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ABSTRACT: Stiffness matrix of the four-node quadrilateral plane stress element is 

decomposed into normal and shear components. A computer program is developed to obtain 

the straining modes using adequate and reduced integration. Then a solution for the problem 

of mixing straining modes is found. Accuracy of the computer program is validated by a 

closed-form stiffness matrix, derived for the plane rectangular as well as square element. It 

is shown that method of integration has no effect on the straining modes, but it influences the 

eigenvalues of the bending modes. This effect is intensified by increasing the element aspect 

ratio, confirming the occurrence of shear locking. 

 

Keywords: Finite Elements, Plane Stress, Reduced Integration, Shear Locking, Straining 
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INTRODUCTION 

 

Straining modes of an element are used to 

represent the forms of deformation that the 

element exhibits. The straining modes are 

especially important for ensuring 

convergence of the Finite Element solution. 

Previous research in the field of straining 

modes of plane stress elements (Bathe, 2014; 

Pawsey and Clough, 1971), provide 

contradicting results, and the complexities of 

the eigenvalue problem are not reported in 

these studies. 

Shear-locking, a condition in which the 

resistance of the element to bending loads is 

greatly overestimated is caused by the 

inability of the element to experience the 

expected bending deformations subjected to 

the specific conditions. Different approaches 

are taken to overcome the shear-locking 

problem. Rezaiee-Pajand and Yaghoobi 

(2013) defined shear-locking as an inevitable 

consequence of choosing a polynomial 

formulation for strain field, and defined 

parasitic shear as a similar type of element 

stiffening resulting from presence of normal 

strain terms in the shear strain interpolation 

function. The authors mentioned reduced 

integration as a way to counter the parasitic 

shear problem, and not the shear-locking. 

Rezaiee-Pajand and Yaghoobi (2017) 

developed a new type of plane quadrilateral 

element by using separate strain field 

formulations for the boundaries and the 

interior of the element. The developed 

element had nodes with both translational and 
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rotational degrees of freedom; and was 

immune to parasitic shear. Several different 

elements available in the literature or 

developed by the authors were compared by 

performing numerical tests by Rezaiee-

Pajand and Yaghoobi (2015). 

Shear-locking has been the subject of 

many research works. Many researchers (e.g. 

Bletzinger et al., 2000; Nguyen-Thanh et al., 

2008; Nguyen-Xuan et al., 2010; da Veiga et 

al., 2012) have focused on developing 

elements immune to shear-locking. Fallah et 

al. (2017) explained the shear-locking 

quandary in thin plate elements, and proposed 

a new type of plate element that solved that 

problem in a computationally efficient way. 

Others have used strategies to alleviate the 

shear-locking problem, for instance using 

absolute nodal coordinates (Garcia-Vallejo et 

al., 2007). There is also research to overcome 

shear-locking in numerical methods other 

than Finite Element method (Kanok‐

Nukulchai et al., 2001). Research in shear-

locking includes plane elements (Rezaiee-

Pajand and Yaghoobi, 2014), plate bending 

elements (Pugh et al., 1978), and shell 

elements (Arnold and Brezzi, 1997). 

The distinction between shear-locking and 

parasitic shear is not always made in the 

literature, and reduced integration is usually 

introduced as a way of encountering shear-

locking. Reddy (1997) mentioned reduced 

integration as a way to eliminate shear-

locking in beam elements. Also Pugh et al. 

(1978) showed that reduced integration can 

be an effective tool for mitigating the shear 

locking problem in quadrilateral plate 

elements.  

It is a conventional practice to evaluate the 

performance of elements by solving 

examples of simple assemblies (e.g. 

cantilever beam, curved beam, etc.), an 

approach adopted by some research papers 

including (Rezaiee-Pajand and Yaghoobi, 

2014). One problem with that approach is that 

it is not possible to test the element for every 

possible combination of geometry, meshing, 

and loading configurations.  

