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ABSTRACT: Stiffness matrix of the founode quadrilateral plane stress element is
decomposed into normal and shear components. A computer program is developed to obtain
the straining modes using adequate and reduced integrationa Boértion for the problem

of mixing straining modes is found. Accuracy of the computer program is validated by a
closedform stiffness matrix, derived for the plane rectangular as well as square element. It
is shown that method of integration has noafé the straining modes, but it influences the
eigenvalues of the bending modes. This effect is intensified by increasing the element aspect
ratio, confirming the occurrence of shear locking

Keywords Finite Elements, Plane Stress, Reduced IntegraBbear Locking, Straining

Modes

INTRODUCTION

Straining modes of an element are used to
represent the forms of deformation that the
element exhibits. The straining modes are
especially important for ensuring
convergence of th€&inite Element solution.
Previous research in the field of straining
modesof plane stress elements (Bathe, 2014;
Pawsey and Clough, 1971), provide
contradicting results, and the complexities of
the eigenvalue problem are not reported in
these studies.

Sheaflocking, a condition in which the
resistance of the element to bendingds is
greatly overestimated is caused by the
inability of the element to experience the
expected bending deformations subjected to
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the specific conditions. Different approaches
are taken to overcome the shé&mking
problem. RezaiePgand and Yaghoobi
(2013) defined shedocking as an inevitable
consequence of choosing a polynomial
formulation for strain field, and defined
parasitic shear as a similar type of element
stiffening resulting from presence of normal
strain terms in the shear strain integimn
function. The authors mentioned reduced
integration as a way to counter the parasitic
shear problem, and not the shé&mking.
RezaieePajand and Yaghoobi (2017)
developed a new type of plane quadrilateral
element by using separate strain field
formulations for the boundaries and the
interior of the element. The developed
element had nodes with both translational and
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rotational degrees of freedom; and was
iImmune to parasitic sheaBeveral different
elements available in the literature or
developed ¥ the authors were compared by
performing numerical tests by Rezaiee
Pajand and Yaghoobi (2015).

Sheatrlocking has been the subject of
many research works. Many researchers (e.g.
Bletzinger et al., 2000; NguyeFhanh et al.,
2008; NguyerXuan et al., 2010da Veiga et
al., 2012) have focused on developing
elements immune to shelacking. Fallah et
al. (2017) explained the shdacking
qguandary in thin plate elements, and proposed
a new type of plate element that solved that
problem in a computationally fefient way.
Others have usesdtrategies to alleviate the
sheaflocking problem, for instance using
absolute nodal coordinates (Garbfallejo et

possible combination of geometry, meshing,
and loading configurations.

However, in this research, we take an
alternative approach. The eiganalysis
approach adopted in this research paper is
based on the concept of element straining
modes as described by Pawsey and Clough
(1971) and by Bathe (@4). This Eigen
analysis approach addresses the problem in a
more direct way, by looking nto the
capability of the element itself to experience
certain basic deformation shapes (e.g.
expansiorcontraction, elongation, shearing,
etc.).

Evaluating Finite Elements using
eigenvalue analysis has been suggested by
previous research (e.g. Bathe, 2014; Pawsey
and Clough, 1971). However, to the
knowledge of the authors, a detailed method
al., 2007. There is also research to overcome of applying selective integration to plane
sheaflocking in numerical methods other  stress elements in not given. Thissearch
than Finite Element mé hod ( Kamnuske s Hamil tonos principl
Nukulchai et al.,2001). Research in shear 2014) to separate the stiffness matrix of a
locking includes plane elements (Rezaiee quadrilateral plane stress element to shear and
Pajand and Yaghoobi, 2014), plate bending normal parts, providing a method of selective
elements (Pugh et al., 1978), and shell integration. The problem of shelacking is
elements (Arnold and Brezzi, 1997). analyzed from akiigen-analysis perspective,

The distinction between shelaicking and
parasitic shear is not always made in the
literature, and reduced integration is usually
introduced as a way of encountering shear
locking. Reddy (1997) mentioned reduced
integration as a way to eliminate shear
locking in beam elements. Also Pugh et al.
(1978) showed that reduced integration can
be an effective tool for mitigating the shear
locking problem in quadrilateral plate
elements.

