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ABSTRACT: Trapezoidal prestressed unbonded retrofit (TPUR) systems have been recently 

developed and tested. The authors have already developed a comprehensive and accurate 

analytical solution for the TPUR system that takes many system parameters into account. 

The main aim of this paper is to develop a simplified analytical solution for predicting the 

behavior of metal beams that have been strengthened with the TPUR system. The developed 

analysis method can be useful to engineers because of its simplicity. An energy approach 

based on Castigliano’s theorems is used to study the flexural behavior of a steel beam 

retrofitted with the TPUR system. A parametric study was performed and the comparative 

results showed that the results using Castigliano’s first theorem are in agreement with the 

results using the flexibility approach. 

 

Keywords: Bridges, Energy Method, Flexibility Method, Metallic Beams, Prestressed CFRP 
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INTRODUCTION 

 

As infrastructure systems, especially bridges, 

become older and more prone to failure, the 

needs for effective retrofit methods are 

becoming more critical every day. There is 

currently a wide variety of retrofit methods 

being used for the extension of bridge service 

life, ranging from bonded carbon fiber 

reinforced polymer (CFRP) plates to 

unbonded steel tendons. Retrofitting methods 

can generally be classified into two 

categories: prestressed and non-prestressed. 

One of the most significant advantages of 

using prestressed retrofit methods over non-

prestressed methods is that in addition to the 

live load, prestressing transfers a portion of 

the dead load into the retrofitting system, and 

thus the load capacity of the structure 

experiences greater improvement than if a 

non-prestressed retrofit system is used 

(Ghafoori and Motavalli, 2013). 

Another way to classify retrofitting 

systems is by their attachment to the 
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structure, which can be based on bonded or 

unbonded methods. Bonded methods use 

adhesives to attach the retrofit components to 

the original structure. However, bonded 

methods require a clean, smooth, and 

polished surface to function properly. On the 

other hand, unbonded methods, such as the 

prestressed unbonded retrofit (PUR) systems 

discussed in this paper, are much more 

adaptable can be used on a wider variety of 

structures in various applications (e.g., 

bridges, heritage buildings, etc.), and in 

different difficult conditions (e.g., corroded, 

cracked, or uneven surfaces, etc.). On a 

member with smooth or bumpy surface (such 

as an oxidized steel beam), the contact PUR 

(CPUR) system or the flat PUR (FPUR) 

system can be used, while on a member with 

an obstructed surface (such as bolted 

members), the trapezoidal PUR (TPUR) 

system or the triangular PUR (TriPUR) 

system can be utilized. Importantly, the type 

of PUR system does not result in any 

significant change of behavior; what is 

important in the system is the prestress level 

in the CFRP plate(s) (Kianmofrad et al., 

2017). Therefore, the tensions in the system, 

and the resulting strains and deflections, must 

be calculated using an accurate approach. 

In the past, the research and application 

efforts of scholars and engineers using FRP-

based prestressed retrofitting systems were 

focused on concrete structures, and less 

attention was paid to applying these 

prestressing techniques to metal structures 

(U.S. Department of Transportation, 1986). 

In the recent decades, however, although the 

research on the fiber reinforced concrete 

(FRC) and external strengthening methods 

using FRP is still going on (Rashid Dadash 

and Ramezanianpour, 2014; Saleh Jalali and 

Shadafza, 2016; Soranakom and Mobasher, 

2007), more investigations have been 

conducted on metal members strengthened by 

prestressed retrofitting systems such as those 

using FRP materials (Park et al., 2010; 

Ponnada and Vipparthy, 2013; Schnerch and 

Rizkalla, 2008).  

In general, the strengthening of metal 

structures is performed to mitigate static or 

fatigue problems. Static problems include 

insufficient yield or ultimate capacity of the 

member (e.g., due to increased traffic loads or 

reduced member cross-section resulting from 

corrosion), buckling (e.g., lack of sufficient 

lateral constraints), and the like. To this end, 

a series of studies have been performed to 

determine the effect of CFRP strengthening 

on the yield and ultimate capacity (Ghafoori, 

2013; Ghafoori and Motavalli, 2013; 

Ghafoori and Motavalli, 2015a; Kianmofrad 

et al., 2017), and buckling strength (Ghafoori 

and Motavalli, 2015b,c) of steel members.  

The progress of fatigue damage in steel 

bridge members can be divided into two 

different phases: crack initiation and crack 

propagation. Recent studies by Ghafoori, 

2015; Ghafoori and Motavalli, 2016; 

Ghafoori et al., 2015a; Ghafoori et al., 2015c; 

Ghafoori et al., 2014) have shown that CFRP 

material can be successfully employed to 

prevent fatigue crack initiation in old steel 

members. Based on the results of these 

studies, Ghafoori et al. (2015a) developed a 

CFRP retrofit system and a proactive fatigue 

design approach to prevent the initiation of 

fatigue cracks in the riveted girders of a 120-

year-old railway bridge in Switzerland. 

Furthermore, there exists a large body of 

research on methods for arresting existing 

fatigue cracks in steel members using 

prestressed CFRP materials (Aljabar et al., 

2016, 2017; Fernando et al., 2010; Ghafoori 

and Motavalli, 2011; Ghafoori et al., 2012; 

Hosseini et al., 2016).  

 Ghafoori et al. (2012) investigated the 

effect of prestressed CFRP strengthening 

plates on the fatigue life of a notched steel 

beam, concluding that the use of CFRP 

prestressing could significantly increase the 

fatigue life of the beam and improve the 

performance of the member in terms of both 
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strength and ductility. Similar studies show 

the same results and have reported an increase 

in fatigue life of strengthened damaged 

members between 10 to 20 times that of the 

unstrengthening members, and in some cases 

even complete crack arrest (Ghafoori et al., 

2012; Ghafoori et al., 2012; Huawen et al., 

2010; Täljsten et al., 2009; Tavakkolizadeh 

and Saadatmanesh, 2003). The advantages of 

CFRP materials for strengthening purposes 

(such as a high strength-to-weight ratio, 

excellent corrosion and fatigue resistance, 

etc.) together with the recent accessibility of 

high modulus CFRP strips at reduced prices 

has made it increasingly feasible to 

strengthen steel structures (Schnerch and 

Rizkalla, 2008). 