However, in this research, we take an 

alternative approach. The eigen-analysis 

approach adopted in this research paper is 

based on the concept of element straining 

modes as described by Pawsey and Clough 

(1971) and by Bathe (2014). This Eigen-

analysis approach addresses the problem in a 

more direct way, by looking into the 

capability of the element itself to experience 

certain basic deformation shapes (e.g. 

expansion-contraction, elongation, shearing, 

etc.). 

Evaluating Finite Elements using 

eigenvalue analysis has been suggested by 

previous research (e.g. Bathe, 2014; Pawsey 

and Clough, 1971). However, to the 

knowledge of the authors, a detailed method 

of applying selective integration to plane 

stress elements in not given. This research 

uses Hamilton’s principle (Liu and Quek, 

2014) to separate the stiffness matrix of a 

quadrilateral plane stress element to shear and 

normal parts, providing a method of selective 

integration. The problem of shear-locking is 

analyzed from an Eigen-analysis perspective, 

and the effectiveness of reduced integration is 

studied. 

The method of separating the stiffness 

matrix is applicable to Finite Element 

simulations using general quadrilateral plane 

stress and plane stress elements. For applying 

the method of reduced integration, one needs 

to perform numerical integration on the shear 

and bending parts of the element stiffness 

separately. However, for a membrane plane 

stress element, each node has two 

translational degrees of freedom, and do not 

have shear and bending degrees of freedom 

similar to bending beam elements.  

In this paper, a method of separating the 

shear and bending portions of the stiffness 

matrix of a four-node quadrilateral plane 

stress element is proposed. Subsequently, a 

computer program is developed that 
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calculates the stiffness matrices of the 

aforementioned elements using normal and 

reduced integration methods. The straining 

modes of a square shaped element are 

obtained using the developed computer 

program. Repeated Eigen values result in 

mixing of straining modes. This problem is 

solved by changing the dimensions of the 

element slightly. The straining modes 

obtained by the proposed method are a 

selection of the straining modes reported in 

the literature, including the straining modes 

reported by Bathe (2014), shown in figure1. 

An element with higher aspect ratio is also 

studied in order to investigate the correlation 

between straining modes and shear-locking. 

 

STRAINING MODES 

 

The deformations that an element is able to 

represent can be determined by solving the 

eigenvalue problem of the following 

equation: 

 

     eK  (1) 

 

where [Ke]: is the element’s stiffness matrix, 

λ is a scalar, and {Ф}: is a vector with the 

dimension equivalent to the number of 

degrees of freedom of the element. Solving 

Eq.  (1) would result in different values for λ, 

which are called eigenvalues. For each 

eigenvalue λi, there is a corresponding vector 

{Фi}, called eigenvector, which can be 

calculated by substituting λi for λ in Eq. (1). 

The eigenvectors obtained by Eq. (1) 

correspond to the nodal displacements of 

different straining shapes in which an element 

is able to deform (Bathe, 2014). 

For the four-node quadrilateral plane 

stress element discussed in this paper, these 

deformation shapes comprise three rigid body 

motion modes, and five straining modes. 

These straining modes are presented in 

(Bathe, 2014; Pawsey and Clough, 1971). 

Figure 1 shows the straining modes given by 

Bathe (2014). The straining modes presented 

in Pawsey and Clough (1971) is slightly 

different from these straining modes. The 

stretching and uniform extension modes are 

replaced by two constant strain modes, and 

the flexural modes have a trapezoidal shape, 

and are called bending modes. Presence of 

these different straining modes in 

eigenvectors of the stiffness matrix 

formulation of an element is essential for the 

convergence of the Finite Element solution 

by refining the mesh (Bathe, 2014). 

 

STIFFNESS MATRIX 

 

In this section, the stiffness matrix of the four-

node quadrilateral plane stress element is 

presented. Then the reduced integration with 

the decomposition of the stiffness matrix is 

discussed. 

