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ABSTRACT: In this article the general non-symmetric parametric form of the incremental 

secant stiffness matrix for nonlinear analysis of solids have been investigated to present a 

semi analytical sensitivity analysis approach for geometric nonlinear shape optimization. 

To approach this aim the analytical formulas of secant stiffness matrix are presented. The 

models were validated and used to perform investigating different parameters affecting the 

shape optimization. Numerical examples utilized for this investigating sensitivity analysis 

with detailed discussions presented. 
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INTRODUCTION 

 

Structural optimization utilizing Linear static 

sensitivity analysis has been used since 

many years ago (Kim et al., 2012; Choi and 

Kim, 2005; Van Keulen et al., 2005). The 

Finite Element method is an effective tool 

for these analyses and has been utilized for 

years. The extensive use of numerical 

integration makes the analysis 

straightforward, but as material, elements 

and system are often given in different co-

ordinate systems, the analysis involves many 

rotational transformations. The most 

common methods to gain sensitivities are the 

global finite difference method, the 

variational method and the discrete method 

(Kim et al., 2012; Choi and Kim, 2005; Van 

Keulen et al., 2005; Pedersen, 2005; 

Tromme et al., 2015). The implementation 

of the global finite difference method is 

straightforward. However, the method has 

some deficiency when the size is either too 

large or too small, and, it become worse in 

the repeated, time-consuming structural 

analyses. In this study the discrete method is 

considered due to the convenience of a 

straightforward utilizing the finite element 

codes (Pedersen, 2005). Because of the 

analytical derivatives of discrete quantities 

such as the stiffness matrix, mass matrix, 

and load vector, are difficult to achieve, 

semi-analytical methods, where analytical 

derivatives are approximated by finite 
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differencing, have been widely employed 

(Pedersen, 2005). The simple three-node 

triangular element with uniform strain, 

stress, thickness, and material moduli is 

chosen. This element is often utilized in 

design optimization and imply rather simple 

final stiffness matrices. Earlier works 

(Pedersen and Cederkvist, 1981) on 

analytically obtained stiffness matrices for 

finite-element modeling are here improved 

to include geometrical non-linearity based 

on the Green Lagrange strain definition. 

Recent work of Rezaiee-Pajand and 

Yaghoobi (2015) utilized the complete 

second-order function to formulate the 

quadrilateral elements. According to 

Pedersen and Cederkvist (1981); 

Zienkiewicz and Taylor (2000) and Pedersen 

(2005) the present nonlinear Finite Element 

method is independent on stress-strain state 

and material and a few basic matrices 

describe the element geometry, orientation, 

nodal positions, and displacement 

assumption. Stiffness matrices established 

from linear combinations of the basic 

matrices which have extracted from material 

parameters and displacement gradients 

parameters (Pedersen, 2005). Investigation 

of an accurate geometric nonlinear 

sensitivity analysis method utilizing a secant 

stiffness matrix have presented in this 

article.  

First, the tangent stiffness matrix and, the 

secant stiffness matrix utilized in the 

proposed nonlinear analysis procedure are 

introduced, then the discrete semi-analytical 

sensitivity analysis in conjunction with the 

adjoint approach is described, after that the 

exact semi-analytical sensitivity analysis 

method is extended to the nonlinear case, 

and, the sensitivity results of reaction force 

and influence of mesh sizes for a cantilever 

beam problem are discussed, and finally the 

conclusions are presented. 

 

 

MATERIALS AND METHODS 

 

Definition of Secant and Tangent Stiffness 

Matrix in Nonlinear Analysis  

Generally, the governing equation of a 

Finite Element system is:  

 
      (1) 

 

where K: is the stiffness matrix, U: is the 

nodal displacement vector, and F: is the 

external force vector. In nonlinear method, 

the stiffness matrix K has nonlinear 

relationships with U, and Eq. (1) becomes:  

 
          (2) 

 

where KS: is secant stiffness matrix, which 

depends on both U and the structure’s initial 

condition. Another important quantity is the 

tangent stiffness matrix KT, which is also 

nonlinearly dependent on U and structure’s 

configuration. In a nonlinear analysis 

method, the secant stiffness matrix utilizes to 

compute the residual force vector, while the 

tangent stiffness matrix is mainly used to 

determine the incremental quantities. A 

descriptive figure of KS and KT is depicted in 

Figure 1 (Pedersen, 2005). 

