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ABSTRACT: Run off resulted from rainfall is the main way of receiving water in most parts 

of the World. Therefore, prediction of runoff volume resulted from rainfall is getting more 

and more important in control, harvesting and management of surface water. In this research 

a number of machine learning and data mining methods including support vector machines, 

regression trees (CART algorithm), model trees (M5 algorithm) and artificial neural 

networks have been used to simulate rainfall- runoff process in Zayandeh_rood dam basin in 

Iran. Data used in this research included 9 years of daily precipitation, minimum temperature, 

maximum temperature, mean temperature, mean relative humidity of daily times 6:30, 12:30 

and 18:30 and run off. A number of 3294 lines of data were totally used, and simulations 

were carried out in two different conditions: without previous run off data as input vectors 

(M1 condition), and with previous runoff data as input vectors of the models (M2 condition). 

Results show that machine learning techniques used in this research are not able to present 

acceptable predictions of runoff in M1 condition (without previous runoff data). However, 

predictions are considerably improved when previous runoff data are used as input beside 

other inputs (M2 condition). Between the models used in this research support vector 

machines (SVM) presented the most accurate results, as the values of RMSE for results 

presented by SVM, regression tree, model tree and artificial neural network are 2.4, 6.71, 3.2 

and 3.04, respectively. 
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INTRODUCTION 

 

Runoff resulted from rainfall and snow 

melting is one of the main water resources to 

fulfill agricultural, industrial and domestic 

requirements. Depending on geological 

characteristics, land use, vegetation cover, 

ground slope and watershed form, a 

considerable part of precipitation generally 

flows as runoff. Therefore, estimation of the 

runoff resulted from rainfall events is a very 

important step in water resources planning to 

provide enough water for consumers. During 

recent decades hydrologists have paid 

specific attention to modeling and prediction 

of runoff behavior produced by different 
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precipitation events. The reasons for this 

attention are: increase in flood occurrence 

and as a result more damages, increased 

demand for hydro-power, marine transport 

development in the rivers, confident design 

and construction requirements of hydraulic 

structures, establishment of flood warning 

systems, drought damages prevention and 

water resources management strategies for 

water treatment. A large number of 

watersheds in Iran and most of developing 

countries have no flow measuring system, or 

the measured data are too short, and not 

enough for planning purposes. Therefore, 

development and calibration of suitable 

runoff prediction methods especially for 

ungauged sites is necessary to fulfill these 

requirements.  

In recent years, some techniques of 

artificial intelligence and data mining have 

been developed and used in hydrology and 

water resources that are mostly able to model 

natural conditions. In most of the cases the 

results produced by these techniques have 

shown higher level of accuracy. Some of the 

famous methods in this area are as follows: 

- Artificial neural networks  

- Fuzzy inference systems 

- Adaptive neuro-fuzzy inference systems 

- Regression trees 

- Model trees  

- Support vector machines 

- Genetic programming 

Several research projects have been 

carried out in the area of rainfall-runoff using 

different machine learning and data mining 

techniques. Aqil et al. (2007) evaluated the 

efficiency of two machine learning 

techniques including artificial neural network 

and neuro-fuzzy systems in prediction of 

runoff resulted from rainfall in daily and 

hourly time scales. In this study the effects of 

input data variation on model efficiency was 

also evaluated. The study area was Cilalawi 

river catchment which is a tributary of 

Citarum river in Indonesia. Finally it was 

concluded that the results presented by neuro-

fuzzy system show higher accuracy in 

comparison to the ANN technique. Bhadra et 

al. (2010) simulated rainfall-runoff process 

using semi-distributed conceptual SCS CN 

method (in combination with Muskingum 

routing technique) and compared the results 

to those presented by a ANN based model. It 

was concluded that ANN technique, in spite 

of requiring much less data, predicted daily 

runoff values more accurately than the SCS 

CN method. Wu and Chau (2011) used ANN 

coupled with Singular Spectrum Analysis 

(SSA) for rainfall-runoff modeling, and 

concluded that coupling ANN with SSA (as a 

data preprocessing tool) considerably 

improves the results of ANN based rainfall-

runoff model. Nourani (2016) used a new 

generation of Artificial Intelligence-based 

models called Emotional Artificial Neural 

Network (EANN), for modeling daily 

rainfall-runoff process. Then he compared the 

results to those of a conventional feed 

forward neural network (FFNN), and 

concluded that the EANN could present 

results with higher accuracy comparing to 

FFNN in both training and verification 

phases. He finally stated that the superiority 

of EANN over classic ANN refers to its 

ability to recognize and distinguish dry 

(rainless days) and wet (rainy days) situations 

using artificial emotional system hormonal 

parameters. Machado et al. (2011) evaluated 

the capacity of artificial neural networks for 

rainfall-runoff modeling in Jangada river 

basin of Brazil. They compared the results to 

those produced by a conceptual model called 

IPHMEN, and it was reported that the ANN 

presented the best results. El-shafie et al. 

