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Abstract: Steel corrosion of bars in concrete structures is a complex process which leads to 
the reduction of the cross-section bars and decreasing the resistance of the concrete and steel 
materials. In this study, reliability analysis of a reinforced concrete beam with corrosion 
defects under the distributed load was investigated using the enhanced Hasofer-Lind and 
Rackwitz-Fiessler (EHL-RF) method based on relaxed approach. Robustness of the EHL-RF 
algorithm was compared with the HL-RF using a complicated example. It was seen that the 
EHL-RF algorithm is more robust than the HL-RF method. Finally, the effects of corrosion 
time were investigated using the EHL-RF algorithm for a reinforced concrete beam based on 
flexural strength in the pitting and general corrosion. The model uncertainties were 
considered in the resistance and load terms of flexural strength limit state function. The 
results illustrated that increasing the corrosion time-period leads to increase in the failure 
probability of the corroded concrete beam. 

Keywords: Corrosion, Enhanced HL-RF method, Failure probability, Reliability analysis, 
Reinforced concrete. 

 

INTRODUCTION 

 

 

Preventing structural and non-structural 

damages are the aims of resisting 

deterioration that can lead to the reduction of 

the safety factor of the concrete structures 

against the applied external loads by 

corrosion defects. These failures include the 

reduction of cross-section bars and the 

changes in the steel mechanical behavior 

(Stewart, 2009). Therefore, the resistance of 

reinforced concrete structures i.e. ultimate 

stress and cross-section are reduced in 

corrosion environments. The approximation 

of structural failure probability can be used 

for estimating the performance and life-time 

of corroded concrete structures.  

                                                           
 Corresponding author Email: Bkeshtegar@uoz.ac.ir 

Stewart and Rosowsky (1998) and 

Stewart (2000) suggested an experimental 

model which can estimate the reduction of 

bars using two variables of initiation time 

and propagation time of corrosion. 

Rondringuez et al. (1996) studied the 

corrosion rate of bar diameter in general 

and pitting corrosion. Tarighat and 

Jalalifar (2014) suggested a mathematical 

model for the corrosion rate based on the 

results of Rondringuez et al. (1996). The 

corroded steel cross-section with pitting 

was presented by Stewart (2004). This 

corroded model was also applied by other 

researchers (Stewart and Al-Harthy, 2008; 

Stewart, 2009; Stewart et al., 1994- 2009). 

The failure probability of corroded 

reinforced concrete beam was investigated 

using HL-RF method by Stewart and 
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Rosowsky (1998), Stewart (2004), Stewart 

and Al-Harthy (2008), and Stewart (2009). 

The first order reliability method is widely 

used due to simplicity and efficiency 

(Naess et al., 2009; Keshtegar and Miri, 

2014a). The iterative FORM was 

established by Hasofer and Lind (1974), 

and Rackwitz and Fiessler (1978) extended 

the Hasofer and Lind approach to include 

the distribution information of random 

variables (HL-RF method). The failure 

probability is approximated based on 

reliability index (  ) in FORM as (Santosh 

et al., 2006): 
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where   is standard normal cumulative 

distribution function while z is standard 

normal variable. The HL-RF contains the 

numerical instability such as periodic, 

bifurcation and chaos in nonlinear 

performance functions (Yang, 2010). Liu 

and Kiureghian (1991) introduced a merit 

function which monitors the convergence 

of HL-RF iterations. Santosh et al. (2006) 

improved the modified HL-RF method by 

selecting an appropriate step size based on 

Armijo rules. Yang (2010) suggested 

stability transformation method to control 

iterative instability of FORM approach. 

Keshtegar and Miri (2013) developed the 

Enhanced HL–RF without line search rule 

to achieve stabilization of FORM. 

Recently, Keshtegar and Miri (2014a) 

introduced the non-linear conjugate line 

search to overcome the difficulties of the 

HL-RF method. The conjugate HL-RF 

method is more robust than the HL-RF, but 

extensive computational iterative formula 

was developed to achieve stability solution 

with Wolfe conditions (Keshtegar and 

Miri, 2014a). The line search rules are 

important factor to achieve stabilization in 

FORM algorithms. Consequently, the 

Enhanced HL-RF can be used to search the 

MPP without line search such as merit 

function (Liu and Kiureghian, 1991), 

Armijo (Santosh et al., 2006), or Wolfe 

conditions (Keshtegar and Miri, 2014a), 

efficiently and simply.  