Figure 2 presents a triangular element 

which parameterized by the parameters p2–

p5. A parameter p1 is used for axisymmetric 

elements, in this paper the plane linear 

displacement triangle utilized for plane 

problems in co-ordinate system with axis 

x,y. Translation of the element has no 

influence on the element stiffness parameters 

and also the element size, characterized by a 

length parameter h, is without influence 

(Pedersen, 2005). The area (a) of the element 

is determined by:  

 
                        (3) 
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Fig. 1. Definition of Secant KS and tangent KT 

stiffness (Pedersen, 2005) 

 

 
Fig. 2. Definition of parameters p2–p5, that describe 

the triangle shape. The order of the three nodes are 

restricted by     –        (Pedersen, 2005) 

           

The constant thickness of the element is t. 

Although the co-ordinates of the Cartesian 

co-ordinate system is chosen as x,y the i, j 

index notation is also used meaning that i 

can be x or y and similar for j in this two-

dimensional description. Displacement of  i 

in the i direction is obtained as:  

 
                           (4) 

 

where the vector {D}i: is the nodal 

displacements in direction i. Thus, only no-

directional coupling is used in the 

interpolation for problems. However, the 

same displacement assumption is utilized in 

all directions, interpolation {N} without 

index i. The vector {N} of shape functions 

factorized into the vector of direct 

displacement assumptions {H} and the 

space-independent matrix [K]
−1

 which 

includes information about element 

geometry and node positions. Dealing with a 

linear displacement assumption in the x,y co-

ordinate system Eq. (5) is obtained as 

follows: 

 

      {  
 

 
 
 

 
} (5) 

 

where h: is a reference length, which has no 

impact in the final results. The displacement 

gradients  x,x,  x,y,  y,x and  y,y are, with [K]
−1

 

space-independent, given by: 

 
         

 
           (6) 

         
 
           (7) 

         
 
           (8) 

         
 
           (9) 

 

where for instance {H},x means 

differentiation of all the components in {H} 

with respect to the coordinate x. From Eq. 

(5) follows the involved vectors: 

 

     
  {  

 

 
  }               

  

{    
 

 
}   

(10) 

 

The matrix [K] constitutes the row vectors 

{H}
T
 considered at the three nodal positions, 

and thus is independent of space. The 

inverse of this matrix is (Pedersen, 2005): 

 
     

  
 

  
[

     
     –     

  

    –            
                  

] 
(11) 

 

Definition of Linear Strains and Basic 

Matrices 

The present formulation follows 

mentioned by Pedersen and Cederkvist 

(1989) with extensions as presented in 

Cheng and Olhoff (1993) for 2D problems 

applied to linear elastic behavior and small 

strains. As later shown in detail with Green–
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Lagrange strains the final directional 

stiffness submatrices can be evaluated as 

linear combinations of the material moduli 

and basic matrices [Tij] is defined by: 

 

             ∫          
  
          (12) 

 

which with the already given matrices {H}, j 

and [K]
−1

, that are constant in the element, is 

determined to: 

 
     

  
 

  
[

         
                         

             
       

                    
 

]  

      
  

 (13) 
      

 
 

  
[

         
                         

             
       

                    
 

]   

        

 (14) 
[   ]

  
 

  
[

     –        –          –          –    

       –              

                    

]    

      
  

 (15) 

 

It is noted that the sum of all the 

individual rows and all the individual 

columns of all these basic matrices are zero. 

This condition follows from equilibrium for 

all the stiffness sub-matrices, to hold for all 

possible material moduli. The linear 

combinations to obtain the stiffness sub-

matrices are (Cheng and Olhoff, 1993; 

Pedersen, 2005): 

 
         ̅            ̅    [   ]  

   ̅    ([   ]  [   ]
 
)    

(16) 

         ̅             ̅    [   ]

    ̅    ([   ]

 [   ]
 
) 

(17) 

         ̅    [   ]     ̅    [   ]
 
 

    ̅         

    ̅    [   ] 

(18) 

           
  (19) 

 

Green–Lagrange Strains in 2D Elasticity 

and the Involved Stiffness Matrices 

Linear displacement gradients  i,j uses in 

the linear strains (Cauchy strains, Euler 

strains and engineering strains)ij by the 

definition of: 

 
                        (20) 

 

and therefore implies a constant and 

symmetric stiffness matrix when also the 

material is modeled as linearly elastic. 

