pointed 

out that the critical load and the reliability of 

dome are influenced by uncertainties.  

In this paper after a succinct introduction 

of previous studies, a review of different 

types of bifurcation points and governing 

equations was performed. Afterward, steps of 

the present method and the probabilistic 

relationships were stated. For the beginning 

of examples, as shown in section “n-bar truss 

tents”, three tents which previously had been 

studied by Murota and Ikeda were analyzed 

to demonstrate the feature of CNASS. Results 

of primary examples showed fair agreement 

with previous studies. Then an example for 

the domes with rigid-connections was shown 

in section “24-Member Dome”. In this 

example a 24-member dome was analyzed. 

The star-shaped dome which was 

investigated in this section had been treated 

as exemplary in this field by many 

researchers. Results presented in this section 

showed that the semi-empirical evaluation 

procedure can be used instead of theoretical 

one without any significant loss in accuracy. 

Contrary to basic examples, in the last 

example the reliability of a large-scale dome 

with I-shaped members was investigated. The 

results illustrated in this paper highlighted the 

significance of reliability analysis in shallow 

lattice domes. They showed that the so-called 

automatic perturbed analysis is not a safe by 

itself and other effects of random distribution 
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of material properties should be taken into 

account.  

The present study was focused on 

symmetric loads and imperfection in 

materials as well. Effects of asymmetric loads 

and also other imperfections will be 

investigated on further studies. Also seismic 

loading is a point that was not explored in this 

work. So as an outlook to further researches, 

seismic loads can be brought into the model.  

As noted earlier, acquiring the worst 

imperfection pattern not only costs much of 

run-time on machine but also is inadvisable 

for commonplace structures. So, designing 

based on the worst imperfection pattern is 

preferred for very special structures, because 

the occurrence of such a pattern during 

construction is very rare. So in the present 

work, the critical load-reliability diagram is 

used to introduce a safety factor. In the last 

example it was shown that for 95% of 

confidence level a reduction factor near to 

4.5% should be brought into account. This 

factor should be applied on critical load 

which is obtained by the automatic perturbed 

analysis.  

As was stated before, the automatic 

perturbed analysis yields the first critical 

point on the main path of engineering interest, 

governing critical load of dome whether this 

point is simple or double point of bifurcation. 

Although the automatic perturbed analysis 

provides a reasonable upper load limit for 

dome, it does not necessarily represent a 

reliable estimate of the ultimate load of the 

structure. This is one of the main outcomes of 

this paper. So, the authors recommend that a 

suitable safety factor be applied on the 

automatic perturbed load or the method 

utilized in this paper be used to obtain the 

critical load-reliability diagram.  

Another result of this paper is to propose 

an applicable method for detecting the type of 

bifurcation point in large scaled domes. 

Knowing the type of bifurcation point 

accompanying the reliability diagram can 

bring a clear insight into design. Finally, 

shallow domes due to their benefits have been 

a favorite of designer. Since these structures 

typically occupy a large area, the safety of 

these structures must be satisfactorily 

achieved. So, the present method may aid in 

finding appropriate values for the safety 

factor of domes. This goal can be achieved by 

obtaining the desired level of reliability. 
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