In this paper, the EHL–RF is described to 

estimate the failure probability of corroded 

reinforcing concrete beam with pitting and 

general corrosions. By comparing the HL–

RF and EHL-RF algorithms in a complex 

and non-Normal dynamic problem, it shows 

that the EHL-RF approach is more robust 

than the HL-RF method. Then, a corroded 

model of reinforced concrete beams is 

presented based on various uncertainties 

including model, resistance, load, and yield 

resistance corroded bars with normal and 

non-normal random variables. The effect of 

time-period in general and pitting corrosion 

is investigated.  

 

RELIABILITY ANALYSIS METHOD 

 

The main effort of FORM searches the 

most probable point (MPP), which 

corresponds to the maximum likelihood of 

failure occurrence (Santosh et al., 2006). 

Generally, the HL-RF iterative formula is 

used for the MPP search. 

 

The HL-RF Algorithm  

The iterative formula of HL-RF method 

in FORM is defined as: 
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where )( kUG : is the gradient vector of 

the limit state function. k: is the iteration 

number and U: is the standard normal 

variable which can be written as follows 

(Santosh et al., 2006): 
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where e

x  and e

x : are the equivalent mean 

and the standard deviation respectively, 
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which are given as (Keshtegar and Miri, 

2013): 
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in which  : is normal probability density 

function and )(xFX
 and )(xf X

: are the 

cumulative distribution and probability 

density function of the random variable X, 

respectively.  

 

The EHL-RF Algorithm  

Recently, Keshtegar and Miri (2013) 

proposed an enhanced HL-RF algorithm 

based on relaxed approach, which is 

defined based on second-order fitting 

between 0 and 1 using the information 

from the new and previous iterations. The 

iterative formula of enhanced HL-RF 

algorithm is given by the following 

relations (Keshtegar and Miri, 2013):  
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 where k : is known as the relaxed 

coefficient at the k
th

 iteration; It is a real 

and positive number given as: 
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where kd : is the search direction vector 

computed as: 
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in which HL
kU 1

: is the new point from the 

HL-RF algorithm it is also assumed that 

10  k . Keshtegar and Miri (2013) 

showed that the EHL-RF is more robust 

than the HL-RF method and it has 

acceptable convergence in FORM. 

 

Validation of the EHL–RF Algorithm 

A complicated structural limit state 

function with non-normal variables is 

selected from Keshtegar and Miri (2014a) 

to compare the robustness of EHL–RF 

algorithm with HL-RF. A two degree of 

freedom primary-secondary dynamic 

system was applied in this example. Its 

dynamic characteristics were defined by 

lumped mass as sM  and pM , spring 

stiffness of sK  and pK , and damping 

coefficient of s  and p  for the primary 

(subscript p) and secondary (subscript s) 

oscillators, respectively (Figure 1).  
 

 

 
Fig. 1. Two-degree of freedom dynamic system  
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The force capacity of the secondary 

spring is considered for limit state function 

as (Keshtegar and Miri, 2014a): 

 
2/12])[( sxEPKsFsG   (11) 

 

where Fs : denotes force capacity. P : is 

the peak factor that is considered as a 

deterministic constant with the value of 3 

and ][ 2
sxE : is mean-square relative 

displacement response: 
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p

s

M

M
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 : are average frequency 

and damping ratio of the two systems, 

a

sp







 : is a tuning parameter and 0S : is 

intensity of the white-noise base 

excitation. This example included eight 

independent basic random variables with 

lognormal distributions, their means and 

standard deviations are listed in Table 1.  

 

 

 

According to the results extracted from 

Kiureghian and Stefano (1991), reliability 

index was equal to 2.01. This example was 

recently analyzed by Keshtegar and Miri 

(2014a), in which the converged results 

based on conjugate HL-RF method 

attained a safety index of 2.016446 after 

24 iterations. The HL–RF method is 

yielded to unstable solutions as periodic-2 

of the safety index i.e. {1.04958, 1.15364}. 

