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ABSTRACT: This paper extends the previous work of authors and presents a non-layered 

Finite Volume formulation for the elasto-plastic analysis of Mindlin-Reissner plates. The 

incremental algorithm of the elasto-plastic solution procedure is shown in detail. The 

performance of the formulation is examined by analyzing of plates with different boundary 

conditions and loading types. The results are illustrated and compared with the predictions 

of the layered approach. These several comparisons reveal that the non-layered Finite 

Volume approach can present accurate results with low CPU time usage despite its simplicity 

of the solution procedure. 
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INTRODUCTION 

 

The bending theory of plates has been 

established during the past decades. Classic 

plate theory (Timoshenko and Woinowsky, 

1970), first order shear deformation theory 

(Reissner, 1945) and higher order shear 

deformation theory (Reddy, 2004) are some 

of them. The first order shear deformation 

theory of plate, also known as Mindlin-

Reissner theory, has been preferred in 

numerical modeling. For example, Finite 

Element analysis of thin to the moderately 

thick plates, which due to Co continuity 

requirement for the displacement, can be 

attained with ease (Owen and Hinton, 1980; 

Sudhir, 2012; Rezaiee-Pajand and Sadeghi, 

2013). However, it should be mentioned that 

in the case of very thin plate analysis, the 

Mindlin-Reissner based Finite Element 

formulation suffers from shear locking 

deficiency. So it needs special techniques 

such as reduced integration (Prathap and 

Bhashyam, 1982) and selective integration 

(Hughes et al., 1978). Behavior of plates has 

been analyzed by other numerical methods 

such as the finite strip (Mirzaei et al., 2015), 

element free Galerkin (Naderi 

and Baradaran, 2013; Edalati and Soltani, 

2015; Mikaeeli and Behjat, 2016), meshless 

based methods (Liu, 2010) and other works 

(Kim et al., 2009; Osadebe and Aginam, 

2011; Ruocco and Fraldi, 2012; Xu 

and Zhou, 2010; Ghannadiasl and Noorzad, 

2016; Mirzapour et al., 2012; Shahabian et 

al., 2013). Although Finite Volume technique 
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is rather a new arrival as a numerical method 

for the solution of solid mechanics problems 

compared to the Finite Element method, 

however, it has shown promising capabilities 

in studies so far. Elastic analysis of three-

dimensional solids (Bailey and Cross, 1995), 

stress analysis of elasto-plastic solids 

(Demirdzic and Martinovic, 1993), FV 

methods for different solid mechanics 

problems (Cardiff et al., 2017; Cardiff et al., 

2016; Aguirre et al., 2015; Tang et al., 2015; 

Nordbotten, 2014; Trangenstein, 1991; 

Demirdzˇic ́  et al., 1988), FV-based flow 

formulations to simulate plastic deformation 

processes (Basic ́  et al., 2005; Trangenstein, 

1991), bending analysis of elastic plates 

(Wheel, 1997; Fallah, 2004; Fallah, 2006), 

Finite Volume analysis of dynamic fracture 

problems (Ivankovic et al., 1994; Stylianou 

and Ivankovic, 2002) and studying periodic 

and functionally graded media (Cavalcante et 

al., 2011; Cavalcante et al., 2012; Cavalcante 

and Pindera, 2012) are some of the works 

which have highlighted notable capabilities 

of the Finite Volume method. 

This paper extends the present author’s 

work on the application of Finite Volume 

method for the elasto-plastic analysis of 

Mindlin plates in which the layered approach 

was adopted (Fallah and Parayandeh, 2014).  

There is another method for the numerical 

analysis of Mindlin plates known as the non-

layered approach which involves fewer 

computations compared to the layered 

approach.  In a layered approach, the plate 

thickness is divided into some layers, and the 

stress at the middle of each layer represents 

the stress value of the layer. According to the 

equivalent stress value of each layer, it is 

concluded whether the layer is in the elastic 

state or plastic state. The non-layered 

approach works with the stress resultants and 

determines the elastic or plastic state of any 

point of the plate by evaluating the bending 

moment components. In the non-layered 

approach, it is assumed that each plate cross 

section enters instantaneously to the plastic 

state, while, in the layered approach, the cross 

section becomes gradually plastic by entering 

the layers to the plastic regime one by one. 

