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ABSTRACT: This study introduces, two models based on Gene Expression Programming 

(GEP) to predict compressive strength of high strength concrete (HSC). Composition of HSC 

was assumed simplified, as a mixture of six components (cement, silica fume, super-

plastisizer, water, fine aggregate and coarse aggregate). The 28-day compressive strength 

value was considered the target of the prediction.  Data on 159 mixes were taken from various 

publications. The system was trained based on 80% training pairs chosen randomly from the 

data set and then tested using remaining 20% samples. Therefore it can be proven and 

illustrated that the GEP is a strong technique for the prediction of compressive strength 

amounts of HSC concerning to the outcomes of the training and testing phases compared 

with experimental outcomes illustrate that the. 
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INTRODUCTION 

 

Achieving to high compressive strength in 

concrete, has been one of the main purposes 

in civil engineering. According to ACI, high 

strength concrete (HSC) has compressive 

strength higher than 42 MPa. However, most 

of the concrete regulations limited 

compressive strength of structural concrete to 

60 MPa (BS 8110-1, 1997). Therefor the 

scope of HSC using, is not very broad.  The 

basic ingredients in HSC mixtures are similar 

to conventional concrete, however, minerals 

and chemicals addition added to mixtures to 

raise compressive strength.  

Compressive strength as a critical property 

of HSC quality, depend on various factors 

such as concrete mix design, the kind of 

materials forming the concrete, person's skills 

for testing, laboratory errors, and so on. Since 

many of these factors are unknown, it is 

difficult to obtain accurate formulation for 

concrete strength, so, using the method 

except mathematical formula to predict the 

strength of concrete to an acceptable level, 

will be important (Samayiinejaad, 2001).  To 

predict the manner of HPC is relatively 

difficult compared to predicting conventional 

concrete manner. Therefore, traditional 

model of concrete properties is not 
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appropriate for analyzing HPC compressive 

strength (Castelli et al., 2013).  

Predicting HPC behavior is relatively 

difficult compared to predicting conventional 

concrete behavior. Chou and Tsai (2012) 

explained the relationship between 

ingredients and concrete properties is highly 

nonlinear so it can be said certain properties 

of HPC are not completely found. Therefore, 

traditional model of concrete properties is not 

appropriate for analyzing HPC compressive 

strength. Totally, regression analysis can be 

used for empiric modeling of experimental 

outcomes of concrete parameters. Recently, 

addition to classical regression techniques, 

soft computing applications such as neural 

networks and Gene Expression Programming 

(GEP) can predict the explicit formulations of 

the characteristics and the performances of 

concrete (Abdollahzadeh et al., 2016; 

Gandomi et al., 2014; Saridemir, 2014). The 

neural networks based formulation are often 

too complex to be used as can be seen in 

empiric formularization of experimental 

investigations. On the other hand, genetic 

programming have many advantages in this 

respect as compared to classical regression 

techniques. Firstly, some functions define for 

regression technique and then analyses of 

these functions are performed. On the other 

hand, in GEP approach, there is no predefined 

function to be considered, i.e. GEP adds or 

deletes various combinations of parameters 

for considering the formulation that fits the 

experimental outcomes. In this sense, GEP 

can be accepted to be superior to regression 

techniques and neural networks. Where no 

analytical models exist, to model and obtain 

clear formularization of experimental 

investigations containing multivariate 

parameters, GEP has been confirmed to be a 

successful system (Gandomi et al., 2014; 

Saridemir, 2011). 

A research about using of artificial neural 

network (ANN) and genetic programming 

(GP) to predict split tensile strength and water 

permeability of HSC containing TiO2 

nanoparticles were performed by Nazari and 

Riahi (2011). A collection of 144 samples 

produced with 16 varied mixtures for purpose 

of making ANN and GP modeling, were used 

by them to set training and testing phases.  

Eight input parameters that include the 

cement content (C), nanoparticle content (N), 

aggregate type (AG), water content (W), the 

amount of superplasticizer (S), the type of 

curing medium (CM), Age of curing (AC) 

and number of testing try (NT) have been 

used as data in the multilayer feed forward 

neural networks models and input variables 

of genetic programming models . ANN and 

GP models have been discovered to be 

reliable in the scope of variables. Also, ANN 

and GP are efficient for predicting the split 

tensile strength of TiO2 nanoparticles 

concrete (Nazari and Riahi, 2011).  

