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ABSTRACT: This paper presents the bending analysis of annular plates by the indirect 

Trefftz boundary approach. The formulation for thin and thick plates is based on the 

Kirchhoff plate theory and the Reissner plate theory. The governing equations are therefore 

a fourth-order boundary value problem and a sixth-order boundary value problem, 

respectively. The Trefftz method employs the complete set of solutions satisfying the 

governing equation. The main benefit of the Trefftz boundary method is that it does not 

involve singular integrals because of the properties of its solution basis functions. It can 

therefore be classified into the regular boundary element method. The present method is 

simple and efficient in comparison with the other methods. In addition, the boundary 

conditions can be embedded in this method. Finally, several numerical examples are shown 

to illustrate the efficiency and simplicity of the current approach. 

 

Keywords: Annular Plates, Indirect Trefftz Method, Kirchhoff Plate Theory, Reissner Plate 

Theory. 

 

 

INTRODUCTION 

 

Plates are widely used as classical structural 

components in civil and mechanical 

engineering projects. Due to their practical 

importance, a lot of effort is devoted to the 

analysis of plates. Recently, this subject has 

been extensively studied by many researchers 

such as Abdollahzadeh and Ghobadi (2014), 

Shahabian et al. (2013), Mirzapour et al. 

(2012) and Ghasemieh and Shamim (2010). 

The Kirchhoff plate theory is the simplest 

plate theory. The shear deformation in the 

plate thickness is neglected in this theory. 

The longitudinal elastic modulus is much 

higher than the transversal and the shear 

modulus in the thick and moderately thick 

plates. Therefore, the use of shear 

deformation plate theory is recommended 

for the moderately thick and thick plates. 

The Reissner model is known as first-order 

shear deformation theory (FSDT). This 

model accounts for the shear deformation 

effect through the thickness of the plate in 

the simplest way. This approach gives 

satisfactory results for a wide variety of 

problems, even for thick and moderately 

thick plates. Because of its computational 
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efficiency, this model is applied to large-

scale computations of industrial applications 

(Zenkour, 2003). 

This paper presents the bending analysis 

of annular plates by the indirect Trefftz 

boundary approach. The Trefftz method can 

be classified into the category of the 

boundary-type solution procedures. The 

problem can be solved by discretization of 

the boundary alone when the governing 

equation of the object is a linear 

homogeneous differential equation. Data 

generation is therefore much easier than the 

domain-type solution procedures. 

Furthermore, the Trefftz Method is common 

and easier than the boundary element 

method of singular property (Kita and 

Kamiya, 1995).  

In this approach, the trial functions are 

expanded in a sequence of linear independent 

Trefftz functions and a discrete set of 

unknown coefficients a. However, the 

weighting functions may be chosen in 

different ways. When the Dirac delta function 

is used, the method leads to the Trefftz 

collocation method (TCM). If the Trefftz 

function is employed as the weight function, 

the method leads to the Trefftz Galerkin 

method (TGM) (Jin et al., 1993). Trefftz-

based formulations have been studied by 

several authors, such as Zielinski and 

Zienkiewicz (1985), Cheung et al. (1989), 

Zielinski (1995), Pluymers et al. (2007), Lee 

et al. (2007), Liu (2007a, 2007b), Young et 

al. (2007), Li et al. (2008), Karaś and 

Zieliński (2008), Qin and Wang (2008), Chen 

et al. (2009), Lee and Chen (2009), Lee et al. 

(2010), Li et al. (2010), Chen et al. (2010a, 

2010b), Li et al. (2011), Maciąg (2011), Li et 

al. (2013), Maciąg and Pawińska (2013), 

Grysa and Maciejewska (2013), Karageorghis 

(2013), Kretzschmar et al. (2014), Ku et al. 

(2015), and Brański and Borkowska (2015). 