This gradual development of plasticity 

through the plate thickness results in 

smoother responses due to the increasing 

applied loads. This smooth transition from 

the elastic state to the fully plastic state can be 

seen in the load-displacement paths of the 

plates. Since the layered approach considers 

the evolution of plasticity over the plate 

thickness, it can provide more realistic 

information of the plate plasticization than 

the non-layered approach.  

In this work, a Finite Volume based 

formulation is presented for bending analysis 

of elasto-plastic Mindlin plates by adopting 

the non-layered model. After giving the 

Finite Volume formulation of the Mindlin 

plate, a discussion on the non-layered model 

is first provided (Harrison et al., 1984; Shi 

and Voyiadjis, 1992; Xia et al., 2011). Then, 

the layered model will be discussed briefly 

according to work (Fallah and Parayandeh, 

2014). The novelty of this work lies in the 

presented development made in the Finite 

Volume method for the plastic analysis of 

plates using the non-layered approach which 

has not been presented so far. The shear 

effects have been considered in the 

formulation which provides the possibility of 

plastic analysis of both thin and moderately 

thick plates. As can be seen in the test results, 

both of the layered and non-layered 

approaches can do plastic analysis without 

any shear locking deficiency. In all the results 

presented in this work, it has been 

demonstrated that the non-layered approach 

can present accurate results with low CPU 

time usage despite its simplicity of the 

solution procedure. 

The outline of the present paper is as 

follows: after introduction, elasto-plastic 

formulations of the plates are presented. 

Then, the cell-centered Finite Volume 
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technique is provided for obtaining the 

discretized system equation using the non-

layered model of the elasto-plastic plate.  

Afterwards, the solution procedure is given, 

and then the numerical studies of some test 

problems are presented. Finally, we prepared 

the conclusions. 

 

ELASTO-PLASTIC FORMULATION 

OF MINDLIN-REISSNER PLATES  

 

By applying the Mindlin–Reissner 

assumptions and small displacement plate 

bending theory, the displacement 

components of a point of coordinates x, y, z 

are: 

 
𝑢 = 𝑧 𝛽𝑥  (𝑥, 𝑦) 

𝑣 = 𝑧 𝛽𝑦 (𝑥, 𝑦) 

𝑤 = 𝑤(𝑥, 𝑦) 

(1) 

 

where w: is the transverse displacement, βx 

and βy: are the rotations of the plate section in 

the xz and yz planes, respectively. Figure 1 

shows the sign convention used for the above 

displacement components.  

There are two approaches for the elasto-

plastic analysis of plates which are the 

layered approach and the non-layered 

approach. In the layered approach, which is 

able to capture the spread of plasticity over 

the plate thickness, the plate is divided into 

some layers. Each layer may become plastic 

separately. As the number of layers increases, 

this model provides a more realistic 

representation of the gradual spread of 

plasticity over the plate cross-section. In the 

non-layered approach, when the bending 

moment at any location of the plate reaches 

the yield moment, it is assumed that the entire 

thickness of the plate becomes plastic 

instantaneously. In this paper, we deal with 

the Finite Volume analysis of the non-layered 

approach. The Finite Volume analysis of 

layered approach has been discussed in Fallah 

and Parayandeh (2014) in detail. 

As mentioned above, in non-layered 

approach, the entire cross-section becomes 

plastic when the bending moment reaches the 

yield value ( 2 / 6Y YM t ), where 
Y : is 

the material uniaxial yield stress, t: is the plate 

thickness, and MY:  is bending moment per 

unit of length. 

 

 
Fig. 1. Sign convention of the moment, shear force, and section rotation 
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 The stress-strain relation for the plate with 

plastic deformation has the following form:  
  

 
f

epds D d   (2) 

 

where fds : is bending moment increment, 

d : is flexural strain increment and 
epD : is 

plastic stress-strain matrix which is the 

modified elastic flexural rigidity of plate due 

to the plasticization.  