 

Existing Formulation of the Element 

Stiffness Matrix 

The four-node quadrilateral plane stress 

element is shown in Figure 2. The strain 

vector {ε} has three components being the 

two normal strains and one shear strain, as 

shown by the following equation: 

 

 


















xy

y

x







  (2) 

Moreover, the strain vector can be 

associated to the nodal displacements {d}; via 

strain–displacement transformation relation; 

as follows: 

 

    dB  (3) 

 

where [B]: is called the gradient matrix, and 

it consists of the derivatives of interpolation 

functions of the element with respect to the 

coordinates. As explained in detail in (Logan, 

2012; Liu and Quek, 2014), for plane 

elements with constant thickness, the element 
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stiffness matrix can be obtained by the 

following: 

 

      dABDBtK
T

A

e

e

  (4) 

 

where Ae: is the area of the element, and dA: 

is the area increment. 

For general quadrilateral element, it is 

easier to perform the integration in Eq. (4) 

after mapping the element into a square 

domain defined by the natural coordinates, ζ 

and η of the element which is shown in Figure 

3. Therefore, the stiffness matrix of the 

quadrilateral element in the natural 

coordinates is defined as following: 

 

        


1

1

1

1
.  ddJBDBtK

T

e  (5) 

 

where t: is the element thickness, and [D]: is 

the constitutive material matrix for the plane 

stress problem defined by the following 

equation: 

 

 
Fig. 1. Straining modes given by Bathe (2014) 

 

 
Fig. 2. Four-node quadrilateral plane stress element 

 

 
Fig. 3. Natural coordinate system of the element 
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[𝐷] =

{
 
 
 

 
 
 𝐸

1 − 𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

]                                                (for plane stress)

𝐸

(1 + 𝜈)(1 − 2𝜈)
[

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0
1 − 2𝜈

2

]            (for plane strain)

 (6) 

 

where E: is the young’s modulus and ν: is the 

poisson’s ratio of the material, whereas |J|: is 

the Jacobian determinant which is defined by: 

 





















yx

yx

J  (7) 

 

It should be noted that [B] in Eq. (5) is 

defined in the natural coordinates of the 

element, and a simplified way to calculate it, 

is given by Logan (2012). There is no 

straightforward closed form solution of Eq. 

(5) for a general quadrilateral element. 

Symbolic computation methods can be used 

for deriving exact solutions for any particular 

element (Videla et al., 2008; Walentyski, 

2007). However, the most common 

integration method used in the Finite Element 

method of analysis is the Gauss-Quadrature 

method (Logan, 2012). For the case of one 

dimensional integration, n Gaussian 

integration points provide the exact solution 

of the integral of the polynomial with the 

order of 2n-1 or less (Kreyszig, 2011). 

Usually, for solving Eq. (5) for a four-noded 

quadrilateral plane stress element, one needs 

to employ two-point Gauss integrations for 

each axis of the natural coordinate system. 

We call this method of integration normal or 

adequate integration. 

 

Reduced Integration 

Using Normal Gaussian integration for 

evaluating the stiffness matrix can lead to a 

condition named shear-locking in certain 

conditions. Shear-locking is a result of 

inability of the employed interpolation 

functions to capture the real deformations of 

an element in certain conditions of geometry 

or loading; and results in overestimation of 

stiffness matrix (Reddy, 2006). Shear-locking 

is not a problem specific to plane stress 

elements. This problem happens similarly in 

shell elements with linear displacement fields 

(Zienkiewicz et al., 1971). As it was shown in 

Javidinejad (2012), geometry of structure and 

meshing techniques can result in elements 

with high aspect ratios, which may 

experience shear locking. In fact, the general 

problem of locking is observed in different 

kind of elements (Adam, et al., 2014; 2015; 

Pagani et al., 2014). For a plane stress 

quadrilateral element, shear-locking can be 

avoided by using a lower order Gaussian 

integration for the shear strain energy of the 

element (Pawsey and Clough, 1971). For a 

four-node element, this corresponds to using 

a single Gauss point. This method of 

integration, which employs different 

integration techniques for normal and shear 

strain energies, is called reduced integration 

or selective integration. 