It is a conventional practice to evaluate the
performance of elements by solving
examples of simple assemblies (e.g.
cantilever beam, curved beam, etc.), an

approach adopted by some research papers

including (Rezaie€’ajand and Yaghoobi,
2014). One problem with that approach is that
it is not possible to test the element for every

426

and the effectiveness of reduced integration is
studied.

The method of separating the stiffness
matrix is applicable toFinite Element
simulations using general quadrilateral plane
stress and plane stress elements. For applying
the nmethod of reduced integration, one needs
to perform numerical integration on the shear
and bending parts of the element stiffness
separately. However, for a membrane plane
stress element, each node has two
translational degrees of freedom, and do not
have sear and bending degrees of freedom
similar to bending beam elements.

In this paper, a method of separating the
shear and bending portions of the stiffness
matrix of a fournode quadrilateral plane
stress element is proposed. Subsequently, a
computer progam is developed that
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calculates the stiffness matrices of the
aforementioned elements using normal and
reduced integration methods. The straining
modes of a square shaped element are
obtained using the developed computer
program. Repeatedtigen values reslt in
mixing of straining modes. This problem is
solved by changing the dimensions of the
element slightly. The straining modes
obtained by the proposed method are a
selection of the straining modes reported in
the literature, including the straining made
reported by Bathe (2014), shownfigurel.

An element with higher aspect ratio is also
studied in order to investigate the correlation
between straining modes and shieaking.

STRAINING MODES

The deformations that an element is able to
represent came determined by solving the

eigenvalue problem of the following
equation:

[KHr}=1{r} (1)
whereKeJ:i' s t he el ement 0s

A is a scalar, andd}: is a vector with the
dimension equivalent to the number of
degrees of freedom of the element. Solving
Eq. (1) would result in different values far
which are called eigenvalues. For each
eigenvalue\, there is a corresponding vector
{®i}, called eigemector, which can be
calculated by substituting for Ain Eq. (1).
The eigenvectors obtained by Eq. (1)
correspond to the nodal displacements of
different straining shapes in which an element
is able to deform (Bathe, 2014).

For the foumode quadrilated plane

Bathe (2014). The straining modes presented
in Pawsey and Clough (1971) is slightly
different from these straining modes. The
stretching and uniform extension modes are
replaced by two constant strain modes, and
the flexural modes have a trapezoidhépe,
and are called bending modes. Presence of
these different straining modes in
eigenvectors of the stiffness matrix
formulation of an element is essential for the
convergence of th&inite Element solution

by refining the mesh (Bathe, 2014).

STIFFNESS MATRIX

In this section, the stiffness matrix of the four
node quadrilateral plane stress element is
presented. Then the reduced integration with
the decomposition of the stiffness matrix is
discussed.

Existing Formulation of the Element
Stiffness Matrix

The fournode quadrilateral plane stress
element is shown irFFigure 2. The strain
vector {&} has three components being the
twg pormalk siaing and gng shear §tr§in, as

shown by the following equation:

66,0
@

Moreover, the strain vector can be
associated to the nodal displacemedisyia
strairi displacement transformation relation;
as follows:

{g=[Bfd}

©)

stress element discussed in this paper, these where B]: is called the gradient matrix, and

deformation shapes comprise three rigid body
motion modes, and five straining modes.
These straining modes are presented in
(Bathe, 2014; Pawsey and Clough, 1971).
Figure 1 shows the straining modesgayi by
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it consists of the derivatives of interpolation
functions of the element with respect to the
coordinates. As explained in detail in (Logan,
2012; Liu and Quek, 2014), for plane
elements with constant thickness, the eleime
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stiffnress matrix can be obtained by the
following:

[Ke]=t Af[B]T[D][B]dA @

whereAe: is the area of the element, amét
is the area increment.