Given the recent widespread use of 

prestressed retrofitting systems, many 

researchers have examined these systems 

using analytical approaches for predicting the 

behavior of elements retrofitted using CFRP 

materials. So far, a number of researchers 

have suggested analytical solutions for the 

behavior of prestressed bonded reinforced 

(PBR) systems for metal beams (Al-Emrani 

and Kliger, 2006; Benachour et al., 2008; 

Ghafoori and Motavalli, 2013; Kerboua and 

Benmoussat, 2011). In these studies, different 

aspects of metal members retrofitted by PBR 

systems, such as the effect of shear 

deformation, the stress induced in the 

cohesive layer, and the effect of cracks in the 

strengthened member have been examined. 

Recently, a prestressed unbonded retrofit 

(PUR) system for CFRP strengthening of 

metallic girders has been developed by 

Ghafoori and Motavalli (2015d). The authors 

proposed an analytical solution based on the 

assumption that the deformation in the steel 

beam is negligible compared to that in the 

CFRP plates (i.e., the rigid-beam 

assumption). From this assumption, they 

derived formulations to calculate the desired 

CFRP prestress level. Though this calculation 

method was easy to use, it was not very 

accurate for more sensitive applications that 

require a precise result. Kianmofrad et al. 

(2017) presented a comprehensive and 

accurate solution for this type of retrofitting 

system, taking into account many parameters 

(i.e., the beam deformation due to 

prestressing, the loading distance, the 

geometric and material properties of the PUR 

system and the beam itself, and so forth). 

They showed that the specific type of PUR 

system used has a negligible effect on the 

increased strength of the member, and that the 

greatest influence on the system performance 

is the pre-stress level applied (Kianmofrad et 

al., 2017). Although their method is very 

accurate and can be applied to many different 

types of PUR systems, it is complex and 

requires the use of many parameters. The 

present study aims to develop a simple and 

relatively accurate analytical solution for 

predicting the behavior of metal beams 

strengthened with a PUR system. It is 

expected that this solution will be useful for 

engineers due to its simplicity.  

 

OBJECTIVES AND ASSUMPTIONS 

 

The main objective of this paper is to evaluate 

two analytical solutions using energy 

approaches based on Castigliano’s first and 

second theorems. The results of these 

analytical solutions are then compared with 

other analytical and experimental results 

found in the literature. Kianmofrad et al. 

(2017) presented several types of PUR 

systems, among them the trapezoidal PUR 

(TPUR) system has been chosen to be 

addressed in this research, on the basis of the 

extensive experimental, numerical, and 

analytical research in existence using this 

type of system. The TPUR system setup and 

its different parameters are depicted in figure 

1 (Kianmofrad et al., 2017). More detailed 

discussions of this system can be found in 

(Ghafoori and Motavalli, 2015a; Kianmofrad 

et al., 2017). To summarize, in the TPUR 
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system, the ends of the CFRP plates are 

fastened inside a pair of friction clamps that 

transfer the tensile force from the CFRP 

plates to the beam in the form of bending 

moment, shear, and axial forces. By 

increasing the deviator height, e, the prestress 

level in the beam is increased and an upward 

deflection is applied to the beam (i.e., “bow-

like” deformation). The deviator height is 

increased until the desired prestress level in 

the CFRP plates is achieved. During the pre-

stressing procedure, there should be no 

external live load on the beam. As mentioned 

earlier, Kianmofrad et al. (2017) have already 

presented an analytical solution for the TPUR 

system based on the flexibility approach. As 

the TPUR system has one degree of 

indeterminacy, to solve the system, they 

assumed that the CFRP plates are cut from the 

beam to make the system statically 

determinate, and then the beam and CFRP 

plates are analyzed separately, using a 

compatibility equation, to obtain the forces 

and stresses. In this paper, the same 

assumptions are made to solve the system 

using other analytical approaches. These 

assumptions are mentioned here briefly.  

A glance to Figure 1 reveals that the 

system is symmetric about the mid span of the 

beam, so it is sufficient to perform these 

calculations for only half of the system. 

Furthermore, it is assumed that the CFRP 

plates exhibit only axial deformation and that 

their bending stiffness is negligible, and the 

friction between the CFRP plate and the 

deviator is neglected (Kianmofrad et al., 

2017; Park et al., 2010). Although it is 

considered that all materials behave in a 

linear-elastic manner and possess 

homogenous distribution, there remains a 

geometrically non-linear behavior due to the 

large geometric deformation in the CFRP 

plates, caused by the changes in the length of 

the deviators (see Figures 1 and 2). 
 

 
Fig. 1. The parameters used in the TPUR system (Kianmofrad et al., 2017) 

 

 
Fig. 2. Beam deformation after prestressing and at the beginning of loading. As the external loading, F, increases, the 

upward deflection will change to downward deflection (Kianmofrad et al., 2017) 
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ENERGY APPROACH USING 

CASTIGLIANO’S FIRST THEOREM 

 

There are several methods for solving an 

engineering problem based on the energy 

approach, such as Castigliano’s theorems and 

virtual work. Castigliano’s second theorem is 

likely to yield inaccurate results in this 

situation because of the geometrically non-

linear behavior of the system (Timoshenko 

and Young, 1965). Similarly, other energy 

methods (such as the virtual-work or the 

least-work methods) are not applicable here 

(Boresi et al., 1993). Therefore, Castigliano’s 

first theorem is used to evaluate the 

strengthened system. 