For Mindlin plates, it is assumed that the 

yield function F: is a function of the bending 

moments vector, fs , but not of the transverse 

shear forces, ss . The yield function is also a 

function of the hardening parameter h. The 

yield function F can be expressed as 

 

( , ) ( ) ( )f f

YF s h f s M h   (3) 

 

where  

 

2 2 2 1/2

( )

( 3 )

f

von

x y x y xy

f s M

M M M M M

 

  
 (4) 

 

when yielding occurs, it is assumed that the 

stress resultants must remain on the yield 

surface so that 

 

( , ) ( ) ( ) 0f f

YF s h f s M h    (5) 

 

To explain the elasto-plastic constitutive 

equations of the plate, the following 

calculations are performed which can be 

found in Owen and Hinton (1980). By 

differentiating of Eq. (5) we have 

 

0f

f

F F
dF ds dh

s h

 
  
 

 (6) 

 

The incremental relationship between the 

generalized stress and generalized strain for 

the elasto-plastic deformation is  

-1 fd D ds ad    (7) 

 

where /T fa F s    known as the plastic 

flow vector of the plate, which the effect of 

Qx and Qy on the plastic behavior of plate is 

ignored. ( / )T Td a D A a Da d    is also 

known as the plastic multiplier in which 

( 1/ )( / )A d F h dh     is the hardening 

parameter which depends on the hardening 

rule of the plate material. Multiplying both 

sides of Eq. (7) by Ta D gives 

 
T T f Ta Dd a ds a Dad    (8) 

 

Using the above equation, one can obtain 

 

-
T

f

T

Daa D
ds D d

A a Da


 
  

 
 (9) 

 

alternatively, in the compact form as 

presented in Eq. (2), we have 

- ( / )T T

ep D D DD D d d A d a   which Dd Da

. 

 

DISCRETIZED SYSTEM EQUATION 

OF THE FINITE VOLUME METHOD 

FOR THE MINDLIN PLATE 

 

Figure 2 shows a part of the mid-plane of a 

plate, which is meshed to some elements 

where each element is referred to as control 

volume or cell. A control volume is bounded 

by an arbitrary number of faces, and its center 

is considered as a computational node.  

The equilibrium equations of a typical 

control volume P shown in Figure 2, can be 

represented by 

 

{

∑ 𝑀𝑥 = 0𝑚
𝑖

 ∑ 𝑀𝑦 = 0𝑚
𝑖

∑ 𝐹𝑧 = 0𝑚
𝑖

            
 (10) 
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Fig. 2. Two adjacent control volumes on a mesh of elements 

 

where the first two equation expresses the 

equilibrium of moments about the global x 

and y axes, respectively, and the last equation 

represents the equilibrium state in the z 

direction. By assuming a uniform distribution 

of moments and shear forces along the control 

volume faces, the above equilibrium equation 

may be rewritten as
  

 

1

0 0 0

0 ( ) ( )

0 ( ) ( )

0

0

i i i

x x y im
xi i i i i

y x y x i y i i
i yi i i i i

x y xy x i y i

p

i

M n n
Q

n n M n Y n Y
Q

n n M n X n X

qA

L


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        

      
       

      
 
 

  
 
 


 

 (11) 

 

where the illustrated sign convention of 

Figure 1 is used. For a given face i, 𝑛𝑥
𝑖  and 

𝑛𝑦
𝑖 : are cosine direction of outward normal of 

face i, 𝑥𝑖  and 𝑦𝑖:  are the coordinate of 

midpoint of face i, 𝑥𝑝  and 𝑦𝑝:  are the 

coordinate of cell centre (computational 

point), q: is the uniformly distributed load 

applied upon the cell, 𝐴𝑝 and 𝐿𝑖: are the mid-

surface area of  cell and the length of face i, 

𝑀𝑖  and 𝑄𝑖:  are moment and shear force 

correspond to the middle of face i, 

respectively which are measured per unit 

length (Fallah, 2004).  