However, the Green–Lagrange strains are 

non-linear and define in Cartesian tensor 

notation as: 

 

     
 

 
(                     )

     

 
 

 
(                   

           ) 

(21) 

 

which mention that stiffness matrices 

depending on strain. 

 

Strain and Differential Strain in Matrix 

Notation 

The definition in matrix notation for a 

single component of the Green–Lagrange 

strain tensor is: 

 

          
                     

      (22) 

 

where {D} gives all the nodal 

displacements, and the strain/displacement 

vector {B
0

ij} contains the linear terms and 

[B
2

ij] contains the non-linear terms as the 

symmetric strain/displacement matrix. 

For finite element method {B
0

ij} and [B
2

ij] 

are given and will not depend on {D}. With 
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a differential of only {D} Eq. (23) is 

therefore obtained directly from Eq. (22): 

 

          
                

      

     
       

     
        

(23) 

 

i.e. the vector {B
L

ij}
T 

= {D}
T
[B

2
ij] depends 

linearly on {D}. 

Collecting all strain components in strain 

vector notation Eqs. (22) and (23) can be 

written as:  

 

    (      
 

 
     )       ̅     (24) 

     (      
 

 
     )     

   ̅      
(25) 

 

The matrix [B
0
] is independent of the 

nodal displacement {D} while the matrix 

[B
L
] is linear dependent on {D}. {D} gives 

all the nodal displacements, and the 

strain/displacement vector {B
0

ij} contains 

the linear terms and [B
2

ij] contains the non-

linear terms as the symmetric 

strain/displacement matrix. 

For Finite Element method {B
0

ij} and 

[B
2

ij] are given and will not depend on {D}. 

 

Finite Element Equilibrium and Secant 

Stiffness Matrix 

The general equilibrium that follows from 

the principle of virtual work is: 

∫                      from      

 

∫                      (26) 

 

where {A}: are given nodal loads and the 

resulting stresses      are conjugated to the 

differential strains     . These stresses have 

written in terms of resulting strains and 

further the resulting strains in terms of 

resulting displacements from Eq. (24): 

 
      ̅       ̅   ̅     (27) 

By the constitutive matrix   ̅  inserting 

(27) into Eq. (26) the constitutive secant 

relations have obtained.  

 

∫       ̅   ̅                      (28) 

 

Generally the secant stiffness matrix [Ss] 

will be non-symmetric because        ̅ . 
However, in a Newton–Raphson approach to 

carry out a solution to Eq. (28) we do not 

need invert or store this matrix. The secant 

stiffness matrix [Ss] is the physically most 

important matrix because it determines the 

equilibrium. Note that the constitutive 

matrix   ̅  involved is the secant constitutive 

matrix (Pedersen, 2005). 

 

Displacement Gradients and Results for 

Plane Problems 

The Green–Lagrange strains for the plane 

problems are: 

 

        
 

 
(    

       
 ) (29) 

        
 

 
(    

        
 ) (30) 

            (                     ) (31) 

 

The necessary displacement gradients are 

 x,x,  y,y,  x,y and  y,x, which was expressed 

by the displacement assumption (Eqs. (5) to 

(9)) in the Finite Element model are 

determined by: 

 
          

          
     

            
(32) 

          
          

     
            

(33) 

          
          

     
            

(34) 

          
          

     
            

(35) 
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Showing for these scalar quantities the 

two different forms, that are applied both for 

the quadratic terms needed in Eq. (30): 

 
  

   

     
 
               

           
(36) 

  
   

     
 
               

           
(37) 

  
   

     
 
               

           
(38) 

  
   

     
 
               

           
(39) 

                 

     
 
                        

 

           
            

(40) 

                 

     
 
                        

 

           
            

(41) 

 

By the taking the symmetric part of the 

dyadic product {H},x{H}
T

,y, we obtain the 

equality of νx,xνx,y = νx,yνx,x and of νy,xνy,y = 

νy,yνy,x. It is noticed that the products in Eq. 

(41) contain the same general form: 

 
                     

  
       (42) 

 

as utilized in the definition of the basic 

matrices of Eq. (12): 

 

       ∫          (43) 

 

From this follows that it should be 

possible to express the stiffness sub-matrices 

in terms of the basic matrices (Eqs. (13) to 

(15)), even with Green–Lagrange strains. 