For general quadrilateral element, it is
easier to perform the integration in Eq. (4)
after mapping theelement into a square
domain defined by the natural coordinatés

andn of the element which is shownHigure
3. Therefore, the stiffness matrix of the

guadrilateral element in the natural
coordinates is defined as following:
[k.]=t{ ;i [BI'[D][B)Jdz.ds 5)

wheret: is the element thickness, arfd]| is
the constitutive material matrix for the plane
stress problem defined by the following
equation:
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Fig. 1. Straining modes given by Bathe (2014)
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It should be noted thaBJ in Eq. (5) is
defined in the natural coordinates of the
element, and a simplified way to calculate it,
iIs given by Logan (2012). There is no
straightforward closed form solution of Eq.
(5) for a general quadrilateral element.
Symbolic computation methodsin be used
for deriving exact solutions for any particular
element (Videla et al., 2008; Walentyski,
2007). However, the most common
integration method used in tRaite Element
method of analysis is the GauQsiadrature
method (Logan, 2012). For the case of one
dimensional integration, n  Gaussian
integration points provide the exact solution
of the integral of the polynomial with the
order of -1 or less (Kreyszig, 2011).
Usually, for solving Eq. (5) for a foumoded
quadrilateral plane stress element, one needs
to employ twepoint Gauss integrations for
each axis of the natural coordinate system.
We call this method of integration normal or
adequate integration.

Reducedintegration

Using Normal Gaussian integration for
evaluating the stiffness matrix can lead to a
condition named shedwocking in certain
conditions. Sheadlocking is a result of
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an element in certain conditions of geometry
or loading; and results in overestimation of
stiffness matrix (Reddy, 2006). Shdacking

is not a problem specific to plane stress
elements. This problem happens similarly in
shell elements wiit linear displacement fields
(Zienkiewicz et al., 1971). As it was shown in
Javidinejad (2012), geometry of structure and
meshing techniques can result in elements
with high aspect ratios, which may
experience shear locking. In fact, the general
problem oflocking is observed in different
kind of elements (dam, et al., 2014; 2015;
Pagani et al.,, 2014). For a plane stress
qguadrilateral element, shelacking can be
avoided by using a lower order Gaussian
integration for the shear strain energy of the
elemen (Pawsey and Clough, 1971). For a
four-node element, this corresponds to using
a single Gauss point. This method of
integration, which employs different
integration techniques for normal and shear
strain energies, is called reduced integration
or selectie integration.

Application of reduced integration may
lead to undesirable numerical problems
including omission of the correct modes
(RezaieePajand and Yaghoo2012 2013),
and should be used with caution. The
objective of this research paper is not to
promote reduced integration method, but to
objectively see its effects on the straining
capabilities of the element and its potential
for sheatlocking.
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Decomposing the Stiffness Matrix for
Reduced Integration

The stiffness matrix calculated by Eq. (5)
does not have separate components for the
stiffnesses resulted by shear strain energy and
normal strain energy. Consequently, to
perform reduced integration, a change in the
formulation is required. Hence, an alternative
approach to derive the stiffness ged, which
separates the terms of shear and normal strain
energy.

One can decompose the strain vector
presented in Eq. (2) as sum of two vectors; as
follows:

{d={a}l+e}

where {n}: is the normal strain component
vector and €} : is the shear strain component
vector; as follows:

(8)

(9)

(10

Similar to Eq. (3), the normal and shear
strain vectors can be related to the nodal

displacements dg by the following
equations:
{e}=[B.fd.} (1)
{e}=[B.Jd.} (12)

where Bn]: is obtained by substituting the
third row of the gradient matrix8] by zeros
and B4: is found by substituting the first two
rows of the gradient matridB] by zeros.
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The elasticstrain energy of the element is
defined by the following:

1

P.=3 fild’ [Deav (13

whereVe: is the volume of the element, and
dV: is an infinitesimal volume.