In section the basic equations based on 

the Kirchhoff plate theory and the Reissner 

plate theories are described in detail. Then 

the complete solutions and complete sets are 

illustrated. The indirect Trefftz method is 

explained next and some numerical 

examples are shown to illustrate the 

efficiency of the Trefftz method 

 

BASIC EQUATIONS 

 

An annular plate is considered in a Cartesian 

coordinate system xi, with its middle surface 

in the x1–x2 plane i.e. x3 = 0 (Figure 1). The 

material of the annular plate is elastic and 

isotropic with modulus of elasticity, E, and 

Poisson’s ratio, ν. The load q(x1, x2) per 

square area is applied on the upper surface 

of the plate, positive in the direction of the 

axis x3 (Timoshenko and Woinowsky-

Krieger, 1959). 
 

 
Fig. 1. An annular plate in bending 
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By assuming small deflections, and in the 

absence of body forces, the static 

equilibrium can be as stated as follows 

(Ghannadiasl and Noorzad, 2007): 

 

(1) , 0  M Q     

(2) , 0 Q q     

 

where Mαβ and Qα: are bending moment and 

shear force per unit length, respectively.  

For thin plates, the formulation is based 

on the Kirchhoff plate theory, so the 

governing equation is a fourth-order 

boundary value problem. The formula for 

thick plates is based on the Reissner plate 

theory, the governing equation is therefore a 

sixth-order boundary value problem. 

 

Kirchhoff Plate Theory 

According to the Kirchhoff plate theory, 

the equilibrium equations for axisymmetric 

bending of the annular plate in question in 

polar coordinates (Figure 2) can be given by: 

 

(3) 
1

0r
r

Q
Q q

r r


  


 

(4) 0rr
r

M MM
Q

r r


  


 

 

 
Fig. 2. Reference system and variables 

Based on Hooke’s law and Kirchhoff’s 

assumptions, the bending moment and 

displacement relations can be calculated as 

follows: 

 

(5) 

K K
K r r
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r r
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where 3 2D Eh 12(1 )  : is the flexural 

rigidity of the plate and K

r : is the angle of 

rotation from the normal to the mid-surface. 

The superscript K and w
K
: are the Kirchhoff 

plate quantities and average transverse 

displacement, respectively. By substituting 

Eqs. (5) and (6) into Eq. (4), the shear force 

to displacement relation can be obtained 

with the following: 

 

(7) 

 
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Based on the Kirchhoff plate theory, 

equivalent change of the slopes of the 

normal on the mid-surface is given as 

follows: 

 

(8) 
K

K

r

w

r



 


 

 

By substituting Eq. (8) into Eqs. (5) and 

(6), the bending moment to displacement 

relations can be determined as: 

 

(9) 

2

2

K K
K

r

w w
M D
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(10) 

2
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1K K
K w w
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Also, by substituting Eq. (8) into Eq. (7), 

the shear force–displacement relation can be 

obtained by the following: 
 

(11)  2K K

rQ D w
r


   


 

 

where  : is the Laplace operator. The 

Marcus moment KM : is defined as: 
 

(12) 
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By substituting Eq. (11) into Eq. (3), the 

governing differential equation for the 

Kirchhoff plate is given by (Timoshenko and 

Woinowsky-Krieger, 1959): 
 

(13) 
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To consist of: 
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Thin plate bending solutions can be 

obtained by solving this governing equation 

with the boundary conditions. The typical 

boundary conditions for the axisymmetric 

bending of annular plates are listed in Table 

1.  

 

Reissner Plate Theory 

Reissner developed a first order shear 

deformable plate model to analyze the effects 

of increasing thickness. In this model, the 

Kirchhoff assumption is relaxed to allow for 

the rotation of normal to the mid-plane during 

deformation. Reissner plate theory accounts 

for the shear deformation in the thickness in 

the simplest way. 

The equilibrium equations for the plate 

bending, based on the Reissner plate theory, 

are given by Eqs. (3) and (4). In the Reissner 

plate theory, the stress resultant–

displacement relationships for homogeneous 

plates are given as follows: 
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where 
R

r : is the equivalent change of the 

slopes of the normal about the mid-surface. 

q: is the transverse load and the superscript 

R: shows the Reissner plate quantities.  