(2011) used ANN for prediction of rainfall-

runoff relationship in Tanakami region of 

Japan, and the results were compared to those 

presented by a classical regression model. 

Feedforward back propagation ANN was 

able to describe the behavior of rainfall-

runoff process more accurately than the 
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classical regression model. Yilmaz and Muttil 

(2014), predicted river flows using various 

machine learning methods including Feed 

Forward Neural network (FFNN), Adaptive 

Neuro Fuzzy Inference System (ANFIS), and 

Genetic Programming (GP) and also a non- 

machine learning method (multiple linear 

regression) in the Euphrates Basin in Turkey. 

Reconstruction of the missing data in the 

runoff record of the selected stations in 

Euphrates Basin was also an objective of this 

study. The machine learning methods were 

applied to three main Euphrates sub-basins, 

namely the Upper, Middle, and Lower 

Euphrates Basins. ANFIS and FFNN 

methods were the most successful methods 

for runoff estimation in the Upper and Lower 

Euphrates Basins, whereas GP and ANFIS 

models were the best ones in the Middle 

Euphrates Basin. The model was able to 

reconstruct missing flow data successfully in 

the selected stations. Kamali et al. (2014) 

used Multi-Objective Fuzzy Optimal models 

for Automatic Calibration of HEC-HMS 

hydrological Model. The algorithm employed 

for this purpose was the Particle Swarm 

Optimization (PSO) algorithm. Comparison 

of the results taken from the single and multi-

objective scenarios indicated the efficiency of 

the proposed HMS-PSO simulation-

optimization method in the multi-objective 

calibration of event-based hydrologic 

models. Karimaee Tabarestani and Zarrati 

(2015) used artificial neural networks and the 

empirical models to design stone riprap 

around the bridge piers. The aim was to 

develop an approach for sizing stable riprap 

around the bridge piers based on a large 

amount of experimental data.  To estimate the 

stable riprap stone size around bridge piers in 

this research, an empirical equation was 

developed by multiple regression analysis. 

Finally, in order to receive a higher accuracy 

for riprap design, the Artificial Neural 

Network (ANN) method based on utilizing 

non-dimensional parameters was used. The 

results indicated that the ANN model 

provides about 7% improved prediction for 

riprap size comparing to the conventional 

regression formula. Barzegari et al. (2015) 

compared ANN, Decision Trees (DT) and 

Sediment Rating Curve (SRC) models for 

estimating suspended sediment in in ten 

hydrometric stations of Lorestan province, 

Iran. The results showed that the accuracy of 

ANN with Levenberg-Marquardt back 

propagation algorithm was higher than the 

two other models, especially in high 

discharges. Shortridge et al. (2016) used 

multiple regression and machine learning 

techniques (generalized additive models, 

multivariate adaptive regression splines, 

artificial neural networks, random forests, 

and M5 cubist models) for simulation of 

monthly stream flow in five highly seasonal 

rivers in the highland areas of Ethiopia. Then 

their performance was compared in terms of 

predictive accuracy, error structure and bias, 

model interpretability, and uncertainty when 

faced with extreme climate conditions. While 

the relative predictive performance of the 

models were different across basins, but data-

driven approaches were able to achieve 

reduced errors when compared to physical 

models developed for the region. Granata et 

al. (2016) carried out a comparison between a 

SVM (support vector machine)-based 

approach and the EPA’s Storm Water 

Management Model (SWMM) abilities for 

rainfall-runoff modeling. The SVM variant 

used in this study was Support Vector 

Regression (SVR). Two different 

experimental basins located in the north of 

Italy were considered as case studies. The 

Root-Mean Square Error (RMSE) and the 

coefficient of determination were selected as 

criteria to assess the consistency between the 

recorded and predicted flow rates. Based on 

the results, both models showed comparable 

performance. In particular, both models can 

properly model the hydrograph shape, the 

time to peak and the total runoff. The main 



Dastorani, M.T. et al. 