Similarly, one can obtain the normal strain
energyl,® resulted by the normal strains and
the shear strain enerdys® by the following
equations:

e 1 ~ T

P n~— E me{en} [D]{en}dv (14
e 1 ~ T

P s 5 Q{es} [D]{es}dv 19

Furthermore, the total strain energy can be
written as:
P.,=P:+P: (16)
Substituting Eqs(14-15) in Eq. (16), and
then substituting €} and {es} by Eqgs. (1%

12), one can obtain the total strain energy; as
follows:

Ve :% fila'[B.]'[D]B fd.}av .
gy el olefeav

The integrations in Eq. (17) are performed
on the coordinates, and becaiube nodal
displacements are degrees of freedom then
the above equation is rewritten as:

P, =5 {a e [olE v
EAGHE SICV CYAV:CH

(13

Eg. (18)canberewritten as:
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p.={af [kefad+ ol [kefad ao
where

[Kf ] = Q[Bn]T[D][Bn]dV (20)
and
ke]= Q[BS]T[D][BS]C’V 1)

Hami |l tonds principle
states that of all admissible displacements,
the most accurate displacement field makes
the Lagrangian functional stationary
(minimum). This leads to the variational
equation of the fdbwing:

dﬁz Ldf =0 (22)

whered Tis the time increment; andt.: are
representing the time domaing; is the
operator of variation, and is the Lagrangian
functional; which in the case of static analysis
is defined as:
L=-P.+W, (23)
whereTlle: is the elastic strain energy which
can be obtained by Eq. (19), aWd is the

work done by the external forces, and can be
calculated by:

W, ={d.}'{F.}

where {Fe}: is the vector of the equivalent
nodal forces. Substituting Egs. (19) and (24)
in Eq. (23) and then in Eg. (22), one can
obtain the following:

aff ¢ S [kl Sta kel

+{d }'{F.h.dr =0

(24)

(25
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Using a property of the variation, the
above equation cdme rewritten as:

P e e
d({de}T )m (' [Kn]{de}_ [Ks]{de} 26)
+{F.).dt =0
Since t li{e}")thas ramarbiirary
value, Eq. (26) demands the term inside the
integral to be zero. This results in the
following:

ARy Quek 2914)

The expressionnside the parenthesis is
the stiffness matrix of the element by
definition. This is expressed by:

[K]=|ke|+[xe]

where Kqf and [Ks: are defined by Egs.
(20-21), and represent the stiffness of the
element resulted from the normal and shear
strain energies; and can be subjected to
different integration methods. For a feur
node plane stress element with constant
thickness, the incrememf volume in Egs.
(20-21) equals to the thickness of the
element multiplied by the area incremeah# (
being dx times dy). Transforming Egs. (20
21) from global coordinatesx{y) to the
natural coordinates {41, the following
equations are obtained fdret isoparametric
formulation of the element:

(28)

[<]=tAf[BJDIBJIdzdr 29
and
[<c]=tAA[B.I[DIB.]Idzdn (30

All the equations derived here for
decomposing the stiffness matrix are also
valid for the plane strain case.
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CLOSED FORM SOLUTION FOR THE
RECTANGULAR ELEMENT

As mentioned inlast sectiors, there is no
straightforward closed form solution for the
stiffness matrix of the general quadrilateral

element shown ifrigure 2. However, for a
rectangular element like the one shown in
Figure 4, the closed form solution can easily
be obtained.