Castelli et al. (2013) predicted high 

performance concrete strength using Genetic 

Programming with geometric semantic 

genetic operators. The system they proposed 

was based on recently defined geometric 

semantic genetic operators for Genetic 

Programming. They tested the proposed 

implementation of GP with geometric 

semantic operators (GS-GP from now on) 

against a standard GP system (ST-GP). 

Experimental data from 17 different sources 

was used to check the reliability of the 

strength model. A total of 50 runs were 

performed with each technique. In each run a 

different partition between training and test 

data has been considered. 70% of the samples 

have been applied as training data, while the 

remainings have been applied as test data. 

Experimental outcomes show the suitability 

of the proposed system for the prediction of 

concrete strength. In particular, the new 

method provides significantly better 

outcomes than the ones produced by standard 

Genetic Programming and other machine 

learning methods, both on training and on 

out-of-sample data (Castelli et al., 2013). 
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Although there are many modeling works 

about properties of HSC, but the main 

purpose of this paper is to model and 

formulate the main mechanical properties of 

HSC, compressive strength at 28 days that is 

most used for quality control, by genetic 

programming. 

 

MODELING PHASE  

 

Data Set 

To develop GEP models, 157 samples 

with different mixtures were collected from a 

M.S. thesis (Samayiinejaad, 2001). 80% of 

samples randomly used in training phase and 

20% used in testing phase. This information 

includes the weight of concrete's components 

(cement, water, fine aggregates, coarse 

aggregates, silica-fume and super-plasticizer) 

and compressive strength of 28 days. 

Quantities about inputs and output amounts 

was presented in Table 1.  

 

Gene Expression Programming Models 

and Parameters 

Ferreira invented a new algorithm called 

Gene Expression Programming (GEP) in 

1999. This algorithm (GEP) is incorporation 

of Genetic Algorithms (simple, linear 

chromosomes of fixed length) and Genetic 

Programming (non-linear entities of different 

sizes and shapes). Therefore, with GEP, the 

second evolutionary threshold – the 

phenotype threshold – is crossed, creating a 

new range of possibilities in evolutionary 

computation. This is corresponding to say 

that, in GEP, the genotype and phenotype are 

finally separated from one another, since the 

non-linear entities of different sizes and 

shapes are completely encoded in the linear 

chromosomes of fixed length and the system 

can now benefit from all the evolutionary 

advantages this produce (Ferreira, 2001). 

Thus, the phenotype of GEP consists of the 

same kind of parse trees used in Genetic 

Programming. But the parse trees evolved by 

GEP (called expression trees) are the 

expression of a totally independent genome. 

Consequently, with GEP, a notable thing 

occurred: the second evolutionary threshold – 

the phenotype threshold – was crossed 

(Dawkins, 1995). And this means that merely 

the genome (slightly modified) is passed on 

to the next generation (Ferreira, 2001).  

The fundamental steps of Gene Expression 

Programming are schematically represented 

in Figure 1 (Ferreira, 2006). To construct a 

GEP model, five components; the function 

set, terminal set, fitness function, control 

parameters and stop condition are needed. 

After encoding the problem for candidate 

solution and specifying the fitness function, 

the algorithm randomly creates an initiative 

population of viable individuals 

(chromosomes) and then transforms the each 

chromosome into an expression tree 

corresponding to a mathematical expression. 

Thereafter the predicted target is compared 

with the actual one and the fitness score for 

each chromosome is determined. If it is 

sufficiently good, the algorithm stops.

 

Table 1. The input and output quantities used in GEP approach models 

Data Used in the Models 
Input Variables 

Maximum Minimum 

610 245 Cement (kg/m3) 

246 106 Water (kg/m3) 

1204 378.6 Fine aggregates (kg/m3) 

1239 421 Coarse aggregates (kg/m3) 

84.6 0 Silica-fume (kg/m3) 

27.8 0 Superplasticizer (kg/m3) 

  Output variable 

113.5 40 Compressive strength (MPa) 
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Fig. 1. Flowchart of Gene expression programming (Ferreira, 2006) 
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solution of the problem (Kayadelen et al., 

2009; Teodorescu and Sherwood, 2008). 