 

296 
 

difference is where the SVR algorithm tends 

to underestimate the peak discharge, while 

SWMM tends to overestimate it. It can be 

said that although, SVR shows great potential 

for applications in the field of urban 

hydrology, but it also has significant 

limitations regarding the model calibration. 

Adamowski and Prasher (2012) studied and 

also compared two machine learning methods 

of SVR and wavelet networks (WN) for 

forecasting daily runoff in the mountainous 

watershed of Sianji in the Himalayan region 

of India. The models were based on 

parameters of runoff, antecedent precipitation 

index, rainfall, and day of the year that the 

data have been collected (over the time period 

from July 1, 2001 and June 30, 2004). It was 

found that both used methods produced 

accurate results, with the best WN model 

slightly outperforming the best SVR model in 

accuracy. However, is suggested that both the 

WN and SVR models need to be tested in 

other mountainous watersheds specially with 

limited data for further assessment of their 

suitability in forecasting. 

 In the present research, rainfall-runoff 

modeling has been carried out using artificial 

neural networks, regression trees, model trees 

and the support vector machine in 

Zayandeh_rood dam basin of Iran. The 

purpose of this research is the comparison of 

the efficiency of these techniques for rainfall 

runoff modeling. Although many research 

projects have been carried out using ANN and 

ANFIS for rainfall-runoff modeling, however 

quite few investigations are found about other 

mentioned methods including regression 

trees, model trees and support vector 

machines in rainfall-runoff modeling.   

 

MATERIALS AND METHODS 

 

Description of the Selected Models 

 Several machine learning techniques have 

been applied in this work including 

regression trees, model trees, SVM method 

and ANNs. A short summary of these 

techniques is presented here. 

 

Regression Trees (Cart Algorithm) 
 The Classification and Regression Trees 

(CART) method of Breiman et al. (1984) 

generates binary decision trees. CART is a 

non-parametric statistical methodology that 

has been developed for classification issues 

analysis either from categorical or continuous 

dependent variables. The CART tree is 

constructed by splitting subsets of the data set 

using all predictor variables to create two 

child nodes repeatedly, beginning with the 

entire data set. The best predictor is selected 

based on using a variety of impurity or 

diversity measures. The aim is to produce 

data subsets which have the highest possible 

homogeneity with respect to the target 

variable. In CART algorithm for each split, 

each predictor is evaluated to find the best cut 

point based on improvement score or 

reduction in impurity (Breiman et al., 1984). 

Then after comparison between the 

predictors, the predictor with the best 

improvement is chosen for the split. The 

process repeats recursively until one of the 

stopping rules is triggered. For controlling to 

the size of the tree being built, stopping rules 

are used. The maximum depth of the tree and 

the minimum number of subjects per parent 

or child node can be defined. 

 Regression tree building centers on three 

main components: 1) a set of questions of the 

form: is ?X d  where X is a variable and d 

is a constant, 2) Goodness of split criteria for 

choosing the best split on a variable and 3) the 

generation of summary statistics for terminal 

nodes. The least squared deviation (LSD) 

impurity measure is used for splitting rules 

and goodness of fit criteria. It is defined as: 
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where yi: is the value of the target field, and 
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( )y t : is the mean of the dependent variable 

(target field) at node t. The LSD criterion 

function for split data set S at node t is defined 

as: 

 

( , ) ( ) ( ) ( )
R L

Q S t LSD t LSD t LSD t    (2) 

 

where LSD(tR): is the sum of squares of the 

right child node and LSD(tL): is the sum of 

squares of the left child node. The split data 

set S is selected to maximize the value of Q(S, 

t). 

In regression trees, each terminal node’s 

predicted category is the mean of the target 

values for records in the node ( ( )y t ). 

 

Model Trees (M5' Algorithm) 
Model trees (Quinlan, 1992) are in fact an 

extension of the regression trees in the sense 

that they associate leaves with multivariate 

linear models. Model trees are in fact 

techniques to deal with continuous class 

problems that provide a structural 

representation of the data and a piecewise 

linear fit of the class. They have a 

conventional decision tree structure but use 

linear function at the leaves instead of 

discrete class labels (Figure 1). M5 Model 

trees were firstly introduced by Quinlan 

(1992) and then the idea was reconstructed 

and improved in a system called M5΄ by 

Wang and Witten (1997). An M5΄ Model tree 

is an effective learning method for predicting 

real values. M5΄ model tree algorithm first 

constructs a regression tree by recursively 

splitting the instance space. The splitting 

criterion is used to minimize the intra-subset 

variability in the values down from the root 

through the branch to the node. The 

variability is measured by the standard 

deviation of the values that reach that node 

from the root through the branch with 

calculating the expected reduction in error as 

a result of testing each attribute at that node. 