 For a Mindlin plate, the incremental 

constitutive equation is given in the form of 
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where D* : is the plate constitutive matrix,  

D: is the plate flexural rigidity, ν: is Poisson's 

ratio, ks: is the lateral shear correction factor 

which is due to the assumption of constant 

transverse shear strains, G: is the shear 

modulus, and t: is plate thickness. In the case 

of the elastic state, )1(12/ 23  EtD , 

however, for the plastic analysis, it is 

modified to 
epD

 
as discussed before. The 

bending/twisting moments and shear forces 

corresponding to a face of a cell can be 

Pi 
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calculated when the derivatives of 

displacement components presented in Eqs. 

(12) and (13) are calculated on the global 

coordinates xy. These derivatives can be first 

approximated using the local coordinate axes 

  (see Figure 2) and then transformed to the 

global coordinate system xy. The details of 

the derivative calculations and explanations 

on Figures 2 and 3 have been given in Fallah 

(2004). By introducing the constitutive 

equations to the equilibrium Eq. (11) and 

some extra works on the resulted equation, 

the final set of the approximated equilibrium 

equations of a typical cell, P, can be 

expressed in the form of  

 




















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
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
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N

i

i

y

x

i

P

y

x

P f

w

k

w

k
1









 (14) 

 

where 
Pk and ik : are matrix form and 

constant. They are dependent on the cell 

geometry and material properties. Their size 

is 33. N: represents the number of cells 

surrounding the cell, P. Also, vector  f 

includes information of loads applied to the 

cell P.  

Equation (14) describes the equilibrium of 

the cells in an approximate sense. For having 

a complete description of the plate 

equilibrium state, it is also needed to describe 

the boundary conditions of the plate. In 

general, there are three types of boundary 

conditions: essential boundary conditions, 

natural boundary conditions and a mixed kind 

of boundary conditions. To approximate the 

boundary conditions, a point cell is 

considered in the middle of the face lying on 

the plate boundary, corresponding to a cell 

adjacent to the plate boundary, Figure 3. Two 

equations corresponding to each point cell 

can be written which describes the point cell 

conditions according to the above three types 

of boundary conditions.  These equations for 

all the point cells can be incorporated into 

equilibrium Eq. (14) which provides the 

whole system equations. The details of 

equations corresponding to the above three 

types of boundary conditions can be found in 

Fallah (2004, 2006). 

 

 
Fig. 3. A typical point cell 

 

It should be noted that corresponding to 

each point cell, for the rotation about the 

normal vector of the boundary, two different 

situations are possible as hard boundary 

condition or soft boundary condition (Bathe, 

1996). With considering w as the lateral 

displacement, 𝛽𝑡 and 𝛽𝑛 are section rotations 

at the boundary about normal vector, n and 

tangent vector, t of the boundary respectively, 

(see Figure 3). For simply supported plate, if 

one considers w=0; but 𝛽𝑡 and 𝛽𝑛  are free, 

the boundary condition is considered as soft 

type, however when 𝛽𝑡 is also set to zero, the 

boundary condition is the hard type. On the 

other hand, when the plate edge is clamped, 

in the soft boundary condition, we have 𝑤 =
𝛽𝑛 = 0   and 𝛽𝑡  is free, but in the hard 

boundary condition we also have 𝛽𝑡 = 0.  In 

this work we assume a hard, boundary 

condition type. 

 

SOLUTION PROCEDURE  

 

When mixed boundary conditions are 

applied, a proper combination of equations 

mentioned earlier should be used. According 
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to the internal cells and boundary conditions 

equations, a system of simultaneous linear 

equations can be written, which relates the 

unknowns and could be expressed in the 

matrix form. It is evident that due to the 

existence of nonlinearity of material, the plate 

is analyzed step by step corresponding to the 

load increments. However, the whole system 

equations can be stated as follows  

 

ΔFΔUK   (15) 

 

where matrix K: is the coefficients appeared 

in Eq. (14) and equations in the boundaries 

conditions. It should be noted that matrix K is 

un-symmetric, is not constant and its entries 

are changed by developing the plasticity in 

the plate. The vector ΔF  contains the 

incremental loads and known values relevant 

to the boundary conditions. The governing 

Eq. (15) can be solved by a direct solver 

technique and each load increment results in 

the displacement increment ( ΔU ).  