Explicit formulations obtained from GEP 

compared to classical regression techniques, 

causes using of this approach in many areas 

of engineering field, recently. It is believed 

and proven for modeling and obtaining clear 

formulations of experimental studies, like 

multivariate problems, GEP is more powerful 

than regression techniques and neural 

networks (Milani and Nazari, 2012; Nazari et 

al., 2012; Bhargava et al., 2011; Podgornik et 

al., 2011; Ganguly et al., 2009). 

Every matters in GEP algorithm are 

displayed by expression trees (ETs) that 

consist of operators, functions, constants and 

variables. An algebraic expression can be 

represented by two genes chromosome or an 

ET, as shown in Figure 2. This figure shows 

a chromosome with two genes is encoded as 

a linear string and also how it is expressed as 

an ET. 

In this paper, we predict compressive 

strength of HSC by GEP modeling. So two 

models of GEP, namely GEP-I and GEP-II 

constructed to predict compressive strength 

of HSC and at end, modeling outcomes 

compared with experimental outcomes. In the 

GEP-I and GEP-II, as the number of genes 

used 3 and 4 genes (Sub-ETs), and as linking 

function used multiplication and addition, 

respectively. For using GEP there are five 

major steps.  

First of all, is choosing fitness function, 

which in this problem, we measured the 

fitness 𝑓𝑖 by using two following expressions:  

  

𝑓𝑖 = ∑(𝑀 − |𝐶(𝑖,𝑗) − 𝑇𝑗|)

𝑐𝑡

𝑗=1

 (1) 

 

where M: is the range of selection, 𝐶(𝑖,𝑗): the 

value returned by the individual chromosome 

i for fitness case j (out of 𝐶𝑡 fitness cases) and 

𝑇𝑗 : is the target value for fitness case j. if  

|𝐶(𝑖,𝑗) − 𝑇𝑗|  (the precision) less or equal to 

0.01, then the precision is equal to zero, and 

𝑓𝑖 = 𝑓𝑚𝑎𝑥 = 𝐶𝑡𝑀. In this case, M = 100 was 

used, therefore 𝑓𝑚𝑎𝑥  = 1000. The advantage 

of this kind of fitness functions is that the 

system can find the optimal solution by itself 

(Teodorescu and Sherwood, 2008).

 

 
Fig. 2. Chromosome with two genes and its decoding in GEP 

 (Kayadelen et al., 2009; Teodorescu and Sherwood, 2008) 
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The second major step is selection of 

terminals T and functions F to create 

chromosomes. In this case terminals set 

include of the independent variable, i.e., T = 

{C, W, FA, CA, MC, SP} and about functions, 

four basic arithmetic operators(+,−,∗, . ) and 

some basic mathematical functions 

(𝑆𝑞𝑟𝑡, 𝑥3, … ) were used the models. 

The third major step is to choose the 

chromosomal architecture, namely the length 

of the head and the number of genes. In this 

case we used 3 and 4 genes and length of 

heads 8 and 12 for models GEP-I and GEP-II 

respectively.  

The fourth major step to use GEP is 

selection the linking function to link the sub-

ETs which in this problem we used 

multiplication and addition. 

And finally, all genetic operators 

(mutation, transposition and crossover…) 

combine and was applied as set of genetic 

operators. All details of used parameters were 

presented in Table 2. 

Explicit formulations based on the 

approach models for fc were obtained by Eq. 

(2).  

 
𝑓𝑐 = 𝑓(𝐶,𝑊, 𝐹𝐴, 𝐶𝐴,𝑀𝑆, 𝑆𝑃) (2) 

 

For the GEP-I and GEP-II approach 

models, Figures 2 and 3 show the expression 

trees of Eqs. (3) and (4), respectively. In these 

Equations, d0, d1, d2, d3, d4 and d5 refer to 

cement, coarse aggregate, fine aggregate, 

silicafume, superplastisizer and water 

respectively. The constant for formulation of 

each models specified by applied software. 
 