The attribute that maximizes the expected 

error reduction is selected. The splitting stops 

if the values of all instances that reach a node 

vary slightly or only a few instances remain. 

The value of standard deviation reduction 

(SDR) is calculated using Eq. (3). 

 

( ) ( )
i

i

i

T
SDR sd T sd T

T
    (3) 

 

where T: is the set of examples that reach the 

node, Ti: is the sets resulted from splitting the 

node based on the selected attribute and sd: is 

the standard deviation (Wang and Witten, 

1997). After the tree has been grown, M5΄ 

computes a linear multiple regression model 

for every interior node.  

The data associated with that node and 

only the attributes tested in the sub tree rooted 

at that node are used in the regression. The 

attributes will be dropped one by one if they 

lower the estimated error. Then the tree is 

pruned from the leaves if those results in a 

lower expected estimated error. For more 

information about model trees see Quinlan 

(1992) and Wang and Witten (1997). 

 

Support Vector Machines 

The Support Vector Machines (SVMs) are 

methods of supervised learning. SVM has 

been developed by Vapnik (1995) and is 

gaining popularity because of its attractive 

features, and promising empirical 

performance. SVMs have been developed to 

solve the classification problems, but during 

the recent years have been also extended to 

the domain of regression problems. SVM is a 

tool for empirical risk minimization, a special 

property of SVMs is that they minimize the 

empirical classification or regression error 

and maximize the geometric margin, 

simultaneously; this is why they are also 

considered as maximum margin classifiers. A 

SVM actually constructs a separating 

hyperplane between the classes in the n-

dimensional space of the inputs. This 

hyperplane maximizes the margin between 

the two data sets of the two input classes. 
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Margin refers to the distance between the two 

parallel hyperplanes, on each side of the 

separating one, pushed against each of the 

two datasets. Simply, larger margin indicates 

better generalization of error of the classifier. 

In regression case, the only difference is that 

SVM attempts to fit a curve, with respect to 

the kernel used in the SVM, on the data points 

such that the points lie between the two 

marginal hyperplanes as much as possible, 

the goal is to minimize the regression error. 

The formulations and the technical note are 

explained in more details in Mahjoobi and 

Adeli Mosabbeb (2009).
 

 
Fig. 1. Splitting the input space X1×X2 by M5 model tree algorithm (Etemad Shahidi and Mahjoobi, 2009) 

 

 The SVM parameters used in this study 

are C = 50 and  = 0.001. For the 

optimization process in the regression 

problem, improved Sequential Minimal 
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Optimization (SMO) algorithm (Platt, 1999) 

is used. For the kernel function, Radial Basis 

Function (RBF) are used. The parameters 

used for the kernels are γ = 0.01 for the RBF 

kernel. 

The role of parameter C is to control the 

tradeoff between SVM errors on training data 

and margin maximization (C = ∞ leads to 

hard margin SVM). On the other hands, a 

small value for C will increase the number of 

training errors, while a large C will lead to a 

behavior similar to that of a hard-margin 

SVM. The parameter C must be selected by 

the user and in this study, we choice 

empirically on validation data set. 

The choices of C and   control the 

prediction (regression) model complexity. 

The problem of optimal parameter selection 

is quite complicated due to the fact that the 

complexity of SVM model (and hence its 

generalization performance) depends on all 

three parameters (Smola and Schölkopf, 

1998). An algorithm for solving the problem 

of regression with support vector machines 

was proposed by (Platt, 1999) called 

Sequential Minimal Optimization (SMO). It 

puts chunking to the extreme by iteratively 

selecting subsets only of size 2 and 

optimizing the target function with respect to 

them. This algorithm has much simpler 

background and is easier to implement. The 

optimization sub-problem could be 

analytically solved, without the need to use a 

quadratic optimizer.  

A SVM constructs a separating 

hyperplane between the classes in the n-

dimensional space of the inputs. This 

hyperplane maximizes the margin between 

the two data sets of the two input classes. This 

is one of the most advantageous features of 

SVMs comparing to ANNs. The margin is 

defined as the distance between the two 

parallel hyperplanes, on each side of the 

separating one, pushed against each of the 

two datasets. Simply, the larger the margin, 

the better the generalization error of the 

classifier would be. For the case of 

regression, the only difference is that SVM 

attempts to fit a curve, with respect to the 

kernel used in the SVM, on the data points 

such that the points lie between the two 

marginal hyperplanes as much as possible, 

the aim is to minimize the regression error. 