 The solution algorithm for the elasto-

plastic Finite Volume analysis of the Mindlin 

plates using the non-layered approach is 

presented in Figure 4 where i is the cell 

number and j is the face number of a 

considered cell. 

 As it can be seen above, corresponding to 

each load increment, first, the incremental 

displacement vector is calculated using Eq. 

(15). Then, for each cell’s face of the domain, 

the incremental bending moments and shear 

forces are calculated using Eqs. (12) and (13). 

Then, the Von Mises or equivalent moment 

of the face, Mvon, is calculated using Eq. (4). 

If the equivalent bending moment, Mvon, is 

greater or equal to the yield moment My, the 

whole thickness of the plate corresponding to 

the considered face becomes or has already 

become plastic instantaneously. 

Subsequently the load scaling factor R is 

calculated. Finally, the stress should be 

reduced to the yield surface. It should be 

mentioned that instead of the above solution 

algorithm, the Newton-Raphson procedure 

can be used which has been applied in Fallah 

and Parayandeh (2014). However, the present 

method is easy to be implemented regarding 

the computer programming which is 

employed in this work The presented iteration 

method is independent of loading increment 

size, due to using the load scaling factor R. 

This method decreases the given load 

increment to a minimum size so that just one 

element, in the non-layered approach, or one 

layer, in the layered approach, is yielded 

corresponding to the scaled load increment. 

Hence, loading increment size is not 

important in the present procedure. On the 

other hand, the Newton-Raphson procedure is 

dependent to load increment size. 

Corresponding to a load increment, it is 

possible that some elements or some layers 

are yielded simultaneously. So, loading 

increment size is important, and if one applies 

a big load increment size, the procedure may 

not be able to reach to a converged state with 

ease.  

 

NUMERICAL RESULTS 

 

By using the above-presented procedures, the 

elasto-plastic bending of a square plate with 

unit side length and different types of loads 

and boundary conditions is investigated. The 

following geometric and material properties 

are used:  t = 0.01 m, ks =
5

6
, 𝜐 = 0.3, E = 200 

GPa, 250Y MPa. The hardening 

parameter A is chosen equal to zero which 

enables to perform the elastic perfectly plastic 

analysis. Corresponding to each case, the 

relevant graphs for the load-displacement 

path at the plate center, elastic-plastic 

bending moment and shear force across the 

plate’s central cross-section are presented in 

the following subsections.  
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Fig. 4. The iterative solution procedure in non-layered approach for the elasto-plastic analysis of Mindlin plates, 

(Note: it is assumed that 0H ) 
 

In some of the figures presented in this 

section, the dimensionless load parameter,

PMPL2 , and the dimensionless plate center 

displacement, 2LMwD P
, are used for the 

vertical and horizontal axes respectively. In 

above parameters, P is the uniform load 

intensity, 4/2tM YP   is the fully plastic 

moment per unit length of the plate cross-

section, D: is plate elastic bending rigidity, L 

Set iteration number  t = 0 at the 
start of load increment r

Apply load increment, ∆F t

Update matrix K and solve the equilibrium Eq. (15), 
find the displacement increment ∆u t

Calculate the incremental bending moments 
and shear forces using Eqs. (12) and (13). 

Update the total bending moments and shear forces:

M r,t(i,j)=M r-1(i,j)+∆M t 

Q r,t(i,j)=Q r-1(i,j)+∆Q t

Calculate the Von Mises moment, using Eq. (4).

Calculate the reducing scaling factor, Rt, as follows 

R t(i.j)=Mvon
r,t(i,j)-My /Mvon

r,t (i,j)-Mvon
r-1,t(i,j)

Check the stress level for each cell:

If  all R t < 0 , the plate 
is in the elastic state. 

calculate U r=U r-1+∆u t , 
consider r=r+1

If Rmax
t ≥ 0 , the plate enters the 

plastic phase. Set t = 1 and adjust

M r,t(i,j)=M r-1(i,j)+(1-Rmax
t)∆M t 

Q r,t(i,j)=Q r-1(i,j)+)+(1-Rmax
t)∆Q t

Calculate ∆f t=∑ j=1
Totcell [ ∑i=1

m(Qxlx+Qyly)i ] j - qr-1A

If ∆F t > Tolerance, calculate U r=U r-1+∆u t 

and update flexibility-rigidity

If  Mvon
r,t(i,j)≥ My→D(i,j)=DepIf  Mvon

r,t(i,j)<My→D(i,j)=De

set t=0 and r=r+1

If ∆F t << Tolerance, stop 
further loading

If t=1
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is the plate side length and w is the plate 

center deflection. 