By substituting Eqs. (14) and (15) into 

Eq. (4), one may get an alternative 

expression for the shear force: 
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Based on the first order shear deformable 

plate theory, the equivalent change of the 

slopes of the normal about the mid-surface is 

given as follows (Timoshenko and 

Woinowsky-Krieger, 1959): 
 

(17) 
 12 1

5 Eh

R
R R

r r

w
Q

r




 
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where w
R
: is the average transverse 

displacement. By substituting Eq. (17) into 

Eqs. (14) and (15), the bending moment to 

displacement relations can be obtained as: 

 

Table 1. Typical boundary conditions for annular plates 

 Clamped Boundary Simply Supported Boundary Free Boundary 

r = a 
W = 0 W = 0 Qr = Qa 

dw/dr = 0 Mr = Ma Mr = Ma 

r = b 
W = 0 W = 0 Qr = Qb 

dw/dr = 0 Mr = Mb Mr = Mb 
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(18) 

 

2 2

2

2

5

          
10 1

RR R
R r
r

Qw w h
M D

r r r r

h
q







   
     

   




 

(19) 

 

2 2

2

2

1

5

          
10 1

RR R
R rQw w h

M D
r r r r

h
q

 





  
     

  




 

 

By substituting Eqs. (18) and (19) into 

Eq. (4), the shear force–displacement 

relation can be obtained as: 
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The Marcus moment RM : is defined as: 
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Eqs. (3) and (20) can be combined to 

provide the fourth-order governing equation 

for the Reissner plate deflection: 
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to consist of: 
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Finally, by combining Eqs. (17) and (3), 

one may write (Reismann, 1988): 
 

(24) 
5 Eh   

 r.q
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R
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By introducing two generalized 

displacement functions F and f, the sixth-

order governing equation can be split into 

two partial differential equations. One is the 

plate bending equation with F only; the other 

is the membrane on elastic foundation 

equation with f only. One can easily obtain 

the homogeneous solutions for these 

equations: 

 

(25) 
4  D F q   

(26) 
2

2

10
0f f

h
    

 

By inserting Eqs. (25) and (26) into Eqs. 

(17) and (22), values of average transverse 

displacement and the equivalent change of 

the slopes of the normal on the mid-surface 

are equal to: 
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Eventually, the generalized stress-

displacement relations can be expressed by 

F and f. 

 

COMPLETE SOLUTIONS AND 

COMPLETE SETS 

 

The T-complete set is derived by solving the 

homogeneous equations of a problem. This 

can be done using the method of separation 

of variables (Finlayson, 1972). The 

fundamental solutions with respect to 

variable θ are sin(nθ), cos(nθ), with n = 0, 1, 

2, ..., being the separation parameter. 

Solution functions for variable r are obtained 

from the fourth-order differential equation 

for the Kirchhoff plate or a set of fourth and 

second-order equations for the Reissner 
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plate. For each separation parameter n, it 

deals with ordinary differential equations so 

the demanded number of fundamental 

solutions is equal to the order of the 

equation. The solution of the problem of the 

bending of an annular plate is a linear 

combination of the fundamental solutions. 

On the other hand, some of the functions 

may be eliminated due to physical reasons, 

e.g., a trial function tends to infinity at a 

certain point, whereas a finite result is 

expected (Wroblewski, 2005). 

The T-complete set of solutions for the 

ring domain problem is as follows: 

 

(29) 
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where n: indices vary in the range {2,3,…}.  

 

INDIRECT TREFFTZ FORMULATION 

 

The original formulation presented by 

Trefftz in 1926 is considered to be the 

indirect Trefftz method. The solution to the 

problem is estimated by the superposition of 

the functions satisfying the governing 

equation. Thus, the unknown parameters are 

determined so that the approximate solution 

satisfies the boundary conditions by the 

collocation, the least square or the Galerkin 

method (Kita and Kamiya, 1995). To 

illustrate the weighted residual procedure 

(Banerjee, 1981), we should consider the 

determination of a function (u), which may 

be a quantity within a region Ω bounded, by 

Γ, defined by the general equation: 

 

(30)   0               in L u    

This is subject to the boundary 

conditions: 
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These conditions are obtained from the 

boundary conditions mentioned before. The 

operator L may be either a differential or 

integral operator and is either linear or 

nonlinear in nature. If u
0 

is to some degree of 

approximation, Eqs. (30) and (31) will not 

be satisfied exactly. To determine the 

approximate solution of u
0
, some weighted 

integral of errors is set to zero, so that:  
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where *

i
w  (i = 1-7): are a set of independent 

weighting functions and in this case, the 

operator L: is defined as follows:  

quDL(u)  4  

The approximate solution of the 

generalized displacements F can be 

expressed by a series as: 
 

(33)   Fi iF N a  

 

where ai: is undetermined coefficient and 

NF: is the complete set of Trefftz functions. 