 

Artificial Neural Networks 

An ANN can be defined as an 

interconnected group of artificial neurons 

that uses a mathematical model for 

processing of the information based on a 

connectionist method for computation. In 

most cases, ANNs are adaptive systems that 

change their structures based on external or 

internal information that flow through the 

networks. In fact, neural networks are 

nonlinear statistical data-modeling tools. 

They are used for modeling complex 

relationships between inputs and outputs or 

for finding patterns in data. In many 

applications, modeling tools have provided 

better results when used in hydrological time 

series analysis. Artificial neural networks 

need to be trained with a group of typical 

input/output pairs of data which is called 

training data set. The final weight vectors of 

a proper trained neural network represents its 

knowledge about the problem (Dastorani et 

al., 2010). As different types of neural 

network deal with the problems in different 

ways, their ability varies depending on the 

nature of the problem in hand. Accordingly 

in this study, A Multi-Layer Perceptron 

(MLP) with Back Propagation (BP) learning 

rule was used to train the network. To prevent 

overfitting during the training of the ANN, 

the number of nodes of the hidden layer was 

chosen using expression given by Huang and 

Foo (2002): 

 

M  2Z+1                                       (4) 

 

where M and Z: are the number of nodes in 

hidden and input layers, respectively. 
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Study Area and Data  

The study area of this research is a part of 

Zayandeh_rood dam basin. This basin is in 

fact a part of the larger closed basin located 

in south west of Isfahan province and its 

outlet is Zayandeh_rood dam. This basin is 

divided to three sub basins named Eskandari, 

Ghale_shahrokh and the central (Makazi) sub 

basin. The total area is 4265.44 km2 which is 

located between 32°, 10ˈ to 32°, 18ˈ N and 

50°, 03ˈ to 50°,40ˈ E. The main river of this 

basin flows from north to west. The climate 

condition of the study area based on 

Demartonn method is humid in upper parts 

and Mediterranean condition near the outlet, 

but in most parts of the area climate condition 

is semi humid. Precipitation form especially 

in upper parts is snow which falls during the 

winter (it is the main source of river flow 

especially during the dry seasons) but in 

lower parts of the basin precipitation form 

mostly changes from snow to rain. Minimum 

and maximum altitudes of the basin are1920 

and 3900 m above sea level respectively in 

the outlet and upper mountainous parts. 

Eskandari sub basin with 1836.95 km2 area is 

the largest sub basin. This sub basin is located 

in the north part and forms the main river 

with 52.25 km length providing water for 

Zayandeh_rood dam reservoir. Figure 2 

shows the study area of this research. Data 

measured in Eskandari gauging station which 

is located in 32°, 49ˈ, 20˝ N and 50°, 25ˈ, 52˝ 

E and 2915 meter above sea level, were used 

in this research. Daily data of 9 years (21 

March 1997 to 21 March 2006) of 

precipitation, min. temperature, mean 

temperature, max. Temperature, relative 

humidity of 6:30, 12:30, 18:30 and runoff 

have been available to use. The total numbers 

of data for each parameter are 3294 records. 

Table 1 shows the minimum, mean and 

maximum of the measured data for the 

parameters used in this study. 

 

 
Fig. 2. A schematic view of Zayandeh_rood dam basin 
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Table 1. The amount of minimum, mean and maximum values of data 

Attribute P (mm) RH6:30 RH12:30 RH18:30 TMin TMax TMean Q (m3/s) 

Minimum 0 0 10 21 -43 -14 -12.4 0 

Maximum 63.5 89 88 87 6 38 21.1 88.7 

Average 1.12 36.6 36.8 66 -8.23 23.18 9.29 2.72 

 

RESULTS AND DISCUSSION  

 

Data was divided in two parts, 70 percent of 

the total data were used for training of the 

models (2320 records from 21 March 1997 to 

22 July 2003) and the remaining 30 percent 

of data (947 records from 23 July 2003 to 21 

March 2006) were used for evaluation of the 

efficiency of the models (testing data). For all 

models, simulations were carried out in two 

different conditions: M1 condition where P 

(mm), T min, T mean, T max, RH 6:30, RH 

12:30 and RH 18:30 were the inputs of the 

models and Q as the output. M2 condition 

where the flow discharge of previous one, 

two and three days were added to the inputs 

used in M1 condition. 