The matrix B] of Eq. (3) for this element
is given a<€q. (31)

1ey-h 0 h-y 0 h+y 0 -h-y 0 o
[B]=—% 0 x-b 0 -b-x 0 b+x 0  b-x} (31)
4ph€ Y
gx-b y-h -b-x h-y b+x h+y b-x -h-yjy
y
b b
[ | el ————— |
4@ ®3
th
»X
3h
1@ ®)

Fig. 4. Fournoded rectangular element

Substituting B] from Eq. (31) and D]
from Eq. (6) into Eq. (4) and performing the
integrations on the intervals afandy, the

closed form solution for the stiffness matrix
of the element shown in Rige 4 is obtained
as:

¢da, 3a, 2a, 3a, -2a -3a, 4a; -3a,0

e u

& 4a, -3a, 4a, -3a, -2a, 3a, 24,4

é 4a, -3a, 4a. 3a, -2a 3a, u

Et g 4a, -3a, 2a; 3a, - 2‘363
[Ke]:j—)2 3¢ : (32

24(1- n : 4a, 3a, 2a, 3a, 0

é Sym da, -3a, 4a, u

: -

e 445 1
where ai= 2h*+b?(1-v), o= (1+)bh, o= - COMPUTER MODELING AND

4h*+b*(1-v), au= (3v-1)bh, os= h*b*(1-v), RESULTS

ae= 20%+h?(1-v), o= b*-h?(1-v) and o= -
4?+h?(1- V).

The rectangular element shownHRigure
4 is used as a benchmark problem for
validation of the accuracy of the computer
code that is described in the next section.
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In order to compute the element stiffness
matrix of the foumode quadrilateral plane
stress element (shown iRigure 2) with
normal and reduced numerical integration, a
computer program is developed in PYTHON
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programming language (version 2.7) (van
Rossumand Drake, 2010). The rectangular
element shown ikigure 4 is used in order to
validate the numerical results obtained by the
computer program. The closed form solution
of its stiffness matrix has been derived as the
Eq. (32). For a rectangular elemeritlo=
emm,h=5mm,t=1mm,v = 0.3, ancE =
200GPa, the computer

of the stiffness matrix using normal
integration is in near agreement with the
closed form solution obtained by Eg. (32).
The largest difference between the entdés
the two matrices is less than®@R/mm.

Next, the computer program is extended to
solve the eigenvalue problem of Eq. (1), and
is used to calculate eigenvalues and
eigenvectors of the fourode quadrilateral
plane stress elements with different shapes
with  normal and reduced numerical
integration. For each element, the first three
eigenvalues are zero; representing the three
rigid body motion modes. Subsequently,
straining modes of the element is calculated;
as presented in the next section.

The Square-Shaped Element and the
Mixing Straining Modes

The procedures presented here for splitting
the stiffness matrix and application of
reduced integration are valid for all fenode
quadrilateral plane stress as well as plane
strain elements. However,ni order to
facilitate the observation of the straining

15

[ Undeformed
T 0) Model

1o Model

Eigenvalue: 98901.0989047 N/mm
5 .

¥ coordinate (mm)

.
[y

I
-5 P -

1% -5 0 5 10
X coordinate (mm)

Y coordinate (mm)

modes, only results for rectangular elements
are shown here.

First, a 10 mmx 10 mm squarshaped
elementot=1mmy=0.3, ance = 200 GPa
is chosen in order to have the straining modes
to be drawn. Using normal integration
method as well as the reduced integration
method, the eigenvalues are obtained for this

p relengentaTmedssmmary eesulis oft eigenvalue

analysis using the both afonentioned
element integration methods are presented in
Table 1. In either case, the first three
eigenvalues are near zero, and representing
the rigid body motion. The remaining five
eigenvalues correspond to the straining
modes of the element. Both integoa
methods result in stiffness matrices which
have repeated eigenvalues (algebraic
multiplicity). For each one of the repeated
eigenvalues, arbitrary sets of linearly
independent eigenvalues can be found
(Kreyszig, 2011); therefore, the straining
modes bt ai ned by
which are shown ifigures 5-10 do not match
the straining modes reported in (Bathe, 2014;
Pawsey and Clough, 1971). However, these
straining modes seem to be a mixture of the
straining modes presented in (Bathe, 2014;
Pawsg and Clough, 1971). It should be noted
that the straining modes are scaled in order to
be visible, since multiplying an eigenvector
of a matrix by any scalar gives another
eigenvector for that matrix.