For any function NF, then 
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04  FiN  

By substituting Eq. (33) into deflection 

and stress–displacement equations and 

transforming the polar coordinate system to 

the local coordinate system (n,s), the 

variables in Eq. (32) can be written as: 

 

(34) 

0 0
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where a: is the undetermined coefficient and 

functions of Nij ( i = 1-6 , j =1,2,3,.. ) can be 

obtained by putting the T-complete functions 

into deflection and stress-displacement 

equations. In the Galerkin method, the 

Trefftz functions are also used as the 

weighting functions such that (Ghannadiasl 

and Noorzad, 2009): 
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By substituting Eqs. (34) and (35) into 

Eq. (32), the matrix equation for the solution 

of the problem  gets: 
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NUMERICAL EXAMPLES 

 

In this section, the results of several simple 

examples are presented to validate the 

proposed method. The solutions were 

obtained using the Trefftz Galerkin Method 

(TGM). The boundary conditions include 

constant, linear and quadratic interpolations. 

The concentrated or distributed loads are 

either transformed into equivalent boundary 

integrals, by introducing a particular 

solution, by using a double node, or by 

placing non-conforming elements at a 

singular corner point (Jin and Cheung, 

1999). For simplicity, ν = 0.3 and D = 1 

have been used in the following examples. 

 

Example 1: Simply supported annular 

plate under uniformly distributed load 

A simply supported annular plate is 

subjected to a unit, uniformly distributed 

load. As a result of the presence of a smooth 

boundary, continuous elements have been 

adopted. The annular plate is supposed with 

the following characteristics: 
1                  1

0.1             0.02

1                  16

a D

b a h a

q number of elements

 

 

 

 

The deflection, bending moment and 

rotation along the diameter of the simply 

supported annular plate subjected to a unit 

uniformly distributed load are shown in 

Figures 3-5 and Table 2. The comparison 

with exact results shows that the solutions 
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are in good agreement. It is evaluated that 

the results are fairly close and the maximum 

difference is 0.1%. The exact solution based 

on the Kirchhoff plate theory is given by 

(Reddy, 2001): 
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Fig. 3. Deflection along radius for simply supported annular plate (b = 0.1a, h = 0.02a) 
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Fig. 4. Bending moment along radius for simply supported annular plate (b = 0.1a, h = 0.02a) 
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Fig. 5. Rotation along radius for simply supported annular plate (b = 0.1a, h = 0.02a) 

 
Table 2. Simply supported annular plate under uniformly distributed load (a = 1, b = 0.1a, h = 0.02a) 

  r = 0.2 0.4 0.5 0.7 0.9 εMax 

In
d

ir
ec

t 

T
re

ff
tz

 

M
et

h
o

d
 

Deflection along radius 0.003434 0.009495 0.009729 0.006328 0.001036 0.0966 percent 

Bending moment along radius 0.058830 0.095220 0.095870 0.075054 0.030313 0.00989 percent 

Rotation along radius -0.003930 0.011924 0.020474 0.035198 0.043105 0.02544 percent 

E
x

ac
t 

S
o

lu
ti

o
n
 

Deflection along radius 0.003433 0.009495 0.009728 0.006328 0.001035 --- 

Bending moment along radius 0.058828 0.095221 0.095869 0.075054 0.030310 --- 

Rotation along radius -0.003931 0.011924 0.020474 0.035199 0.043107 --- 

 

Example 2: Annular plate under 

uniformly distributed load with different 

thicknesses 

A simply supported annular plate with 

different thicknesses subjected to a 

uniformly distributed load is taken as an 

example. The corresponding discretization 

and the number of elements can be similarly 

adopted as in Example 1. The annular plate 

characteristics are as follows: 

1          0.1

1            16

D b a

q number of elements

 

 
 

The deflection at several points of the 

plate, with thickness ratio h/a ranging from 

0.0005 to 0.2, is given in Figure 6 and Table 

3. It can be seen that the present method 

gives satisfactory results and that the method 

performs equally well for moderately thick 

plates as well as for very thin plates.  