𝑓𝑐

= [√((𝑑2 + 𝑑0) + 𝑑2) ∗ (𝑑0/(𝑑5 + 𝑑5))
2

] 

[√𝑑3
2

+ ((𝑑0 + 𝑑0)/𝑑1)3] + 𝑑4] 

[𝑑3 ∗ √(𝑑4/(−8.09 + 𝑑5) + (9.05 ∗ 𝑑4))𝟐 ] 
 (3) 

𝑓𝑐 = √√𝑑2
2𝟑

 

*√
(𝑑2 − [(((𝑑1 ∗ 𝑑4) + 𝑑52)/ 5.062))
−((5.06 +  5.06) ∗ (5.06 + 𝑑4))]

3

 

* 

[
 
 
 
√√d2

2
+ √√3.53

2
∗ (d3 − 3.53) ∗ (d2 ∗ d3)

22

33

]
 
 
 

 

[(−4.35 −4.35⁄ )3] 
 (4) 

 
 

 Table 2. Parameters of GEP approach models 

GEP-II GEP-I Parameter Definition 

+,−,∗,/, Sqrt, x2, x3, 3rt +,−,∗,/, Sqrt, x2, x3, 3rt Function set 

40 30 Chromosomes 

12 8 Head size 

4 3 Number of genes 

Multiplication Addition Linking function 

0.044 0.044 Mutation rate 

0.1 0.1 Inversion rate 

0.3 0.3 One-point recombination rate 

0.3 0.3 Two-point recombination rate 

0.1 0.1 Gene recombination rate 

0.1 0.1 Gene transposition rate 
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Fig. 3. Expression trees of GEP-I approach model 
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Fig. 4. Expression trees of GEP-II approach model 

 

OUTCOMES AND DISCUSSION 

 

Absolute fraction of variance (R2) mean 

absolute error (MAE), root mean square error 

(RMSE) were presented in this paper as 

statistical evaluations for inevitable errors 

while training and testing the models 

according to the Eqs. (5-7), respectively. 
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𝑅2

=
(𝑛 ∑ 𝑡𝑖𝑜𝑖 − ∑𝑡𝑖 ∑𝑜𝑖)

2

(𝑛 ∑ 𝑡𝑖
2 − (∑ 𝑡𝑖)

2)(𝑛 ∑𝑜𝑖
2 − (∑𝑜𝑖)

2)
 

(5) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑡𝑖 − 𝑜𝑖|

𝑛

𝑖=1

 (6) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑡𝑖 − 𝑜𝑖)

2
𝑛

𝑖=1
 (7) 

 

Here t: is the target value, o: is the output 

value and n: is the number of all collected 

data. Statistical errors amounts for both 

training and testing the models were 

displayed in Table 4. If R2 amounts are above 

0.7 and closer to 1, predicted outcomes are 

closer to experimental outcomes. Also, if 

(MAE, RMSE) amounts increase, reduce 

models performance. There were few 

differences between experimental and 

predicted amounts statistically.  

The obtained outcomes by experimental 

investigations and predicted amounts in 

training and testing phases of the GEP-I, 

GEP-II models, are displayed on Figures 3-4, 

respectively. The linear least square fit and fit 

line and the model R2 amounts are displayed 

on Figures 5-6 for the training and testing 

phases. Also, inputs amounts and 

experimental outcomes with testing outcomes 

obtained from models were given and 

compared in Table 3.  

All outcomes show GEP is also a good 

approach for predicting of fc amounts of HSC. 

 
Table 3. GEP models outcomes compared with experimental outcomes are used as test sets 

Data Used in Models Construction Compressive Strength (MPa) 

Cement 

(kg/m3) 

Water 

(kg/m3) 

Fine 

Aggregate 

(kg/m3) 

Coarse 

Aggregate 

(kg/m3) 

Silicafume 

(kg/m3) 

Super-

plastisizer 

(kg/m3) 