 

Simply Supported Plate Subjected to a 

Uniformly Distributed Load 

To demonstrate how the predictions of the 

non-layered approach are converged due to 

the grid refinement, a systematic grid 

refinement has been performed and the 

dimensionless plate center displacement, 
2LMwD P , has been calculated 

corresponding to two load parameter values 

of 52 PMPL and 202 PMPL . The 

convergence behavior of both non-layered 

and layered approaches can be seen in Figure 

5 where ten layers are used for the layered 

approach. As can be seen, 77 divisions 

along the plate sides produces grid 

independent results corresponding to both 

load parameter values. 

According to the above results, for 

obtaining the load-displacement path 

corresponding to the plate center, a mesh of 

77 divisions for the non-layered and 

layered approaches with ten layers for the 

layered approach is used.  

An initial load increment of 100 Pa is 

considered. The results corresponding to the 

load-displacement path of the plate center are 

obtained which is shown in Figure 6.  

 In Figure 6 the results of the present 

method are compared with the results of 

ANSYS software which is obtained by using 

element type of shell-181 with the capability 

of the layered model.  The elasto-plastic 

analysis of the considered plate by ANSYS 

has shown that a mesh of 14×14 equal 

divisions with ten layers produces grid-

independent results. It can be observed that 

the layered and non-layered methods predict 

the equilibrium path close to the prediction of 

the ANSYS. It is clear that the layered 

method is more accurate than the non-layered 

one. For comparing the simulation speed of 

both approaches, Figure 7 is given. As can be 

seen, the non-layered approach is much faster 

than the layered one. 

In Figures 8 and 9 the results 

corresponding to bending moment and shear 

force, obtained by layered and non-layered 

approaches, are compared with each other. A 

plate cross section at y = 0.5 is considered. A 

good agreement can be seen between the 

results of bending moment and shear force 

predictions by two approaches. As it can be 

seen, while their shear force predictions are 

very close, there are some discrepancies in 

the predictions of bending moments, which is 

due to the considered load value of 
2 20.7PPL M  . In Figure 5, it can be seen that 

corresponding to  2 20.7PPL M  , two 

approaches have different predictions, so it is 

expected that their bending moment 

predictions should be different too. In Figure 

10 we used a lower load value, 2 16PPL M  , 

and it can be seen that the difference in the 

bending moment predictions is reduced. Also 

in Figure 10, we presented two sets of results 

corresponding to two thickness ratioes, L/t = 

10 and 100. As can be seen, both layered and 

non-layered approaches are able to predict 

bending moments of thin and moderately 

thick plates. 

 

Simply Supported Plate Subjected to a 

Concentrated Load at the Center 

In this test, the loading upon the plate is 

considered as a concentrated load at the plate 

center. The plate is meshed to a number of 

elements in which the center of an element 

coincides with the plate center where the 

concentrated load is applied. The studies have 

shown that a mesh of 13×13 and ten layers 

produce converged results in a layered 

approach and a mesh of 13×13 for the non-

layered approach, which are used in this part 

for the comparison purpose.  Figure 11 shows 

the equilibrium paths obtained by the present 

method. Figures 12 and 13 illustrate a 

comparison between layered and non-layered 

predictions for the bending moment and shear 

force of plate cross section at y = 0.5. 
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Fig. 5. Displacement at the plate center 

 

 
Fig. 6. Load-deflection paths obtained by layered and non-layered approaches for the simply supported plate 

subjected to a uniformly distributed load 
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Fig. 7. CPU time usage of layered and non-layered approaches 

 