However, the linear combination factors will 

then depend on strains and therefore need to 

be updated for each element (Pedersen, 

2005). The stress stiffness part of the 

tangential stiffness matrix is expressed by 

the matrices [B
2

xx], [B
2

yyj], and [B
2

xy]. These 

matrices we get from Eqs. (29) to (41). 

 

    
         

           (44) 

    
         

           (45) 

    
         

     [   ]         (46) 

 

Again using the directional decomposition 

as illustrated by: 

 
    

          
            

        (47) 

 

the final results obtained for the secant 

stiffness matrices as well as for the tangent 

stiffness matrices (Pedersen, 2005).  

 

Definition of Strain from Nodal 

Displacement 

In Figure 3, the numbering of the six 

nodal degrees of freedom for the element 

have defined. Based on these definitions 

short notations for displacement gradients 

and corresponding strains have defined. 

The displacement gradients ϒ1– ϒ4 in 

terms of the nodal displacements d1–d6 are: 

 
                           

        
(48) 

                           

        
(49) 

                            

        
(50) 

                         

            
(51) 

 

The linear strains such as Cauchy strains, 

Euler strains and engineering strains in terms 

of these defined displacement gradients are: 

 
        (52) 

              (53) 

              (54) 

 

and the non-linear strains (Green–Lagrange 

strains) are (Pedersen, 2005): 

 
                    

       
   

                
          

(55) 



Civil Engineering Infrastructures Journal, 49(2): 347 – 359, December 2016 

 

353 

 

                    
       

   

                
          

(56) 

                          

            

                  
         

(57) 

 

 
Fig. 3. Definition of nodal displacements d1–d6, for 

plane problems (Pedersen, 2005) 

 

Analytical Sensitivity Analysis Using 

Adjoint Approach 

In this article, the general Finite Element 

codes with straightforward implementation 

have provided with the sensitivity which, is 

obtained with discrete method. The adjoint 

method is preferred for efficiency due to the 

larger number of design variables compared 

with the system responses in nonparametric 

shape optimization (Wang et al., 2013). For 

g system response, S: is defined as a function 

of the design variable, U: is displacement 

vector and F: is vector of force.  

So the sensitivity of g(U(S),F(S),S) with 

respect to S is defined as:  

 
  

  
 

  

  
      

  
  

  
      

  
  

  
 (58) 

 

By rewriting the governing equation as:  

 
              

                
        

(59) 

total derivative of R depends in S is defined: 

 

  
  

  
 

  

  
        

  

  

        
  

  

 
   

  
      

  

  

 
  

  
 

(60) 

 

Introducing the adjoint variable λ=[λ
f
  

λ
p
]

T
 by multiplying to Eq. (60) and 

subtraction from Eq. (58): 

 
  

  
 

  

  
 (   )

 
 
  

  
 (   )

 
 
  

  

    (
   

  
  

    
  

  
 

  

  
)

 
  

  

    
   

  
   (    

    )
 
 
  

  

 (     )
 
 
  

  
 

(61) 

 

It is always assumed that design variables 

are self-determining of the external force 

loads and prescribed displacements. So: 

 
  

  
 [

   

  ⁄

 
] (62) 

  

  
 [

 
   

  ⁄
] (63) 

 

The third term in Eq. (61) is defined as:  

 

(        )
 
 
  

  

 ([  
    

  ] [ 
 

  
]     )

 

 
   

  
 

(64) 

 

and the fourth term in Eq. (15) is define as:  
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(     )
 
 
  

  
           

   

  
 (65) 

 

Forcing both terms in the parenthesis of 

Eq. (64) and Eq. (65) to zero leads to:  

 
         (66) 

 

and     is carried out from the linear 

problem as: 

 

   [
  

     
]  [

  
  

  
  

  
  

  
  

]  [
  

     
]

 [
    

 
] 

(67) 

 

where Y: is the force vector which depend on 

the prescribed displacement (Wang et al., 

2013).  

At last, the sensitivity of response g is 

defined as:  

 
  

  
 

  

  
 [

  

     
]  

   

  
   (68) 

 

Semi-Analytical Sensitivity Analysis  

Sensitivity analysis has been widely 

applied in engineering design to explore the 

model response behavior, to evaluate the 

accuracy of a model, to test the validity of 

the assumptions made and etc. (Shahabian et 

al., 2013). 