Application of reduced integration may 

lead to undesirable numerical problems 

including omission of the correct modes 

(Rezaiee-Pajand and Yaghoobi, 2012, 2013), 

and should be used with caution. The 

objective of this research paper is not to 

promote reduced integration method, but to 

objectively see its effects on the straining 

capabilities of the element and its potential 

for shear-locking. 
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Decomposing the Stiffness Matrix for 

Reduced Integration 

The stiffness matrix calculated by Eq. (5) 

does not have separate components for the 

stiffnesses resulted by shear strain energy and 

normal strain energy. Consequently, to 

perform reduced integration, a change in the 

formulation is required. Hence, an alternative 

approach to derive the stiffness is used, which 

separates the terms of shear and normal strain 

energy.  

One can decompose the strain vector 

presented in Eq. (2) as sum of two vectors; as 

follows: 

 

     sn    (8) 

 

where {εn}: is the normal strain component 

vector and {εs}: is the shear strain component 

vector; as follows: 

 

 
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
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and 

 

 









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



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xy

s
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 (10) 

 

Similar to Eq. (3), the normal and shear 

strain vectors can be related to the nodal 

displacements {de} by the following 

equations: 

 

    enn dB  (11) 

    ess dB  (12) 

 

where [Bn]: is obtained by substituting the 

third row of the gradient matrix [B] by zeros 

and [Bs]: is found by substituting the first two 

rows of the gradient matrix [B] by zeros. 

The elastic strain energy of the element is 

defined by the following: 

 

    
eV

T

e dVD 
2

1
 (13) 

 

where Ve: is the volume of the element, and 

dV: is an infinitesimal volume. 

Similarly, one can obtain the normal strain 

energy Πn
e resulted by the normal strains and 

the shear strain energy Πs
e by the following 

equations: 

 

    
eV

n

T

n

e

n dVD 
2

1
 (14) 

    
eV

s

T

s

e

s dVD 
2

1
 (15) 

 

Furthermore, the total strain energy can be 

written as: 

 
e

s

e

ne   (16) 

 

Substituting Eqs. (14-15) in Eq. (16), and 

then substituting {εn} and {εs} by Eqs. (11-

12), one can obtain the total strain energy; as 

follows: 

 

       
eV

en

T

n

T

ee dVdBDBd
2

1
 

       
eV

es

T

s

T

e dVdBDBd
2

1
 

(17) 

 

The integrations in Eq. (17) are performed 

on the coordinates, and because the nodal 

displacements are degrees of freedom then 

the above equation is rewritten as: 

 

        e
V

n

T

n

T

ee ddVBDBd
e






 2

1
 

        e
V

s

T

s

T

e ddVBDBd
e






 2

1
 

(18) 

 

Eq. (18) can be rewritten as: 
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         e
e

s

T

ee

e

n

T

ee dKddKd
2

1

2

1
  (19) 

where 

 

      
eV

n

T

n

e

n dVBDBK  (20) 

 

and 

 

      
eV

s

T

s

e

s dVBDBK  (21) 

 

Hamilton’s principle (Liu and Quek, 2014) 

states that of all admissible displacements, 

the most accurate displacement field makes 

the Lagrangian functional stationary 

(minimum). This leads to the variational 

equation of the following: 

 

 
2

1

0.



 dL  (22) 

 

where dτ: is the time increment, τ1 and τ2: are 

representing the time domains, δ: is the 

operator of variation, and L: is the Lagrangian 

functional; which in the case of static analysis 

is defined as: 

 

fe WL   (23) 