 

M1: Q=f (P, RH6:30, RH12:30, RH18:30, 

TMin, TMax, TMean) 
(5) 

M2: Q=f (P, RH6:30, RH12:30, RH18:30, 

TMin, TMax, TMean, Qt-3, Qt-2, Qt-1) 
(6) 

 

For instance, the model tree generated by 

M5΄ algorithm is shown in Figure 3 for M1 

condition. As can be seen, 7 rules have been 

generated. For all four models similar data 

have been used in training and testing phases. 

For statistical comparison of predicted and 

observed values correlation coefficient (R), 

root mean square error (RMSE), Scatter 

Index (SI) and Mean Absolute error (MAE) 

were used. These statistical measures are 

defined as: 

 

  

   
2 2

x x y y
i i

R

x x y y
i i

 


  

 (7) 

1 2
( )RMSE x y

i in
   (8) 

RMSE
SI

x
  (9) 

1

1
n

i i

i

MAE y x
n



   (10) 

 

where xi: is an observed value, yi: is a 

predicted value, n: is the number of 

observations and x : is the mean of x and y : 

is the mean of y. 

 Table 2 shows the amount of the statistical 

measures for the used models in M1 

modeling condition. It is seen that quality of 

the outputs are poor and none of the used 

models in M1 modeling condition presented 

acceptable results. Figures 4 to 7 show 

predictions of the models against the 

observed values for M1 modeling condition. 

 
Table 2. Amount of statistical measures for the results of the models in M1 modeling condition 

Models RMSE SI (%) MAE R 

CART Algorithm 9.37 178.93 4.22 0.12 

M5΄ Algorithm 9.09 173.6 4.15 0.3 

SVM 9.35 178.5 4.12 0.24 

ANN 9.07 173.09 4.32 0.20 
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Fig. 3. The model tree generated by M5΄ algorithm (M1 modeling condition) 

 

 

LM number: 1 

Q =-0.0006 * (RH,6:30)- 0.0004 * (RH,12:30)- 0.0002 * Min. T- 0.0029 * Max. T- 0.0016 * Mean T+ 2.6393 

LM number: 2 

Q =-0.0006 * (RH,6:30)- 0.0004 * (RH,12:30)+ 0.0012 * Min. T- 0.0042 * Max. T- 0.0016 * Mean T+ 1.6773 

LM number: 3 

Q = -0.0006 * (RH,6:30) - 0.0004 * (RH,12:30) + 0.0012 * Min. T - 0.0033 * Max. T - 0.0016 * Mean T + 

2.0504 

LM number: 4 

Q = 0.0014 * (RH,6:30) + 0.0031 * (RH,12:30) + 0.0019 * Min. T - 0.0028 * Max. T - 0.0016 * Mean T + 

1.4258 

LM number: 5 

Q = 0.0014 * (RH,6:30) + 0.0048 * (RH,12:30) + 0.0019 * Min. T - 0.0028 * Max. T - 0.0016 * Mean T + 

3.1786 

LM number: 6 

Q = 0.0025 * (RH,6:30) + 0.0022 * (RH,12:30)+ 0.0019 * Min. T - 0.0028 * Max. T - 0.0016 * Mean T + 

5.1209 

LM number: 7 

Q =-0.0004 * (RH,6:30)- 0.0006 * (RH,12:30)+ 0.0013 * Min. T- 0.0026 * Max. T- 0.0025 * Mean.T+ 0.2606 

LM number: 7 

Min T 

<=1.5 >1.5 
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<=6.45 
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Min T 

<=-27.5 >-27.5 

LM number: 1 

Max T 

<=9.5 
>9.5 

LM number: 2 LM number: 3 

RH, 6:30 

<=36.5 

>36.5 

LM number: 6 

RH, 12:30 

<=23.5 >23.5 

LM number: 5 LM number: 4 
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Fig. 4. Comparison between the observed values and predictions of CART algorithm in M1 modeling condition 

 

 
Fig. 5. Comparison between the observed values and predictions of M5' algorithm in M1 modeling condition 

 

 
Fig. 6. Comparison between the observed values and predictions of SVM model in M1 modeling condition 
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Fig. 7. Comparison between the observed values and predictions of ANN model in M1 modeling condition 

 

Predictions produced in M1 modeling 

condition indicate the fact that M5' and 

CART algorithms in addition to poor results, 

are not able even to recognize and follow the 

trend of runoff variations. In the other word, 

for the results of these two algorithms, even 

ascending and descending of predicted time 

series are not compatible to the measured 

time series. In contrast, SVM algorithm 

although has not been able to present 

acceptable outputs, but its results show a 

good relevancy with the measured data. As 

Figure 6 shows, these ascending and 

descending trends as well as minimum and 

maximum values presented by SVM are in 

good agreement with the related measured 

values.  