According to Castigliano’s first theorem, 

in an elastic structure, whether linear or non-

linear, the partial derivative of the strain 

energy with respect to any displacement in 

the structure is equal to the load(s) applied in 

the direction of displacement, shown by Eq. 

(1). 

 

𝜕𝑈

𝜕∆𝑖
= 𝑃𝑖 (1) 

 

where 𝑈  is the strain energy, and ∆𝑖  and 𝑃𝑖 

are the displacement (or rotation) and the 

force (or moment), respectively, at node i. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. For analysis, the beam is separated into several segments (a,b,c) and the energy of each segment is calculated 

(superscripts R and L refer to the right side and the left side, respectively, of the ith part) 
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To apply this method, the beam is divided 

into several segments, as shown in Figure 3. 

After calculating the strain energy for each 

segment, the total strain energy of the system 

can be achieved by summing up the strain 

energy of all segments. In general, the beam 

under consideration can be divided into five 

segments, but due to symmetry, segments 

𝐴′𝐵′ and 𝐵′𝐶′ are similar to segments 𝐴𝐵 and 

𝐵𝐶 ; accordingly, the energy calculation is 

done for only half of the beam and the result 

is doubled. In general, the strain energy for a 

beam element (i.e., a one dimensional 

element) can be obtained using slope-

deflection equations (Hibbeler, 2014; 

Rahimian and Ghorbani Tanha, 2002) as 

follows (Figure 4) 

 

𝑈𝑖𝑗 =
1

2
𝑀𝑖𝜃𝑖 + +

1

2
𝑀𝑗𝜃𝑗 +

1

2
𝑅𝑗𝛿𝑗𝑖  (2) 

𝑈𝑖𝑗 = 2𝐸𝑠𝑘𝑖𝑗(𝜃𝑖
2 + 𝜃𝑖𝜃𝑗 + 𝜃𝑗

2)

− 6𝐸𝑠𝑘𝑖𝑗𝜓𝑖𝑗(𝜃𝑖+𝜃𝑗)

+ 6𝐸𝑠𝑘𝑖𝑗𝜓𝑖𝑗
2  

(3) 

    

in Eq. (2) 𝑈𝑖𝑗: is the strain energy in beam 

segment ij (i.e., between nodes i and j), 𝑀𝑖 

and 𝜃𝑖 :  are moment and rotation at node i, 

respectively, and are defined as positive in the 

counter-clockwise direction. 𝑅𝑗:  is the 

support reaction at node j, and 𝛿𝑗𝑖 : is the 

relative vertical displacement between nodes 

i and j, which can be calculated as follows:  

 
𝛿𝑖𝑗 = 𝛿𝑗 − 𝛿𝑖 (4) 

in Eq. (3), 𝐸𝑠:  is the Young’s modulus of 

steel, and 𝜓𝑖𝑗:  is the rotation of beam 

segment ij where: 

 

𝜓𝑖𝑗 =
𝛿𝑖𝑗

𝐿𝑖𝑗
 (5) 

 

and 𝑘𝑖𝑗:  is the span-stiffness of the beam 

segment ij, which represents the beam 

resistance against bending and is used for 

abbreviation. It is noted that, this is not a real 

stiffness, based on the stiffness definition, 

and its dimension is different from stiffness 

definition. 

 
𝑘𝑖𝑗 = 𝐼/𝐿𝑖𝑗 (6) 

 

where 𝐼: is the moment of inertia of the beam 

cross-section, and 𝐿𝑖𝑗: is the length of beam 

segment ij. 

Accordingly, for each beam segment, as 

shown in Figure 3, Eq. (3) can be rewritten as 
 

𝑈𝐴𝐵 = 𝑈𝐴′𝐵′ = 2𝐸𝑠𝑘𝐴𝐵(𝜃𝐴
2 + 𝜃𝐴𝜃𝐵

+ 𝜃𝐵
2)

− 6𝐸𝑠𝑘𝐴𝐵𝜓𝐴𝐵(𝜃𝐴+𝜃𝐵)
+ 6𝐸𝑠𝑘𝐴𝐵𝜓𝐴𝐵

2  

(7) 

𝑈𝐵𝐶 = 𝑈𝐵′𝐶′ = 2𝐸𝑠𝑘𝐵𝐶(𝜃𝐵
2 + 𝜃𝐵𝜃𝐶

+ 𝜃𝐶
2)

− 6𝐸𝑠𝑘𝐵𝐶𝜓𝐵𝐶(𝜃𝐵+𝜃𝐶)
+ 6𝐸𝑠𝑘𝐵𝐶𝜓𝐵𝐶

2  

(8) 

𝑈𝐶𝐶′ = 2𝐸𝑠𝑘𝐶𝐶′(𝜃𝐶
2 − 𝜃𝐶

2 + 𝜃𝐶
2)

= 2𝐸𝑠𝑘𝐶𝐶′𝜃𝐶
2 

(9) 

 

 
Fig. 4. The parameters used in Eqs. (2-3), based on the slope-deflection method
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The beam clearly has ten degrees of 

freedom (DOF), but given the symmetry, the 

number of DOFs can be decreased by five 

(i.e., 𝜃
𝐴

, 𝜃𝐵, 𝜃𝐶 , 𝛿𝐵, and 𝛿𝐶). The CFRP plate 

has only one longitudinal DOF (i.e., Δ), 

therefore its strain energy can be obtained as 

follows: 

 

𝑈𝑃 =
1

2

𝐸𝑃𝐴𝑃

𝐿𝑖
∆2 (10) 

 

where 𝐸𝑃  and 𝐴𝑃:  represent Young’s 

modulus and the total cross-sectional area of 

the CFRP plate(s), respectively, in which the 

subscript p indicates the CFRP plate, and 𝐿𝑖: 
is the initial length of the CFRP plate before 

pre-stressing, which can be written as 

 

𝐿𝑖 = 𝐿𝑒 + 2√𝑏2 + (𝑒𝑖 − 𝑒𝑐)2 (11) 

 

where 𝑒𝑐:  is the clamp thickness, 𝑒𝑖:  is the 

initial length of the deviators, 𝑏: is the length 

of the beam segment 𝐵𝐶, and 𝐿𝑒: is the length 

of the beam segment 𝐶𝐶′ (these parameters 

are depicted in Figure 1). 