The probability of failure is obtained based 

on the Mont Carlo simulation using 2.5 

×10
5
 samples as 004793.0fP  (  = 

2.59042). The converged reliability index 

and the MPP point were attained at   = 

2.013352 and X
*
= [

p =0.0280, 
s =0.0121, 

sF =13.7367, 
0S =103.7133, 

pM = 1.0019, 

sM = 0.0101, 
pK =1.1020, sK =0.0112] 

after 22 iterations by the EHL–RF 

algorithm, respectively. It can be seen that 

the EHL–RF algorithm is converged to 

excellent and stable results and it is more 

robust than the HL-RF. 

 

MATHEMATICAL MODEL FOR 

CORRODED CONCRETE BEAM 

 

A reinforced concrete beam under 

distributed load with rectangular cross-

section is shown Figure 2. The limit state 

function is defined based on the maximum 

binding moment.  

 
Fig. 2. Reinforced concrete beam under distributed load 

 

Table 1. Statistical characteristics of basic random variables for dynamic system in Figure 1 

standard deviation Mean Variables standard deviation Mean Variables 

0.1 1 pM 0.4 0.05 p 

0.1 0.01 sM 0.5 0.02 s 

0.2 1 pK 0.1 15 sF 

0.2 0.01 sK 0.1 100 0S 
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The flexural limit state function of this 

beam is defined by the following equation 

(Stewart, 2009): 
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In the limit state (13), empirical 

coefficient’s   and  : are the model 

uncertainty (Nowak and Collins, 2000) and 

tension resistance bars (Stewart, 2009), 

respectively. According to the experimental 

results from Cairns et al. (2005), the   

value was reported from 0.017 to 0.06 for 

pitting corrosion. Du et al. (2005) suggested 

005.0 , this   was applied by Stewart 

(2009). The statistical characteristics of the 

resistance variable K  and the load 

uncertainty variable  , (Nowak and 

Collins, 2000; Stewart, 2009; Vu and 

Stewart, 2000) are listed in Table 2. 

Vu and Stewart (2000) and Vu et al. 

(2005) applied normal probability function 

for modeling the concrete compressive in 

the range of 25 to 40 MPa with coefficient 

of variation (CoV) of 0.15 to 0.18. The 

normal distribution function with CoV of 

about 0.1 to 0.12 was considered for 

concrete cover distribution function by 

Rodriguez et al. (1996) and Vu et al. 

(2005). The Lognormal probability 

distribution function with CoV of 0.11 was 

applied to define the statistical properties 

of steel yield tension variable in reliability 

analysis by Bhargava et al. (2011). The 

statistical properties of beam dimensions 

were applied based on the assumption by 

Bhargava et al. (2011) in this study. The 

statistical characteristics of material 

(concrete and steel) strength, applied load 

and beam dimensions (Figure 3) are shown 

in Table 3. 

The corroded cross-sectional steel bar is 

calculated as: 

 

)()( tAAtA Pss   (14) 

 

)(tAs
 depends on the physical, 

mechanical and geometrical of the 

concrete beam. Thus, the two forms of 

modeled corrosion can be defined as 

pitting and general corrosion.  

 

General Corrosion  

The cross-sectional area of the bars at 

time, t  (years) in general corrosion is 

suggested by the following relation 

(Stewart, 2004; Darmawan, 2010): 
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in which,   

 

TtiP corrav ).(.0116.0  (16) 

 

and D0: is the nominal bar diameter (mm), 

avP : is the average pit depth (mm/year), T: 

is the time since corrosion initiation (year) 

and )(ticorr
: is the corrosion rate (μA/cm

2
) 

which can be computed as (Vu and 

Stewart, 2000; Tarighat and Jalalifar, 

2014): 

 
29.0).1(85.0)(  Titi corrcorr  (17) 

 
Table 2. Statistical characteristics of the model, resistance and load uncertainties 