The semi-analytical method utilized to 

obtain the proximate partial derivatives of 

the secant stiffness matrix (Wang et al., 

2013):  

 
        

  

 
                   

  
 

(69) 

 

The approximation will be replaced by 

Finite Differencing based on reaction force 

results when the secant stiffness matrix is 

not present. Since the reaction force vector 

equals to multiply secant stiffness matrix by 

corresponding displacement vector, the 

semi-analytical could be define as:  

 
        

  
  

 
                       

  

 
                

  
 

(70) 

 

Although nonlinear Finite Element 

analysis results the reaction force, but the 

approximation equilibrium avoids the direct 

estimate of the secant stiffness matrix. Due 

to the design variables used in 

nonparametric shape optimization usually 

are impressive to obtain the computational 

efficiency, only the semi-analytical 

approximation and the nonlinear analysis 

obtained on element level (Wang et al., 

2013).   

For the sensitivity analysis the following 

procedure is developed straightforward from 

Eqs. (67), (68) and (70). First to obtaining 

the equilibrium point U*, the full model 

geometric nonlinear analysis carried out. 

Second, displacements       determined as 

boundary conditions by carrying out linear 

perturbation at equilibrium point U* with 

external force loads. Then λ is defined as the 

displacement result of the analysis. For each 

design variable, the following steps are 

obtained separately. After that nodal force 

results from adapted neighbor elements 

around the design node defined in Step 1 by 

F(U*,s), then a nonlinear analysis on the 

extracted small model with disturbed design 

node with boundary conditions U* 

accomplish. This analysis results the nodal 

force as F(U*,s+∆s). Then evaluate explicit 

expression of ∂g/∂s. Finally according to Eq. 

(68) the sensitivity of response g with the 

respect of design variable is obtained. The 

total effort for the procedure is 1 time full 

nonlinear analysis of the structure for a 

model with M responses and N design 

variables, (Nonlinear analysis on element 
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level models about each design node for N 

times plus linear perturbation analysis at the 

equilibrium point for M times). 

Although the term         in Step 2 

disappears, this procedure for sensitivities 

analysis of geometric nonlinear structure 

under external force loads is constant. 

 

Verification and Simplifications 

A number of tests are performed relative 

to the computational use of these analytical 

results. The relation between the secant and 

the tangential stiffness matrices are 

confirmed by numerical differences, treating 

the tangential stiffness matrix as a measure 

of sensitivities. In orthotropic material 

directions (Cxxxy =Cyyxy=0), and for isotropic 

material further simplifications Cyyyy=Cxxxx 

and Cxyxy=(Cxxxx−Cxxyy)/2) (Pedersen, 2005).  

To verify the results, Results with the 

program were compared by another 

commercial finite element (ABAQUS 

software) that include the geometric non-

linearity. Displacement of free end of the 2D 

cantilever beam were utilized to compare the 

results. These comparisons are shown in 

Figures (5) to (10).  The results give weight 

to the accuracy of the modeling. It implies 

that the displacement obtained are 

approximately the same in both modeling. 

 

CANTILEVER BEAM EXAMPLE  

 

A 2D plain stress cantilever beam utilized as 

an example as shown in Figure 3a. the size 

of beam is 600 mm × 30 mm with the 

constant thickness of element ''t'' equals to 

0.25 mm. The loads contained two 

prescribed displacements on the free end of 

cantilever beam which is not fixed, u1x = u2x 

= 100 mm. specimen is meshed with a total 

number of 360 and 244 nodes with 2D three-

node linear solid element. Mechanical 

properties Young’s modulus and Poisson’s 

ratio are considered 210 GPa and 0.3 

respectively with the assumption of linear 

isotropic material. The system response is 

carried out as the sum of the downward 

reaction forces at the two points, i.e. g = 

F1x+F2x. x-coordinates of middle nodes of 

the bottom surface are considered as the 

design variables (red points illustrated in 

Figure 4b). 

 

Numerical Results  

An in-house Finite Element solver is 

utilized to implement the procedure. In this 

code, three-node linear element is used with 

the analytical secant and tangent stiffness 

matrices (Pedersen, 2006; Pedersen, 2008; 

DeValve and Pitchumani, 2013). The 

numerical results of a benchmark cantilever 

beam example are presented, and then the 

accuracy problem is discussed. (Wang et al., 

2013).  