 

where Πe: is the elastic strain energy which 

can be obtained by Eq. (19), and Wf: is the 

work done by the external forces, and can be 

calculated by: 
 

   e
T

ef FdW   (24) 

 

where {Fe}: is the vector of the equivalent 

nodal forces. Substituting Eqs. (19) and (24) 

in Eq. (23) and then in Eq. (22), one can 

obtain the following: 
 

          
2

1 2

1

2

1
(




 e

e

s

T

ee

e

n

T

e dKddKd  

    0).  dFd e

T

e  

 (25) 

Using a property of the variation, the 

above equation can be rewritten as: 

 

        e

e

se

e

n

T

e dKdKd  
2

1

(



  

  0).  dFe  

(26) 

 

Since the term δ ({de}
T) has an arbitrary 

value, Eq. (26) demands the term inside the 

integral to be zero. This results in the 

following: 

 

       ee

e

s

e

n FdKK   (27) 

 

The expression inside the parenthesis is 

the stiffness matrix of the element by 

definition. This is expressed by: 

 

     e

s

e

ne KKK   (28) 

 

where [Kn
e] and [Ks

e]: are defined by Eqs. 

(20-21), and represent the stiffness of the 

element resulted from the normal and shear 

strain energies; and can be subjected to 

different integration methods. For a four-

node plane stress element with constant 

thickness, the increment of volume in Eqs. 

(20-21) equals to the thickness t of the 

element multiplied by the area increment (dA 

being dx times dy). Transforming Eqs. (20-

21) from global coordinates (x-y) to the 

natural coordinates (ζ-η), the following 

equations are obtained for the isoparametric 

formulation of the element: 

 

        


1

1

1

1
.  ddJBDBtK n

T

n

e

n  (29) 

 

and 

 

        


1

1

1

1
.  ddJBDBtK s

T

s

e

s  (30) 

 

All the equations derived here for 

decomposing the stiffness matrix are also 

valid for the plane strain case. 
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CLOSED FORM SOLUTION FOR THE 

RECTANGULAR ELEMENT 
 

As mentioned in last sections, there is no 

straightforward closed form solution for the 

stiffness matrix of the general quadrilateral 

element shown in Figure 2. However, for a 

rectangular element like the one shown in 

Figure 4, the closed form solution can easily 

be obtained. 

The matrix [B] of Eq. (3) for this element 

is given as Eq. (31):

 

 
























yhxbyhxbyhxbhybx

xbxbxbbx

yhyhyhhy

bh
B 0000

0000

4

1
 (31) 

 

 
Fig. 4. Four-noded rectangular element 

 

Substituting [B] from Eq. (31) and [D] 

from Eq. (6) into Eq. (4) and performing the 

integrations on the intervals of x and y, the 

closed form solution for the stiffness matrix 

of the element shown in Figure 4 is obtained 

as: 

 

 
 


















































6

21

746

4321

62846

214521

8462746

45214321

2

4

34

434.

3234

23234

323434

2323434

34323234

124



















Sym

Et
Ke  (32) 

 

where  α1= 2h2+b2(1-ν), α2= (1+ν)bh , α3= -

4h2+b2(1-ν), α4= (3ν-1)bh, α5= h2-b2(1-ν),       

α6= 2b2+h2(1-ν), α7= b2-h2(1-ν) and  α8= -

4b2+h2(1- ν). 

The rectangular element shown in Figure 

4 is used as a benchmark problem for 

validation of the accuracy of the computer 

code that is described in the next section. 

COMPUTER MODELING AND 

RESULTS 

 

In order to compute the element stiffness 

matrix of the four-node quadrilateral plane 

stress element (shown in Figure 2) with 

normal and reduced numerical integration, a 

computer program is developed in PYTHON 
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programming language (version 2.7) (van 

Rossum and Drake, 2010). The rectangular 

element shown in Figure 4 is used in order to 

validate the numerical results obtained by the 

computer program. The closed form solution 

of its stiffness matrix has been derived as the 

Eq. (32). For a rectangular element of b = 

6mm, h = 5 mm, t = 1 mm, ν = 0.3, and E = 

200 GPa, the computer program’s evaluation 

of the stiffness matrix using normal 

integration is in near agreement with the 

closed form solution obtained by Eq. (32). 