The total strain energy of the system can 

be calculated by summing the strain energy 

for each segment, i.e., Eqs. (7-10), as follows: 

 
𝑈 = 𝑈𝐴𝐵 + 𝑈𝐵𝐶 + 𝑈𝐶𝐶′ + 𝑈𝐵′𝐶′

+ 𝑈𝐴′𝐵′ + 𝑈𝑓

= 2𝑈𝐴𝐵 + 2𝑈𝐵𝐶 + 𝑈𝐶𝐶′

+ 𝑈𝑃

=     2(2𝐸𝑠𝑘𝐴𝐵(𝜃𝐴
2

+ 𝜃𝐴𝜃𝐵 + 𝜃𝐵
2)

− 6𝐸𝑠𝑘𝐴𝐵𝜓𝐴𝐵(𝜃𝐴+𝜃𝐵)
+ 6𝐸𝑠𝑘𝐴𝐵𝜓𝐴𝐵

2 )
+ 2(2𝐸𝑠𝑘𝐵𝐶(𝜃𝐵

2

+ 𝜃𝐵𝜃𝐶 + 𝜃𝐶
2)

− 6𝐸𝑠𝑘𝐵𝐶𝜓𝐵𝐶(𝜃𝐵+𝜃𝐶)
+ 6𝐸𝑠𝑘𝐵𝐶𝜓𝐵𝐶

2 )
+ 2𝐸𝑠𝑘𝐶𝐶′𝜃𝐶

2

+
1

2

𝐸𝑃𝐴𝑃

𝐿𝑖
∆2 

(12) 

 

For the rotational DOFs, according to 

Castigliano’s first theorem: 

 
𝜕𝑈

𝜕𝜃𝐴
= 0 (13) 

𝜕𝑈

𝜕𝜃𝐵
= 2𝑀𝐵 (14) 

𝜕𝑈

𝜕𝜃𝐶
= 2𝑀𝐶 (15) 

 

and for the displacement DOFs, 

 
𝜕𝑈

𝜕𝛿𝐵
= −2𝑉𝐵 (16) 

𝜕𝑈

𝜕𝛿𝐶
= −2𝑉𝐶 (17) 

𝜕𝑈

𝜕∆
= 𝑇 (18) 

 

where 𝑀𝐶 : is the moment at section 𝐶  (and 

𝐶′), 𝑀𝐵: is the moment at section 𝐵 (and 𝐵′), 
𝑉𝐶: is the shear force at section 𝐶 (and 𝐶′), 𝑉𝐵 

is the shear force at section 𝐵 (and 𝐵′) and 𝑇 

is the tensile force in the CFRP plate. The 

moment at sections 𝐵 and 𝐶 (also 𝐵′ and 𝐶′) 
can be calculated as follows: 

 
𝑀𝐵 = 𝑇(𝑑 + ℎ0) cos 𝜑 (19) 

 
and 

 
𝑀𝐶 = 𝑇(𝑒 + ℎ0)(cos 𝜃𝐶 − cos 𝜑) (20) 

 

where ℎ0: is the distance from the neutral axis 

to the bottom of the beam lower flange. 

Parameter 𝑑 is shown in Figure 5 and can be 

obtained as 

 

𝑑 = 𝑒𝑐 − (𝛿𝐵𝐶
𝐹 − 𝛿𝐵𝐶

𝑇 ) (21) 

 

where  

 

𝛿𝐵𝐶
𝐹 =

𝐹. 𝑏3

3𝐸𝑠𝐼
+

(𝐹. 𝑎). 𝑏2

2𝐸𝑠𝐼
 (22) 

 

and 
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𝛿𝐵𝐶
𝑇 =

𝑇 sin 𝜑. 𝑏3

3𝐸𝑠𝐼
+

𝑇 cos 𝜑 (𝑑 + ℎ0)𝑏2

2𝐸𝑠𝐼
 (23) 

 

where 𝛿𝐵𝐶
𝐹  and 𝛿𝐵𝐶

𝑇 : are the relative vertical 

displacement of section B toward section C 

caused by the external loading, F, and the 

tensile force in the CFRP plate, T, 

respectively. Also, as 

 

sin 𝜑 =
𝑒 − 𝑑

√𝑏2 + (𝑒 − 𝑑)2
 (24) 

 

and 

 

cos 𝜑 =
𝑏

√𝑏2 + (𝑒 − 𝑑)2
 (25) 

 

the shear forces at sections 𝐵 and 𝐶 (as well 

as 𝐵′ and 𝐶′) can be obtained as follows: 

 
𝑉𝐵 = 𝑇 sin 𝜑 (26) 

 

and 

 
𝑉𝐶 = (𝐹 − 𝑇 sin 𝜑) (27) 

  

Given that there are seven unknown 

parameters (i.e., 𝜃𝐴, 𝜃𝐵 , 𝜃𝐶 , 𝛿𝐵, 𝛿𝐶, Δ, and d), 

there needs to be seven equations in order to 

solve the system of equations. However, there 

are only six equations (Eqs. (13-18)). 

Therefore, a compatibility equation is 

introduced as follows: 

 

∆= 𝐿 − 𝐿𝑖 = 2 (√(𝑒 − 𝑑)2 + 𝑏2

− √(𝑒𝑖 − 𝑒𝑐)2 + 𝑏2

− (𝑒 + ℎ0) sin 𝜃𝑐) 

(28) 

 

The above equation is a geometrical 

relationship representing the length change in 

the CFRP plate after pre-stressing and 

resulting system deformation. 