15

[ Undeformed

U270 Mode2

10 Mode2
Eigenvalue: 98901.0989047 N/mm_
L

T =5 0 5 10

X coordinate (mm)

Fig. 5. The 1stand 29 straining modes of the squashaped element with normal integration
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15 T 15 T
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Fig. 6. The 3 and 4" straining modes of the squashaped element with normal integration
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Fig. 7. The 5" straining mode of the squaskaped element with normal integration
15 . 15
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Fig. 8. The 15tand 29 straining modes of the squashaped element with reduced integration

Table 1.Eigenvalues obtained for the squateaped element

Integration Method

1st

Eigenvalues (N/mm)

2nd 3rd 4th 5th 61h 7th 8th
Normal 8x10%? 3.5x10%1 5.1x10% 98901 98901 153846 153846 285714
Reduced -2.9x10%  3.7x10% 4.4x10% 73260 73260 153846 153846 285714

434



Civil Engineering Infrastructures Journa1(2): 4 &— 443, DecembeR018
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Fig. 9. The3dand 4" straining modes of the squashaped element with reduced integration
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Fig. 10. The 5" straining mode of thequareshaped element with reduced integration

The only strain mode that matches the
strain modes reported in (Bathe, 2014;
Pawsey and Clough, 1971) is the uniform
extension mode, as shown kigures 7 and
10. The remaining strain modes are mixtures
of the strain modes reported in (Bathe, 2014;
Pawsey and Clough, 1971); since their
corresponding eigenvalues are repeated.
Mixing of the straining modes is most visible
in the modes 3 and 4. To overcontast
problem, and in order to obtain distinct
straining modes for the squaskaped
element, a slight change in the dimensions of
the element is made in a way that the
eigenvalues will not be repeated exactly;
while the change in the dimensions of the
squae will be negligible. Thus the width of
the element is increased by 0.001 mm. After
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the above changes, the strain modes obtained
are shown irFigures 11-16.

As shown in Figures 11-13, for the
element with normal integration, afktjures
14-16 for the elemat with reduced
integration, a slight change in the width of the
element resulted in a slight change in the
eigenvalues in a way that there are no
repeated eigenvalues anymore. Subsequently,
the straining modes are not mixed anymore.
Strain modes of bendjntype modes 1 and 2
from Pawsey and Clough (1971), and
straining modes of stretching, shear and
uniform extension type modes from Bathe
(2014) exist in the obtained straining modes.
In both cases of normal and reduced
integration, a difference of 2.17xi@ercent
in eigenvalues corresponding to stretching



and shear straining type modes is enough to
P Y Eige® Naver to find

distinct eigenvectors for these eigenvalues;
and not to mix the straining modes. Figure 17

cause

Y coordinate (mm)

15

Y coordinate (mm)

10

Badrkhani Ajaei, BandGhassemieh, M

15

shows the eigenvalues correspimigdto the
straining modes of
element, with normal and reduced integration
methods.
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Fig. 11. Bending modes 1 and 2 of the squahaped element with normal integration
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eigenvalues for the stretching, shear, and
extension straining modes. On the other hand,
the normal integration method results in a

result in
identical

integration methods
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higher value for the eigenvas
corresponding to the bending straining
modes. As expected, the interpolation

functions of the founode quadrilateral plane
stress element do not allow its edges to bend.
Consequently, when this element is subjected
to pure bending, the angles betwetsredges
change, and it undergoes shear deformation
as well. This produces in an overvaluation of
the bending stiffness of the element and
consequently leading to have a shear locking
condition. The reduced integration method
evaluates the shear strain mEje of the
element by one integration point in the center
of the element, where shear strain is zero. As
a result, reduced integration resolves the

above issue. This is evident frafgure 17,
where the reduced integration method gives
lower eigenvalues fothe bending strain
modes.