The largest difference between the entries of 

the two matrices is less than 10-6 N/mm. 

Next, the computer program is extended to 

solve the eigenvalue problem of Eq. (1), and 

is used to calculate eigenvalues and 

eigenvectors of the four-node quadrilateral 

plane stress elements with different shapes 

with normal and reduced numerical 

integration. For each element, the first three 

eigenvalues are zero; representing the three 

rigid body motion modes. Subsequently, 

straining modes of the element is calculated; 

as presented in the next section. 

 

The Square-Shaped Element and the 

Mixing Straining Modes 

The procedures presented here for splitting 

the stiffness matrix and application of 

reduced integration are valid for all four-node 

quadrilateral plane stress as well as plane 

strain elements. However, in order to 

facilitate the observation of the straining 

modes, only results for rectangular elements 

are shown here. 

First, a 10 mm × 10 mm square-shaped 

element of t = 1 mm, ν = 0.3, and E = 200 GPa 

is chosen in order to have the straining modes 

to be drawn. Using normal integration 

method as well as the reduced integration 

method, the eigenvalues are obtained for this 

element. The summary results of eigenvalue 

analysis using the both aforementioned 

element integration methods are presented in 

Table 1. In either case, the first three 

eigenvalues are near zero, and representing 

the rigid body motion. The remaining five 

eigenvalues correspond to the straining 

modes of the element. Both integration 

methods result in stiffness matrices which 

have repeated eigenvalues (algebraic 

multiplicity). For each one of the repeated 

eigenvalues, arbitrary sets of linearly 

independent eigenvalues can be found 

(Kreyszig, 2011); therefore, the straining 

modes obtained by PYTHON’s eigensolver 

which are shown in figures 5-10 do not match 

the straining modes reported in (Bathe, 2014; 

Pawsey and Clough, 1971). However, these 

straining modes seem to be a mixture of the 

straining modes presented in (Bathe, 2014; 

Pawsey and Clough, 1971). It should be noted 

that the straining modes are scaled in order to 

be visible, since multiplying an eigenvector 

of a matrix by any scalar gives another 

eigenvector for that matrix. 

 

 
Fig. 5. The 1st and 2nd straining modes of the square-shaped element with normal integration 
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Fig. 6. The 3rd and 4th straining modes of the square-shaped element with normal integration 

 

 
Fig. 7. The 5th straining mode of the square-shaped element with normal integration 

 

 
Fig. 8. The 1st and 2nd straining modes of the square-shaped element with reduced integration 

 

Table 1. Eigenvalues obtained for the square-shaped element 

Integration Method 
Eigenvalues (N/mm) 

1st 2nd 3rd 4th 5th 6th 7th 8th 

Normal 8×10-12 3.5×10-11 5.1×10-11 98901 98901 153846 153846 285714 

Reduced -2.9×10-11 3.7×10-12 4.4×10-11 73260 73260 153846 153846 285714 
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Fig. 9. The 3rd and 4th straining modes of the square-shaped element with reduced integration 

 

 
Fig. 10. The 5th straining mode of the square-shaped element with reduced integration 

 

The only strain mode that matches the 

strain modes reported in (Bathe, 2014; 

Pawsey and Clough, 1971) is the uniform 

extension mode, as shown in Figures 7 and 

10. The remaining strain modes are mixtures 

of the strain modes reported in (Bathe, 2014; 

Pawsey and Clough, 1971); since their 

corresponding eigenvalues are repeated. 