Substituting Eqs. (12) and (19-28) into 

Eqs. (13-18), and after some calculation, a 

system of seven equations with seven 

unknown parameters is achieved as follows: 

 
2[2𝐸𝑠𝑘𝐴𝐵(2𝜃𝐴+𝜃𝐵) − 6𝐸𝑠𝑘𝐴𝐵𝜓𝐴𝐵]

= 0 
(29) 

2[2𝐸𝑠𝑘𝐴𝐵(2𝜃𝐵+𝜃𝐴) − 6𝐸𝑠𝑘𝐴𝐵𝜓𝐴𝐵]
+ 2[2𝐸𝑠𝑘𝐵𝐶(2𝜃𝐵+𝜃𝐶)
− 6𝐸𝑠𝑘𝐵𝐶𝜓𝐵𝐶]
= 2𝑇 cos 𝜑(𝑑 + ℎ0) 

(30) 

2[2𝐸𝑠𝑘𝐵𝐶(2𝜃𝐶+𝜃𝐵) − 6𝐸𝑠𝑘𝐵𝐶𝜓𝐵𝐶]
+ 4𝐸𝑠𝑘𝐶𝐶′𝜃𝐶

= 2𝑇(cos 𝜃𝐶

− cos 𝜑)(𝑒 + ℎ0) 

(31) 

2 [−
6𝐸𝑠𝑘𝐴𝐵

𝐿𝐴𝐵

(𝜃𝐴+𝜃𝐵) +
12𝐸𝑠𝑘𝐴𝐵𝜓𝐴𝐵

𝐿𝐴𝐵
]

+ 2 [
6𝐸𝑠𝑘𝐵𝐶

𝐿𝐵𝐶

(𝜃𝐵+𝜃𝐶)

−
12𝐸𝑠𝑘𝐵𝐶𝜓𝐵𝐶

𝐿𝐵𝐶
]

= −2𝑇 sin 𝜑 

(32) 

2 [−
6𝐸𝑠𝑘𝐵𝐶

𝐿𝐵𝐶

(𝜃𝐵+𝜃𝐶) +
12𝐸𝑠𝑘𝐵𝐶𝜓𝐵𝐶

𝐿𝐵𝐶
]

= −2(𝐹 − 𝑇 sin 𝜑) 

(33) 

2𝐸𝑓𝐴𝑓

𝐿𝑖
[√(𝑒 − 𝑑)2 + 𝑏2

− √(𝑒𝑖 − 𝑒𝑐)2 + 𝑏2

− (𝑒 + ℎ0) sin 𝜃𝑐] = 𝑇 

(34) 

𝑑 = 𝑒𝑐 − (
𝐹. 𝑏3

3𝐸𝑠𝐼
+

(𝐹. 𝑎). 𝑏2

2𝐸𝑠𝐼

−
𝑇 sin 𝜑. 𝑏3

3𝐸𝑠𝐼

−
𝑇 cos 𝜑 (𝑑 + ℎ0)𝑏2

2𝐸𝑠𝐼
) 

(35) 

 

By substituting the parameters F and e into 

above system of equations, the other 

unknown parameters can be calculated. To 

simulate the behavior of the TPUR system 

during pre-stressing prior to the application of 

external loading, F should be set to zero (i.e., 

𝐹 = 0) in above equations. Therefore, it can 

be seen that by increasing the deviator height, 

e, the tensile force in the system increases as 

well. Considering the fact that the middle 

segment of the beam, 𝐶𝐶′, is like a simply 

supported beam upon which two bending 

moments ( 𝑀𝐶  and 𝑀𝐶′ ) are applied at its 

ends, the midspan deflection, 𝛿𝑀 , can be 
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calculated as 

 

𝛿𝑀 = − (
𝑀𝐶𝐿𝑒

2

8𝐸𝑠𝐼
+ 𝛿𝐶) (36) 

 

ENERGY APPROACH USING 

CASTIGLIANO’S SECOND THEOREM 

 

In the previous section, a solution for 

determining the behavior of the TPUR system 

based on Castigliano’s first theorem was 

introduced. However, due to the number of 

DOFs and the associated necessity of forming 

a system of algebraic equations, this approach 

can be complicated, and thus is not preferable 

for practical purposes, especially when 

applied to systems in which the number of 

DOFs is greater than the degree of 

indeterminacy. For these reasons, the use of 

Castigliano’s second theorem is more popular 

among engineers, although it does not give 

very accurate solutions for non-linear 

systems. The aim of this, is to provide a basis 

for comparison between different methods. 

Although, it is correct that the second 

theorem is not appropriate for non-linear 

behaviors, but still in some applied 

engineering situations, that the highest 

accuracy is not necessary, such as initial 

estimations for the sections or deflections, we 

are able to use some estimations and 

assumptions to simplify the complicated 

problems for the engineers. For purposes of 

comparison to the more complex method, in 

this section, an approximate solution based 

on Castigliano’s second theorem is presented. 