As mentioned earlier, for increasing the 

accuracy of the result, flow data of the 

previous days was added to the input 

parameters in M2 modeling condition. The 

model tree generated by M5΄ algorithm for 

M2 condition is shown in Figure 8. As can be 

seen, three rules have been generated in this 

stage.  

The amounts of statistical measures for the 

results of different methods in this condition 

(M2) are shown in Table 3. Figures 9-12 

show the predictions of the models against 

the observed values in M2 modeling 

condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q (t-1) 

<=0.54 >0.54 

LM number: 1 Q (t-1) 

<=3.815 >3.815 

LM number: 2 LM number: 3 
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Fig. 8. Model tree generated by M5' algorithm in M2 modeling condition (LM is linear model) 

 
Table 3. Values of the statistical measures for the results of the models in M2 modeling condition 

Models RMSE SI (%) MAE R 

CART algorithm 6.71 128.08 2.22 0.76 

M5΄ algorithm 3.2 61.17 1.17 0.97 

SVM 2.4 45.8 0.60 0.97 

ANN 3.04 58.08 1.33 0.96 

 

 
Fig. 9. Comparison between the observed values and predictions of CART algorithm in M2 modeling condition 

 

The values of calculated measures in Table 3 

and also comparison of the predicted and 

observed data in two modeling conditions 

indicate that addition of previous days flow 

data to the inputs have considerably 

increased the accuracy of predictions in all 

employed models. However, the results 

presented by SVM method have higher 

accuracy in comparison to other three 

methods. Figure 13 shows the distribution of 

predicted values against the measured values 

around the exact fit line for SVM output in 

M2 modeling condition. 

LM number: 1 

Q = 0.002 * P - 0.0001 * RH,6:30 + 0.0001 * RH,18:30 + 0.0002 * Min. T - 0.0002 * Max. T - 0.0003 * Mean 

T + 0.0023 * Q(t-3) + 0.0022 * Q(t-2) + 0.0061 * Q(t-1) + 0.1145 

LM number: 2 

Q = 0.0349 * P - 0.0022 * RH,6:30 + 0.0001 * RH,18:30 + 0.0034 * Min. T - 0.003 * Max. T - 0.0063 * Mean 

T + 0.0047 * Q(t-3)- 0.0831 * Qt-2 + 1.0501 * Qt-1 + 0.2396 

LM number: 3 

Q = 0.3686 * P - 0.0006 * RH,6:30 + 0.0001 * RH,18:30 + 0.0011 * Min. T - 0.0002 * Max. T + 0.1573 * 

Mean T + 0.1159 * Q(t-3)+ 0.1285 * Q(t-2)2 + 0.387 * Q(t-1)+ 0.4823 
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Fig. 10. Comparison between the observed values and predictions of M5 algorithm in M2 modeling condition 

 

 
Fig. 11. Comparison between the observed values and predictions of SVM model in M2 modeling condition 

 

 
Fig. 12. Comparison between the observed values and predictions of ANN model in M2 modeling condition 
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Fig. 13. Scatter plot of the observed data and the predictions produced by SVM method for testing data (M2 

modeling condition) 

 

As it is seen from Figure 13, the results of 

this method have good agreement with the 

measured values indicating superior ability of 

SVM in rainfall runoff modeling. As the 

obtained results of this research show, 

artificial intelligence models can not present 

appropriate result in rainfall runoff modeling 

process until the flow data of previous days 

are added to the inputs. The relationship 

between rainfall and runoff in the study area 

is very complicated, as in most of the cases 

the amount of runoff resulted from specific 

rainfall are quite different in different 

occurrences. In the other word, a specific 

amount of precipitation creates a 

considerable volume of runoff in the first 

time, but for the second time the same 

precipitation resulted in a relatively small 

volume of runoff. This complicated 

relationship between rainfall and runoff 

causes problem for the models to recognize 

and learn the process.  

Outputs of all models used in this research 

show that the inputs used in M1 modeling 

condition cannot provide good training 

process. The reason for this inability relates 

to the complicated and unpredictable 

relationship between rainfall and the resulted 

runoff. Probably the main reason for this 

weak correlation between rainfall and runoff 

in the study area is the diversion of runoff to 

the farmlands along the river in upper parts. 

It means that the measured runoff in the 

gauging station is quite different from what 

resulted from the rainfall, because a part of it 

is diverted to the farmlands before reaching 

the gauging station.  