Exp GEP-I GEP-II 

450 130 1187 667 50 19.5 105.8 111.7209747 111.936117 

580 140 620 1025 70 13.3 103 100.5882589 97.04527961 

550.6 138 612 770 0 6.3 66.5 68.72457022 63.24775205 

413 190 767 1092 0 0 40 46.43367175 41.3984819 

548 191.8 680 1020 0 4.7 56 58.14897191 58.48259891 

320 148 750 1175 25 3.9 62.6 57.14877602 60.69051039 

474.8 156.7 603.5 1127.5 47.5 9 85 76.36106043 79.46417193 

402 188 643.1 1094.9 15.7 5.1 57.8 54.30094316 61.0633902 

610 152.5 697 1045 0 16.3 81 81.1999886 82.35691674 

350 195 749 1092 0 1.1 46 42.0876195 40.56048595 

446 223.2 660 990 50 0.9 54 53.88215476 49.55817726 

266 161 873 1100 40.3 3.7 67.5 56.60796513 59.39898544 

391.5 178 700 1097 0 0.9 50 45.64997016 43.38333825 

404 208 1086 726 0 0 52.4 51.3954756 44.23148742 

560 155.3 698 1047 61 14.8 100 97.21441046 99.53713846 

450 130 1231 623 45 19.5 108.2 111.7190627 112.3155351 

450 135 770 1025 50 8.5 90.8 84.04857129 83.06491851 

426 184 1148 768 0 8.5 67.2 65.99918773 69.11265227 

362.7 178 711 1100 0 0.5 40 43.42817747 41.0158857 

425 190 730 1000 0 4.3 50.7 50.82952203 52.98314309 

413 190 767 1092 0 0 46.9 46.43367175 41.3984819 

422 125 643 1172 42.2 20.5 93.3 92.05027679 94.80035971 

385.7 137.5 587.5 1216.6 57.9 11.1 85.7 78.47328342 78.31607473 

563.8 148 440.3 1216.6 28.2 14.8 76 79.91381758 86.53620814 

519 120 725 1120 41 14.9 94.1 97.42666008 96.75327086 

425 160 934 1172 0 12.8 63.9 68.36653989 72.42301954 

342 171 670 1200 0 0 43.5 41.19738631 38.52545594 

465 162 1204 450 0 2.7 66.5 75.73978907 61.87168524 
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Table 4. The fc statistical amounts of GEP-I and GEP-II approach models 

Statistical Parameters 
GEP-I GEP-II 

Training Set Testing Set Training Set Testing Set 

R2 0.9345 0.9511 0.9082 0.9494 

MAE 4.4259 3.8290 5.072 4.5458 

RMSE 5.5088 4.7520 6.4659 5.2604 

 

 
 

 
Fig. 5. Scattering diagram of predicted vs. experimental for training and testing models of GEP-I 
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Fig. 6. Scattering diagram of predicted vs. experimental for training and testing models of GEP-II 
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and testing phases are higher than 0.90. The 

best value of R2 is 0.9511 for testing phase in 

the GEP-I model, while the minimum value 

of R2 is 0.9082 for training phase in the GEP-

II model. All of the statistical parameter 

amounts noticed in Table 4 illustrate that the 

proposed models of GEP predict the fc 

amounts of HSC with good accuracy. 

Accordingly, it can be concluded GEP 

provide a successful alternative way to the 

experimental studies or artificial neural 

networks and fuzzy logic used to model the fc 

of all kind of concrete with different 

mixtures. 

One of the other outcomes obtained from 

these models was Eqs. (3) and (4) that was 

brought in last section. These equations can 

be used for designing different mixers of HSC 

as it has been done before in literature about 

another concrete (Sarıdemir, 2014). 

 

CONCLUSIONS 
 

According to the obtained outcomes, GEP 

can be as an appropriate tool for modeling the 

compressive strength amounts of HSC at 

different proportions. The models, GEP-I and 

GEP-II, with different parameters are 

proposed to predict the compressive strength 

amounts of concrete. The experimental 

outcomes from a widely spread database of 

compressive strength amounts of HSC that 

have been already published, are used for 

developing the models. The models have 

been discovered be highly capable to predict 

the compressive strength amounts of concrete 

in connection with cement, water, fine 

aggregate, coarse aggregate, silica fume and 

super-plasticizer. The suggested GEP models 

can predict the compressive strength amounts 

of HSC for each of training and testing phases 

according to the statistical parameters of R2, 

MAE and RMSE. 
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