Given the fact that the materials used in 

this study are considered to be linear-elastic 

materials, the strain energy can be written as 

(Boresi et al., 1993), 

 

𝑈 = ∫ 𝑈0
𝑉

𝑑𝑉 (37) 

𝑈∗ = ∫ 𝑈0
∗

𝑉

𝑑𝑉 (38) 

 

For linear-elastic materials, 

 
𝜎𝑖𝑗 = 𝐸𝜀𝑖𝑗 (39) 

 

Therefore 

 

𝑈0 = ∫ 𝜎𝑖𝑗

𝜀𝑖𝑗

0

𝑑𝜀𝑖𝑗 = ∫ 𝐸𝜀𝑖𝑗

𝜀𝑖𝑗

0

𝑑𝜀𝑖𝑗

=
1

2
𝜀𝑖𝑗

2 =
1

2
𝜎𝑖𝑗𝜀𝑖𝑗 

(40) 

 

and 

 

𝑈0
∗ = ∫ 𝜀𝑖𝑗

𝜎𝑖𝑗

0

𝑑𝜎𝑖𝑗 = ∫
𝜎𝑖𝑗

𝐸

𝜎𝑖𝑗

0

𝑑𝜎𝑖𝑗

=
1

2𝐸
𝜎𝑖𝑗

2 =
1

2
𝜎𝑖𝑗𝜀𝑖𝑗 

(41) 

 

Therefore 𝑈0 = 𝑈0
∗ , 𝜀  and 𝜎:  are strain 

and stress, respectively, and 𝑈∗:  is the 

complementary strain energy, shown in 

Figure 6. 
 

 
Fig. 5. Relative displacements at sections B (clamp position) and C (deviator position) 
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Fig. 6. Schematic illustrations of the energy method concept for the development of force-displacement and stress-

strain curves (Boresi et al., 1993) 
 

In a beam with cross-section A, 

 

𝑁(𝑥) = ∫ 𝜎𝑥𝑥 𝑑𝐴
𝐴

 (42) 

𝑀(𝑥) = ∫ 𝜎𝑥𝑥 𝑍𝑑𝐴
𝐴

 (43) 

 

and 

 

𝑉(𝑥) = ∫ 𝜎𝑥𝑧 𝑑𝐴
𝐴

 (44) 

 

The strain energy caused by the bending 

moment is calculated as follows: 

 

𝑈0𝑀
∗ = ∫ 𝜀𝑥𝑥  𝑑𝜎𝑥𝑥

𝜎𝑥𝑥

0

 (45) 

𝑈𝑀
∗ = ∫  

1

2𝐸
𝜎𝑥𝑥

2   𝑑𝑉
𝑉

=
1

2𝐸
∫

𝑀2

𝐼2
[∫ 𝑦2𝑑𝐴

𝐴

] 𝑑𝑥
𝐿

0

=
1

2𝐸𝐼
∫ 𝑀2(𝑥)𝑑𝑥

𝐿

0

 

(46) 

 

in the same manner, 

 

𝑈𝑉
∗ =

1

2𝐺𝐴𝑠
∫ 𝑉2(𝑥)𝑑𝑥 

𝐿

0

 (47) 

 

and 

 

𝑈𝑁
∗ =

1

2𝐸𝐴𝑠
∫ 𝑁2(𝑥)𝑑𝑥 

𝐿

0

 (48) 

 

where 𝑈𝑀
∗ , 𝑈𝑁

∗ , and 𝑈𝑉
∗  are the strain energy 

due to bending, axial, and shear 

deformations, respectively, and 𝐴𝑠  is the 

effective shear cross-section area. It is clear 

that in this case there is no twisting 

deformation, and the amount of axial 

deformation is negligible compared to the 

bending and shear deformations. Therefore, 

the total strain energy 𝑈∗, can be obtained as 

follows: 

 
𝑈∗ =  𝑈𝑀

∗ + 𝑈𝑉
∗  (49) 

 

Note that there is only longitudinal 

deformation in the CFRP plate. Therefore, the 

strain energy in the CFRP plate, 𝑈𝑃
∗, can be 

written as 

 
𝑈𝑃

∗ =  𝑈𝑁
∗

𝑃
 (50) 

 

in this method, as in the previous method, the 

beam is divided into several segments. 

 

Strain Energy in Beam Segment 𝑩𝑪  and 

𝑩′𝑪′ 
The beam segment 𝐴𝐵 (and 𝐴′𝐵′) does not 

exhibit any deformation during pre-stressing 

as there are no external forces or bending 

moments applied to this segment, and 

accordingly its strain energy is equal to zero. 

However, there are bending and shear 

deformations in beam segment 𝐵𝐶  (and 

𝐵′𝐶′).  The strain energy for bending 

deformation is: 
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𝑈𝑀(𝐵𝐶)
∗ =

1

2𝐸𝐼
∫ 𝑀(𝐵𝐶)

2 (𝑥)𝑑𝑥 
𝑏

0

 (51) 

 

According to the external loading applied 

to this segment (as depicted in Figure 7), 

 
𝑀𝐵 = 𝑇 cos 𝜑(𝑒𝑐 + ℎ0) (52) 

 

and 

 

𝑀𝐵𝐶(𝑥) = 𝑀𝐵 + 𝑥𝑇 sin 𝜑 (53) 

 

Substituting Eq. (53) into Eq. (51), 

 

𝑈𝑀(𝐵𝐶)
∗ =

𝑇2

2𝐸𝐼
[𝑏 cos2 𝜑(𝑒𝑐 + ℎ0)2

+
𝑏3 𝑠𝑖𝑛2 𝜑

3
+ 𝑏2 sin 𝜑 cos 𝜑(𝑒𝑐

+ ℎ0)] 

(54) 

 

Strain energy for shear deformation can be 

obtained as 

𝑈𝑉(𝐵𝐶)
∗ =

𝑓𝑠

2𝐺𝐴
∫ 𝑉2(𝑥)𝑑𝑥 

𝑏

0

 (55) 

 

Because the shear force remains unchanged 

along this segment, 

 
𝑉(𝑥) = 𝑉 = 𝑇 sin 𝜑 (56) 

𝑈𝑉(𝐵𝐶)
∗ =

𝑏𝑇2 sin2 𝜑

2𝐺𝐴𝑠
 (57) 

 

The total energy in this segment can be 

expressed as 

 
𝑈(𝐵𝐶)

∗ = 𝑈𝑉(𝐵𝐶)
∗ + 𝑈𝑀(𝐵𝐶)