Rectangular Element with a High Aspect
Ratio

To evaluate the effect of aspect ratio of the
element on the eigenvalues and the straining
modes, a 100nm x 10mm size element is
chosen. Figures 120 illustrate the straining
modes obtained for this element using the
normal integration method, arfelgures 21
23 present the straining modes obtained by
the reduced integration method.
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Fig. 21. Stretching modes of the element with aspect ratio of 10, with reduced integration

As illustrated in the aforementioned figures,  straining mode are obtained. Figure 24 shows
for the element with the aspect ratio of 10 all the eigenvalues corresponding to the
with normal integration asell as the reduced straining modes of the element with aspect
integration; two bending straining modes, ratio of 10 using bth normal and reduced
two stretching straining modes, and one shear integration methods.
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Normal and reduced integration methods
result in stiffness matrices which have
different eigenvalues for the bending
straining type modes. This difference is much
higher for the first bending straining mode.
As it was explainedearlier, the normal
integration method overestimates the bending
stiffness of the element. For the element with
aspect ratio of 10, this overestimation is
highly increased. As gaid this condition is
called sheatocking. It is evident fronfrigure
24 that redued integration results in a much
lower evaluation of the Eigenvalue
corresponding to the first bending straining
type mode. This is in agreement with the fact
that reduced integratiofthe integrals in the
stiffness matrices inFinite Element analysis
are evaluated using numerical integration
methods.

Numerical integration involves estimating
the value of an integral based on evaluated
values of the integrated function at certain
Gauss points inside the integration domain.
While the normal way of performin the
numerical integration and in order to have an
accurate estimation of the integrals, would be
to use sufficient number of integration points,
reduced integration means separating part of
the stiffness matrix that represents the shear
strain energy ofthe element, and using a
lower order of integration (less integration
points) to perform the numerical integration
on that par).is an effective way to prevent
sheatlocking. For the element with aspect
ratio of 10, the extension straining type mode
is replaced by a vertical stretching mode. The
two flexural modes of Bathe (2014) are not
observed among the straining modes obtained
in this study; while the two bending modes of
Pawsey and Clough (1971) are observed
instead.

CONCLUSIONS

A method of applyinghe reduced integration
method to quadrilateral plane stress elements
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is presented. Subsequently, a computer
program is developed for calculating stiffness
matrices of quadrilateral plane stress
elements wusing normal and reduced
integration methods. Fuehmore, for the
case of rectangular shaped element, a closed
form solution is presented for the stiffness
matrix. For a rectangular element, the
developed computer program delivered
exactly the same results as obtained by the
closedform solution.

Also for particular square shaped element
and by means of the developed program,
straining modes are obtained by performing
an eigenvalue analysis on the stiffness
matrices obtained using both normal and
reduced integration methods. The stiffness
matrix of this patcular square shape
geometry, revealed repeated eigenvalues with
mixed straining modes. However, it was
illustrated that by making a slight change in
the geometry, the problem of having repeated
eigenvalues is avoided and distinct bending,
stretching, skar, and extension straining
modes are attained.

The integration methods have no effect on
the straining modes. However, they do affect
the eigenvalues. The straining modes and the
corresponding eigenvalues represent special
cases of loading applied to elents, where
the force vector and the nodal deformation
vectors are scalar multiples of each other. The
magnitude of the eigenvalue obtained for
each straining mode represents the stiffness
of the element against that specific
deformation shape. From dfigenanalysis
perspective, this research papers observes the
connection between higher eigenvalues for
bending straining modes and the conditions
that are known to lead to shdacking. For
the bending straining modes, the normal
integration method resusltin higher values
for eigenvalues compared with the bending
eigenvalues obtained by the reduced
integration method. For the element with
aspect ratio of 10, this difference is increased
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dramatically. This observation confirms the
occurrence of shedocking, which is a
common condition for elements having high
aspect ratios under pure bending loads.

The analytical methods derived and
applied in this research are applicable to finite
element calculations using quadrilateral plane
stress and plane stressmeénts with reduced
integration.
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