 
Table 3. Deflection at several points of the plate with thickness ratio h/a ranging from 0.0005 to 0.2 

h/a 
W 

r/a = 0.2 r/a = 0.4 r/a = 0.5 r/a = 0.7 r/a = 0.9 

0.2 0.003434 0.009495 0.009729 0.006328 0.001636 

0.1 0.006475 0.012164 0.012383 0.009180 0.002660 

0.05 0.007234 0.012829 0.013045 0.009892 0.003483 

0.01 0.007477 0.013042 0.013257 0.010119 0.003746 

0.005 0.007484 0.013048 0.013264 0.010126 0.003754 

0.002 0.007487 0.01305 0.013266 0.010128 0.003756 

0.0005 0.007487 0.01305 0.013266 0.010129 0.003756 

Kirchhoff Solution 0.007487 0.01305 0.013266 0.010129 0.003756 
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Fig. 6. Deflection of the annular plate with thickness ratio h/a ranging from 0.0005 to 0.2 

 

Example 3. Annular plate with different 

ratio inner radius to outer radius 

A simply supported annular plate with a 

different ratio of inner radius to outer radius, 

subjected to a uniformly distributed load is 

taken. The annular plate is supposed with the 

following characteristics: 

1          0.2             

1             16

D h a

q number of elements

 

 
 

The results of the deflection and bending 

moment at several points of the plate with 

ratios of inner radius to outer radius ranging 

from 0.05 to 0.2 are given in Tables 4 and 5.  

It was evaluated that the indirect Trefftz 

boundary method gave satisfactory results. 

Furthermore, the method is accurate for 

holes that have a diameter smaller than the 

thickness of the plate. 

 

Table 4. Deflection at several points of the plate with ratio b/a ranging from 0.05 to 0.2 

b/a 
W 

r/a = 0.2 r/a = 0.4 r/a = 0.5 r/a = 0.7 r/a = 0.9 

0.05 0.013434 0.018132 0.017280 0.011313 0.001553 

0.1 0.003434 0.009495 0.009729 0.006328 0.001636 

0.15 0.001243 0.003978 0.004781 0.002987 0.001068 

0.2 0.000000 0.001852 0.002452 0.001631 0.000808 

 
Table 5. Bending Moment at Several Points of the Plate with Ratio b/a Ranging from 0.05 to 0.2. 

b/a 
W 

r/a = 0.2 r/a = 0.4 r/a = 0.5 r/a = 0.7 r/a = 0.9 

0.05 0.0987832 0.1181801 0.1132742 0.084034 0.0329671 

0.1 0.0588286 0.0952209 0.0958695 0.0750546 0.0303103 

0.15 0.0278759 0.0772733 0.0822362 0.0680033 0.0282209 

0.2 0.0000000 0.0609646 0.0698232 0.0615674 0.0263110 
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CONCLUSIONS 

 

This paper presents the bending analysis of 

annular plates using the indirect Trefftz 

boundary method. The indirect 

approximation method is applied using the 

displacement functions F and f for an 

annular plate, and by adopting the Trefftz 

function and the T-complete set. The main 

conclusions of this paper can be summarized 

as follows: 

1. Numerical solutions show that the present 

method is not only effective but also 

provides accurate numerical results. 

2. The method is accurate for holes that have 

a diameter smaller than the thickness of 

the plate. 

As a result of the use of the complete sets 

of solutions used as weighting and/or trial 

functions, there is no need to use the singular 

integral. Therefore, it is expected that this 

method can be a suitable method for the 

analysis of arbitrarily shaped plates.  
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