∗  (58) 

Strain Energy in Beam Segment 𝑪𝑪′ 
Given the symmetric loading, there is no 

shear deformation in this segment. Therefore, 

the only strain energy is due to bending 

deformation, 

 

𝑈(𝑐𝑐′)
∗ = 𝑈𝑀(𝑐𝑐′)

∗ =
1

2𝐸𝐼
∫ 𝑀(𝑐𝑐′)

2 (𝑥)𝑑𝑥
𝑙𝑒

0

=
𝑀𝑐

2𝐿𝑒

2𝐸𝐼
  

(59) 

 

where 𝐿𝑒 is the length of the beam segment 

𝐶𝐶′, and 𝑀𝑐 can be calculated as follows 

 
𝑀𝑐 = 𝑀𝐵 + 𝑇 sin 𝜑 × 𝑏

+ 𝑇(cos 𝜃𝑐

− cos 𝜑)(𝑒 + ℎ0)
= 𝑇[cos 𝜑(𝑒𝑐 + ℎ0)
+ 𝑏 sin 𝜑 + (𝑒
+ ℎ0)(cos 𝜃𝑐 − cos 𝜑)] 

(60) 

 

and 𝜃𝑐 is also a function of 𝑀𝑐, 

 

𝜃𝑐 =
𝑀𝑐𝐿𝑒

2𝐸𝐼
 (61) 

 

Strain Energy in the Cfrp Plate and the 

Total Strain Energy 

Because there is only longitudinal 

deformation in the CFRP plate, 

 

𝑈(𝑝)
∗ = 𝑈𝑁(𝑝)

∗ =
1

2𝐸𝑝𝐴𝑝
∫ 𝑁2(𝑥)𝑑𝑥

𝐿𝑖

0

=
𝑇2𝐿𝑖

2𝐸𝑝𝐴𝑝
  

(62) 

 

where 𝐿𝑖 is the initial length of the plate. 

 

 
Fig. 7. External loading on beam segment BC 
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The total strain energy of the system can 

now be obtained as follows: 

 
𝑈∗ =  2𝑈(𝐵𝐶)

∗ + 𝑈(𝐶𝐶′)
∗ + 𝑈(𝑃)

∗  (63) 

 

Finally, after doing some calculations, 

 
𝜕𝑈∗

𝜕𝑇
=

2𝑇

𝐸𝐼
[𝑏 cos2 𝜑(𝑒𝑐 + ℎ0)2

+
𝑏3 sin2 𝜑

3
+ 𝑏2 sin 𝜑 cos 𝜑(𝑒𝑐

+ ℎ0)] +
2𝑇𝑏 sin2 𝜑

𝐺𝐴𝑠

+
𝑇𝐿𝑖

𝐸𝑃𝐴𝑃

+
𝑇𝐿𝑒

𝐸𝐼
[cos 𝜑(𝑒𝑐 + ℎ0)

+ 𝑏 sin 𝜑 + (𝑒
+ ℎ0)(cos 𝜃𝑐

− cos 𝜑)]2 

(64) 

 

and 

 
𝜕𝑈∗

𝜕𝑇
= ∆ (65) 

 

where 

 

∆= √𝑏2 + (𝑒 − 𝑒𝑐)2

− √𝑏2 + (𝑒𝑖 − 𝑒𝑐)2

− (𝑒 + ℎ0) sin 𝜃𝑐 

(66) 

 

in which ∆ : is the change in length of the 

CFRP plate. After substituting Eqs. (65-66) 

into Eq. (64), T can be obtained in terms of 

the deviator length, e. 

 

COMPARISON OF RESULTS FROM 

CASTIGLIANO’S FIRST AND SECOND 

THEOREMS 

 

The prestress results for an example 

retrofitted steel I-beam strengthened by a 

TPUR system are obtained using Matlab 

programs based on Castigliano’s first and 

second theorems and are then compared. The 

dimensions and material properties used in 

the mathematical simulations are similar to 

those given in (Kianmofrad et al., 2017) and 

are listed in Tables 1 and 2.  

Figure 8 shows the tensile stress in the 

CFRP plate as a function of deviator height, 

e. From this figure, it can be seen that as the 

deviator height increases, the tensile force in 

the CFRP plate increases as well. However, 

as mentioned previously, in the absence of 

external loading, the relationship between T 

and e is nonlinear. Ghafoori and Motavalli 

(2015a) have developed a method for 

calculating the tensile force and prestress 

level as a function of the eccentricity, e, based 

on the assumption that the beam is rigid, and 

therefore has negligible upward deflection 

when subjected to a negative bending 

moment. Figure 8 shows the results from their 

research, based on the rigid beam assumption, 

as well as the results from Kianmofrad et al. 

(2017), obtained using the flexibility method, 

compared with the results from the current 

research calculated using the energy method 

based on Castigliano’s theorems.  

From Figures 9-10, it can be observed that 

there is no difference between results 

obtained using the flexibility method and 

Castigliano’s first theorem. It should be noted 

that although both of these methods are 

giving the same answers but the approaches 

are quite different. Kianmofrad et al. have 

used an analytical approach based on the 

Flexibility (Force) method while in the 

current research energy approaches have 

been investigated As was expected, the 

results obtained using Castigliano’s second 

theorem are not very accurate, predicting a 

tension in the CFRP plate around 12% lower 

than the value calculated using either 

Castigliano’s first theorem or the flexibility 

method. Similarly, the results obtained using 

the rigid beam assumption are fairly 

imprecise as well, predicting the tension in 

the CFRP plate about 13% higher than 

determined using the more exact methods.  
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Table 1. Beam dimensions and geometric parameters of the simulated TPUR system (in mm) (see Figure 1) 