 
Fig. 8. Moment diagram at the middle cross section (y = 0.5) corresponding to 2 20.7PPL M   (simply supported 

plate subjected to a uniformly distributed load) 
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Fig. 9. Shear force diagram at the middle cross section (y = 0.5) corresponding to 2 20.7PPL M   (simply supported 

plate subjected to a uniformly distributed load) 

 

 
Fig. 10. Moment diagram at the middle cross section(y = 0.5) corresponding to 2 16PPL M   and different L/t (simply 

supported plate subjected to a uniformly distributed load) 
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Fig. 11. Load-deflection paths obtained by layered and non-layered approaches for the simply supported plate 

subjected to a concentrated load at the center 

 

 
Fig. 12. Moment diagram at the middle cross section (y = 0.5) corresponding to 2 6.5PPL M   (simply supported plate 

subjected to a concentrated load at the center) 
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Fig. 13. Shear force diagram at the middle cross section (y = 0.5) corresponding to 2 6.5PPL M   (simply supported 

plate subjected to a concentrated load at the center) 

 

Clamped plate subjected to uniformly 

distributed load 

The boundaries of the plate are changed to 

the clamped ones where the plate is under the 

uniformly distributed load. The studies have 

shown that a mesh of 15×15 with ten layers 

in a layered approach and a 15×15 mesh in 

non-layered approach produce converged 

results which are used in this part for the 

comparison purpose.  Figure 14 shows the 

load-displacement paths obtained using the 

present methods. Comparison between the 

predictions of bending moment and shear 

force distributions at the cross section of y = 

0.5 corresponding to 2 24PPL M 

 

are shown 

in Figures 15 and 16. 

 

 

 
 

Fig. 14. Load-deflection paths obtained by layered and non-layered approaches for the clamped plate subjected to 

uniformly distributed load 
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Fig. 15. Moment diagram at the middle cross section (y = 0.5) corresponding to 2 24PPL M   (clamped plate 

subjected to uniformly distributed load) 

 

 
Fig. 16. Shear force diagram at the middle cross section (y = 0.5) corresponding to 2 24PPL M   (clamped plate 

subjected to uniformly distributed load) 
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a concentrated load at the center. 

• Plate with two opposite edges simply 

supported, and the other two edges 
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subjected to uniformly distributed the 

load. 

• Plate with two opposite edges simply 

supported and the other two free edges 

subjected to a concentrated load at the 

center 

• Plate with two opposite edges clamped and 

the other two free subjected to uniformly 

distributed the load. 

• Plate with two opposite edges clamped and 

the other two free subjected to a 

concentrated load at the center. 

The elasto-plastic responses of the 

considered plate with the above boundary 

conditions and loading types have been 

studied, and the layered and non-layered 

approaches have shown almost similar 

performances as observed in Figsure 6 to 16. 

 

CONCLUSIONS 

 

A non-layered Finite Volume based 

formulations has been presented for the 

elasto-plastic bending analysis of Mindlin-

Reissner plates, where Von Mises yield 

criterion has been used. To expose the 

capability of the present approach in the 

elasto-plastic bending analysis of plates, the 

formulation has been utilized for the analysis 

of a series of plates with different boundary 

conditions. The results of the layered Finite 

Volume approach and ANSYS software 

results have been used for the comparison 

purposes. These comparisons have revealed 

that both methods predict almost the same 

nonlinear equilibrium paths for the cases 

considered. Although, their prediction of the 

stress resultants corresponding to the plate 

cross sections are nearly the same, but 

depending on the plate boundary conditions 

and loading types, in some cases, the non-

layered model provides slightly higher 

estimations. Also, the non-layered approach 

is considerably faster, especially in plates 

with a large number of elements. Whatever 

the number of elements or number of layers 

increases, the difference between the 

simulation times of two methods goes up. So, 

if the speed of simulation is concerned, one 

may prefer the non-layered approach. It is 

worth mentioning that although the non-

layered Finite Volume approach can provide 

comparable predictions for stress resultants in 

plate cross sections; however, it cannot 

provide information of how plasticity evolves 

over the plate thickness. On the other hand, 

the layered Finite Volume approach has the 

privilege of being able to provide information 

of plastic growth through the plate thickness. 
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