As the amount of runoff diverted from 

river is quite different from month to month 

and season to season, it causes large 

variations in the measured data. Inclusion of 

the previous runoff data have increased the 

quality of the outputs in all models, and 

caused quite acceptable predictions. Previous 

runoff data show the highest correlation with 

the predicted runoff, so it plays a positive role 

in simulation process.  

As it is seen from the results, although 

previous runoff data has considerably 

increased the quality of outputs but the 

improvement of accuracy mostly relates to 

the low and mean amounts and in prediction 

of high values (peak data) almost all models 

have problems. As this problem is seen on the 

results of all models, it cannot be related to 

the model structure, and probably goes back 
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to the nature of data. To investigate this 

problem, total data (the data between 

minimum and maximum values) were 

divided to 10 parts based on the values.  

The results show that about 90 percent of 

data belongs to first two decimals and the last 

4 decimals (containing the maximum peak 

values) contain less than 1 percent of the total 

records. In the other word, these four 

decimals contain only 9 records. Even if all of 

these 9 records are used for training of the 

models, it cannot be expected to have an 

optimized training for the models to be able 

to deal with the problem. Therefore, probably 

this is the main reason to have higher error 

between predicted and measured values for 

peak data. Comparison of the results 

produced by different methods in this 

research indicates that SVM has higher 

efficiency compared to other employed 

techniques.  

In most of the research projects such as 

Aqil et al. (2007), Nourani (2017), Machado 

et al. (2011) and El-shafie et al. (2011), 

although the results presented by artificial 

intelligence models have been satisfactory 

but some of the models presented results with 

higher accuracy than others. Findings of the 

present research are in general similar to the 

mentioned researches. All four models used 

in this research are able to present acceptable 

results (when the flow data of previous days 

are also used as inputs), but SVM and CART 

algorithm respectively presented the results 

with highest and lowest accuracy. The 

difference between the qualities of the results 

becomes highlighted in peak flow data. 

 Accurate prediction of peak flow is the 

most important factor in many water-related 

projects such as flood management measures. 

Superiority of the new artificial intelligence 

models over the related traditional methods 

has been clarified and almost proved in many 

publications. However, the challenge is the 

selection of the most relevant type of artificial 

intelligence model for the problem in hand, 

which needs more investigations. 

The advantages of using SVM in 

comparing to ANN are the fact that: SVM can 

create a more reliable model with better 

generalization error, independent from the 

variations of the training data, and also SVMs 

do not over fit, while ANNs may face such a 

problem and need to deal with it. SVMs need 

way fewer parameters, comparing to ANNs. 

Also, SVMs required less computational time 

comparing to ANN. Model trees, in contrast 

to ANNs, lead to the division of the input 

space into a number of subspaces for each of 

which a separate specialized model is built. 

They build a piecewise linear model, whereas 

ANNs build nonlinear models. Furthermore, 

the model trees represent understandable 

rules, which is of a great interest. 

Also in neural networks we need to find 

the best topology, both the number of the 

hidden layers and the number of neurons in 

each hidden layer. The process of finding 

these parameters could be performed via trial 

and error, which is a time-consuming 

sequence of actions. On the contrary, model 

trees are non-parametric and therefore are 

more convenient to use. Besides, they need 

lower run-time and are automatic. At last but 

not the least important, the advantage of 

model trees is that, it represents 

understandable and simple rules which is in 

contrast to ANNs.  

 

CONCLUSIONS 

 

The efficiency of different artificial 

intelligence methods for rainfall runoff 

modeling in Zayandeh_rood dam basin was 

evaluated in this research. Employed methods 

are artificial neural networks, regression 

trees, model trees and the support vector 

machines. 3294 records of daily precipitation, 

min. temperature, max. Temperature, relative 

humidity of 6:30, 12:30, 18:30 and runoff 

collected in Eskandari gauging station were 

used for modeling. 70 percent of data were 
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used for training and the remaining 30 percent 

for testing purpose to evaluate the 

applicability of the models.  

Simulations were carried out in two 

different conditions: one without previous 

runoff data as input (M1 condition), and the 

other one with previous runoff data as input 

of the models beside other inputs (M2 

condition). In both conditions prediction of 

runoff discharge was the output of the 

models. In M1 condition none of the methods 

was able to present acceptable prediction. 

However, in M2 condition (using runoff data 

of previous days) all of the models presented 

results with quite good accuracy. Between the 

four models used in this research, support 

vector machine presented the results with the 

highest accuracy. 
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