System Section Lb
* a b Le l h 𝒃𝒇

𝒖 𝒃𝒇
𝒍  𝒕𝒘 𝒕𝒇 𝒆𝒄 𝒆𝒑

𝒊  𝒆𝒊 = 𝒆𝒑
𝒊 + 𝒆𝒄 

TPUR IPBl240 5000 825 825 1700 0 230 240 230 7.5 12 55 104 159 

 

Table 2. Mechanical properties of the CFRP and steel, and the steel section properties 

System 𝝈𝒑
𝑼 (MPa) 𝑬𝒑 (GPa) 𝑬𝒔 (GPa) 𝑨𝒑 (mm2) 𝑨𝒔 (mm2) 𝑰𝒔 (mm4) 

TPUR 2450 158.5 209 180 7350 7340e4 

 

 
Fig. 8. Prestress level in the CFRP plate in terms of the deviator height e, calculated using different methods 

 

 
Fig. 9. Mid span deflection in terms of the deviator height e, calculated using different methods 
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Fig. 10. Bending moment at mid span in terms of deviator height (e), obtained using different methods 

 

Figure 9 illustrates the mid span 

deflection, 𝛿𝑀 , as a function of deviator 

height, e. From this figure, it can be seen that 

the mid span deflection anticipated using 

Castigliano’s second theorem is smaller than 

that obtained using either Castigliano’s first 

theorem or the flexibility method. The use of 

Castigliano’s second theorem predicts the 

system behavior to be around 12.5% stiffer 

than determined using the flexibility method. 

Because the tensile force in the CFRP 

plate obtained using Castigliano’s second 

theorem is smaller than when determined 

using more exact methods, it would not be 

unexpected that the bending moment at mid 

span would be smaller as well. Figure 10 

illustrates the bending moment at beam mid 

span in terms of the deviator height. 

Surprisingly, according to this figure, the 

predicted bending moment when using the 

rigid beam assumption is about 16% higher 

than when using more exact methods. 

Figure 11 illustrates the strain in different 

components of the example steel beam 

reinforced using the TPUR system as a 

function of deviator height. Figure 11a shows 

the strain in the beam’s upper flange, where it 

can be seen that the strain obtained using 

Castigliano’s second theorem is nearly 13% 

less than that obtained using either 

Castigliano’s first theorem or the flexibility 

method. When using rigid beam assumption, 

this strain is predicted around 15.5% higher 

for e = 250 mm (which corresponds to a 60% 

prestress in the CFRP plate) than when using 

the more exact methods. For lower values of 

e, the difference between the various methods 

becomes less significant. For example, when 

e = 180 mm (which is equivalent to a 10% 

prestress in the CFRP plate), the difference 

between the rigid beam assumption and the 

more exact methods is nearly 10%. The same 

relationship holds true in figure 11b, which 

illustrates the calculated tension in the lower 

flange of the beam. The strain in this 

component when using the rigid beam 

assumption is around 10 to 15% larger 

(depending on the value of e) than the value 

determined using the more exact methods, 

while the strain obtained using Castigliano’s 

second theorem is the same range smaller 

than the value obtained using more exact 

methods. Additionally, the overall tension 

and strain in the lower flange (i.e., the 

compression flange) is higher than in the 

upper flange (i.e., the tension flange) during 
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pre-stressing due to tensile force in the CFRP 

plate, T, transferred into the beam as a 

compressive axial force. 

Figure 11c shows the calculated strain in 

the CFRP plate, which, when using the rigid 

beam assumption, is between 10 to 15.4% 

larger (depending on the value of e) than the 

value obtained using the more precise 

methods, while the strain obtained using 

Castigliano’s second theorem is smaller than 

the more precise value given by either 

Castigliano’s first theorem or the flexibility 

method. As can be seen from Figure 11a-c, 

one noteworthy aspect of this strengthening 

system is that the tension in the CFRP plate is 

much higher (by a factor of about 10) than the 

tension in the beam components. 

 

 
(a) 

 
(b) 
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(c) 

Fig. 11. Strain in: a) the upper, b) the lower flange of the beam and c) the CFRP plate, in terms of the deviator 

height, e 
 

CONCLUSIONS 

 

In this paper, the applications, as well as the 

advantages and disadvantages, of different 

PUR systems for retrofitting were discussed. 

To provide a basis for the assessment of the 

relative efficacy of different analytical 

solutions for describing these PUR systems, 

several analytical approaches were employed 

to predict the linear-elastic behavior of a steel 

I-beam retrofitted using a TPUR system and 

their results compared. To this end, two 

energy approaches based on Castigliano’s 

first and second theorems were introduced. 

The results of these methods were compared 

to each other, and with results of methods 

proposed in other research, specifically the 

flexibility (or force) method and the rigid-

beam assumption method.  

As expected, the analytical simulations 

based on Castigliano’s first theorem showed 

good agreement with the flexibility method. 

Because these methods are applicable to both 

linear and non-linear systems, they are the 

most appropriate and accurate solutions for 

PUR systems, which exhibit a geometrically 

non-linear behavior during prestressing. For 

engineering purposes, however, there is a 

balance to be struck between accuracy, 

expense, and time. Accordingly, in use cases 

such as the initial estimation of retrofitting 

system performance, using simplified 

methods (such as Castigliano’s second 

theorem) or simplifying assumptions (such as 

the rigid-beam assumption) can be beneficial 

as they produce a solution with an acceptable 

degree of precision with considerably less 

effort. 

It is determined in this study that 

Castigliano’s second theorem, which is not 

intended for use in non-linear problems, 

produces a level of error between 10 to 15%, 

depending on the CFRP prestress level, and 

predicts lower tension than present in reality 

and given by the more exact methods. The 

same levels of error are present when using 

the rigid-beam assumption, which predicts 

lower flexibility and higher tensile force than 

actually present. While this degree of error 

does reflect a certain inaccuracy, it is 

generally acceptable in practical engineering 

applications. 
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