Mixing of the straining modes is most visible 

in the modes 3 and 4. To overcome this 

problem, and in order to obtain distinct 

straining modes for the square-shaped 

element, a slight change in the dimensions of 

the element is made in a way that the 

eigenvalues will not be repeated exactly; 

while the change in the dimensions of the 

square will be negligible. Thus the width of 

the element is increased by 0.001 mm. After 

the above changes, the strain modes obtained 

are shown in Figures 11-16. 

As shown in Figures 11-13, for the 

element with normal integration, and Figures 

14-16 for the element with reduced 

integration, a slight change in the width of the 

element resulted in a slight change in the 

eigenvalues in a way that there are no 

repeated eigenvalues anymore. Subsequently, 

the straining modes are not mixed anymore. 

Strain modes of bending type modes 1 and 2 

from Pawsey and Clough (1971), and 

straining modes of stretching, shear and 

uniform extension type modes from Bathe 

(2014) exist in the obtained straining modes. 

In both cases of normal and reduced 

integration, a difference of 2.17×10-6 percent 

in eigenvalues corresponding to stretching 



Badrkhani Ajaei, B. and Ghassemieh, M. 

 

436 
 

and shear straining type modes is enough to 

cause PYTHON’s Eigen solver to find 

distinct eigenvectors for these eigenvalues; 

and not to mix the straining modes. Figure 17 

shows the eigenvalues corresponding to the 

straining modes of the square-shaped 

element, with normal and reduced integration 

methods. 
 

 
Fig. 11. Bending modes 1 and 2 of the square-shaped element with normal integration 

 

 
Fig. 12. Bending modes 1 and 2 of the square-shaped element with normal integration 

 

 
Fig. 13. Extension mode of the square-shaped element with normal integration 
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Fig. 14. Bending modes 1 and 2 of the square-shaped element with reduced integration 

 

 
Fig. 15. Stretching and shear modes of the square-shaped element with reduced integration 

 

 
Fig. 16. Extension mode of the square-shaped element with reduced integration 

   

As shown in Figure 17, normal and 

reduced integration methods result in 

stiffness matrices which have identical 

eigenvalues for the stretching, shear, and 

extension straining modes. On the other hand, 

the normal integration method results in a 
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higher value for the eigenvalues 

corresponding to the bending straining 

modes. As expected, the interpolation 

functions of the four-node quadrilateral plane 

stress element do not allow its edges to bend. 

Consequently, when this element is subjected 

to pure bending, the angles between its edges 

change, and it undergoes shear deformation 

as well. This produces in an overvaluation of 

the bending stiffness of the element and 

consequently leading to have a shear locking 

condition. The reduced integration method 

evaluates the shear strain energy of the 

element by one integration point in the center 

of the element, where shear strain is zero. As 

a result, reduced integration resolves the 

above issue. This is evident from Figure 17, 

where the reduced integration method gives 

lower eigenvalues for the bending strain 

modes. 
 

Rectangular Element with a High Aspect 

Ratio 

To evaluate the effect of aspect ratio of the 

element on the eigenvalues and the straining 

modes, a 100 mm × 10 mm size element is 

chosen. Figures 18-20 illustrate the straining 

modes obtained for this element using the 

normal integration method, and Figures 21-

23 present the straining modes obtained by 

the reduced integration method. 

 

 

 
Fig. 17. Eigenvalues of the straining modes in the square-shaped element 

 

 
Fig. 18. Stretching modes of the element with aspect ratio of 10, with normal integration 
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Fig. 19. Bending modes of the element with aspect ratio of 10, with normal integration 

 

 
Fig. 20. Shear mode of the element with aspect ratio of 10, with normal integration 

 

 
Fig. 21. Stretching modes of the element with aspect ratio of 10, with reduced integration 

 

As illustrated in the aforementioned figures, 

for the element with the aspect ratio of 10 

with normal integration as well as the reduced 

integration; two bending straining modes, 

two stretching straining modes, and one shear 

straining mode are obtained. Figure 24 shows 

all the eigenvalues corresponding to the 

straining modes of the element with aspect 

ratio of 10 using both normal and reduced 

integration methods. 
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Fig. 22. Bending modes of the element with aspect ratio of 10, with reduced integration 

 

 
Fig. 23. Shear mode of the element with aspect ratio of 10, with reduced integration 

 

 
Fig. 24. Eigenvalues of the straining modes of the element with aspect ratio of 10   
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Normal and reduced integration methods 

result in stiffness matrices which have 

different eigenvalues for the bending 

straining type modes. This difference is much 

higher for the first bending straining mode. 