 

Efficiency of Element Size  

Figures 5 to 10 show the results of 

specimens with the thickness of 0.03, 0.025, 

0.02, 0.015, 0.01 and 0.005 respectively. The 

horizontal axis shows the variations of 

element sizes in "Log10a" which "a" is the 

element size of specimens in centimeter. The 

vertical axis shows obtained the nonlinear 

displacement on the end that is not fixed in 

centimeter. The load on the end of cantilever 

beam is equal to 1000 N. 

 

 
Fig. 4. a) Model description 

 

 
Fig. 4. b) Design nodes along the beam 
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Fig. 5. Obtained non-linear displacement in x 

direction against the logarithm of the size of the 

element, for the specimen with the thickness of 0.03 

 

 
Fig. 6. Obtained non-linear displacement in x 

direction against the logarithm of the size of the 

element, for the specimen with the thickness of 0.025 

 

 
Fig. 7. Obtained non-linear displacement in x 

direction against the logarithm of the size of the 

element, for the specimen with the thickness of 0.02 

 

 
Fig. 8. Obtained non-linear displacement in x 

direction against the logarithm of the size of the 

element, for the specimen with the thickness of 0.015 

 

 
Fig. 9. Obtained non-linear displacement in x 

direction against the logarithm of the size of the 

element, for the specimen with the thickness of 0.01 

 

 
Fig. 10. Obtained non-linear displacement in x 

direction against the logarithm of the size of the 

element, for the specimen with the thickness of 0.005 
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Fig. 11. Total iteration against different thicknesses 

for element size of 1 cm 

 

According to the results accuracy 

increases by decrease of element sizes. Total 

iteration against different thicknesses for 

element size of 1 cm between MATLAB 

code and ABAQUS software for the 

specimen have been compared in Figure 11, 

this diagram obviously shows in this method 

time necessary for calculating for all 

thickness is decreased.  

 

Sensitivity Results  

The system response is defined as: 

 

 
       (71) 

     

[
 
 
 
 

  

    

  

    ]
 
 
 
 

 [
 
 
] (72) 

  

  
   (73) 

 

The sensitivity results are illustrated in 

Figure 12. 

Figure 13 shows the scaled sensitivities. 

It is obvious that when the design nodes 

position is nearby the loading end (as x-

coordinate increasing) the relative error 

increases. In linear case this phenomenon is 

consistent (Bletzinger, 2014; Firl and 

Bletzinger, 2012), which is because of the 

rigid “rotation” of elements. 

 

 
Fig. 12. Sensitivity results for specimen 

 

 
Fig. 13. Scaled sensitivity results for specimen 

 

Efficacy of Perturbation Size and Higher 

Order Finite Difference Scheme  

The selection of perturbation size highly 

influences the accuracy of sensitivity results, 

and to reducing the error a higher-order 

Finite Difference scheme will help (Wang et 

al., 2013; Wang et al., 2015). to apply the 

forward scheme method in Eq. (70) a central 

Finite Difference scheme is utilized:  

 
         

  
   

 
                     

   
 

(74) 

 

Figure 14 compares the sensitivity result 

of the forward and central scheme method 

with different perturbation size. It is obvious 

that the stability of the sensitivity results 

well improves by the central scheme 

method. 
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a) Analysis with forward Finite Difference scheme 

 
b) Analysis with central Finite Difference scheme 

Fig. 14. Sensitivity results of specimen with different 

size of perturbation 

 

CONCLUSIONS  

 

In this article, the usage of formulation of 

secant nonlinear stiffness for discrete 

analytical sensitivity analysis in geometric 

nonlinear problem with prescribed 

displacements and influence of specimen 

mesh sizes have been investigated. A 

corresponding semi-analytical approach is 

utilized for the calculation. The procedure 

with MATLAB code is carried out in Finite 

Element and illustrated using a cantilever 

beam model. Higher-order Finite Difference 

scheme method could be greatly yield to the 

accuracy. To take the place of forward 

scheme method a central Finite Difference 

scheme method is performed, the stability of 

the sensitivity results improved by the 

central scheme method. Regardless of 

necessary time for calculating, the accuracy 

increase by decrease of element sizes.  
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