Probability 

function 
Mean 

() 
(CoV) Variable description Variables 

Normal 0.6 0.05 Resistance ratio K 

Normal 1 0.1 Model coefficient  

Normal 1.05 0.1 Load coefficient  

Lognormal 0.005 0.12 Yield empirical coefficient  
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Table 3. Statistical characteristics of resistance, beam dimensions and load variables 

Probability 

function 
Mean 

() 
(CoV) Variable description Variables 

Normal 30 0.18 Concrete compressive (MPa) 
cf 

Lognormal 400 0.11 Steel yield tension (MPa) 
yf 

Gumbel 120 0.12 Applied moment (kN-m) Mn 

Normal 350 0.07 Section width (mm) b 

Lognormal 500 0.07 Effective height (mm) d 

Normal 50 0.12 Concrete cover (mm) C 

 

where )1(corri  is the corrosion rate (μA/cm
2
) 

at the start of corrosion propagation 

(μA/cm
2
) which is calculated as (Vu and 

Stewart, 2000; Tarighat and Jalalifar, 

2014):  
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and C: is the concrete cover (cm). Water - 

cement ratio (wc) of the concrete was 

calculated using the compressive strength 

of the concrete from Bolomey's formula as 

(Vu and Stewart, 2000): 
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These relations can be effective for 

cities in countries such as Asia, Europe, 

America and Australia whose humidity 

ratio is around 70% (Vu et al., 2005). 

 

Pitting Corrosion  

Loss cross- sectional bars subjected to 

the pitting corrosion can be calculated 

using the following equations (Stewart and 

Al-Harthy, 2008; Stewart, 2009; 

Darmawan, 2010):  
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(22) 

 

where )(tP : is the maximum penetration of 

pitting and R: is pitting factor (rate 

between pitting and average depth 

avPtPR /)( ) which varied from 4 to 8 

(Stewart, 2009). Therefore, the random 

variables for corroded cross-sectional steel 

bars are listed in Table 4. 

 

NUMERICAL RESULTS OF 

RELIABILITY ANALYSIS  

 

The failure probability of beam is 

estimated by using enhanced HL-RF 

method based on relaxed approach. The 

results of failure probability based on the 

general and pitting corrosion are plotted in 

Figure 3. It is clear that the failure 

probabilities to the corrosion times in 

pitting corrosion are more than the general 

corrosion in a time more than 20 years. 

Compression of the failure probability to 

external load moment is plotted in Figure 4 



Civil Engineering Infrastructures Journal, 48(2): 297-304, December 2015 

303 

for several times since corrosion initiation 

(T). It can be seen that the failure 

probabilities of this beam are increased with 

respect to increase time since corrosion 

initiation. For T<15 years, the rate of 

change for the failure probabilities is 

insignificantly increased, but is significantly 

increased for T>50 years. Also, differences 

of the failure probability in pitting corrosion 

obtained more changes in the time since 

corrosion initiation of T<15 while, they 

showed significant differences of failure 

probabilities for general corrosion in this 

domain of T. Therefore, the corrosion 

defects can reduce the performance of the 

beam in long time corrosion.    
 

Table 4. Statistical characteristics of the basic random variables of corroded cross-sectional steel bars 

Probability function  Mean () (CoV) Variable description Variables 

Normal  0.05 Bar diameter (mm) D0 

Gumbel 6 0.2 The ratio of maximum to average corrosion R 

Lognormal variable 0.35 Corrosion initiation time (years) T 
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Fig. 3. Comparing the failure probability under the general and pitting corrosion 
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Fig. 4. Compression of failure probability to external moment for initial time since corrosion 
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CONCLUSIONS  

 

The enhanced HL-RF (EHL-RF) method 

without line search rules was applied for 

the reliability analysis of concrete beam 

with general and pitting corrosion. The 

EHL-RF approach based on the dynamical 

step size is more robust than the HL-RF. 

Based on the reliability analysis of 

corroded beam, it is seen that increasing 

the corrosion time period leads to 

increasing the failure probability of the 

concrete beam. The maximum rate of 

failure probabilities were concluded to 

increase the time since corrosion initiation 

(T>15 years) in the pitting corrosion of 

reinforced concrete beam.  
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