As it was explained earlier, the normal 

integration method overestimates the bending 

stiffness of the element. For the element with 

aspect ratio of 10, this overestimation is 

highly increased. As it said, this condition is 

called shear-locking. It is evident from Figure 

24 that reduced integration results in a much 

lower evaluation of the Eigenvalue 

corresponding to the first bending straining 

type mode. This is in agreement with the fact 

that reduced integration (the integrals in the 

stiffness matrices in Finite Element analysis 

are evaluated using numerical integration 

methods.  

Numerical integration involves estimating 

the value of an integral based on evaluated 

values of the integrated function at certain 

Gauss points inside the integration domain. 

While the normal way of performing the 

numerical integration and in order to have an 

accurate estimation of the integrals, would be 

to use sufficient number of integration points, 

reduced integration means separating part of 

the stiffness matrix that represents the shear 

strain energy of the element, and using a 

lower order of integration (less integration 

points) to perform the numerical integration 

on that part.) is an effective way to prevent 

shear-locking. For the element with aspect 

ratio of 10, the extension straining type mode 

is replaced by a vertical stretching mode. The 

two flexural modes of Bathe (2014) are not 

observed among the straining modes obtained 

in this study; while the two bending modes of 

Pawsey and Clough (1971) are observed 

instead. 

 

CONCLUSIONS 

 

A method of applying the reduced integration 

method to quadrilateral plane stress elements 

is presented. Subsequently, a computer 

program is developed for calculating stiffness 

matrices of quadrilateral plane stress 

elements using normal and reduced 

integration methods. Furthermore, for the 

case of rectangular shaped element, a closed 

form solution is presented for the stiffness 

matrix. For a rectangular element, the 

developed computer program delivered 

exactly the same results as obtained by the 

closed-form solution. 

Also for particular square shaped element 

and by means of the developed program, 

straining modes are obtained by performing 

an eigenvalue analysis on the stiffness 

matrices obtained using both normal and 

reduced integration methods. The stiffness 

matrix of this particular square shape 

geometry, revealed repeated eigenvalues with 

mixed straining modes. However, it was 

illustrated that by making a slight change in 

the geometry, the problem of having repeated 

eigenvalues is avoided and distinct bending, 

stretching, shear, and extension straining 

modes are attained. 

The integration methods have no effect on 

the straining modes. However, they do affect 

the eigenvalues. The straining modes and the 

corresponding eigenvalues represent special 

cases of loading applied to elements, where 

the force vector and the nodal deformation 

vectors are scalar multiples of each other. The 

magnitude of the eigenvalue obtained for 

each straining mode represents the stiffness 

of the element against that specific 

deformation shape. From an Eigen-analysis 

perspective, this research papers observes the 

connection between higher eigenvalues for 

bending straining modes and the conditions 

that are known to lead to shear-locking. For 

the bending straining modes, the normal 

integration method results in higher values 

for eigenvalues compared with the bending 

eigenvalues obtained by the reduced 

integration method. For the element with 

aspect ratio of 10, this difference is increased 
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dramatically. This observation confirms the 

occurrence of shear-locking, which is a 

common condition for elements having high 

aspect ratios under pure bending loads. 

The analytical methods derived and 

applied in this research are applicable to finite 

element calculations using quadrilateral plane 

stress and plane stress elements with reduced 

integration. 
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