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Abstract: This research intends to develop a method based on the Artificial Neural Network 
(ANN) to predict permanent earthquake-induced deformation of the earth dams and 
embankments. For this purpose, data sets of observations from 152 published case histories 
on the performance of the earth dams and embankments, during the past earthquakes, was 
used. In order to predict earthquake-induced deformation of the earth dams and embankments 
a Multi-Layer Perceptron (MLP) analysis was used. A four-layer, feed-forward, back-
propagation neural network, with a topology of 7-9-7-1 was found to be optimum. The results 
showed that an appropriately trained neural network could reliably predict permanent 
earthquake-induced deformation of the earth dams and embankments. 

Keywords: Artificial neural networks, Earth dam, Earth embankment, Earthquake-induced 
deformation. 

 

INTRODUCTION
 
 

 

The seismic performance of slopes and 

earth structures is often assessed by 

calculating the permanent down slope 

sliding deformation expected during 

earthquake shaking. Newmark (1965) first 

proposed a rigid sliding block procedure 

and this procedure is still the basis of many 

analytical techniques used to evaluate the 

stability of slopes during earthquakes. 

Over the last few years, Artificial 

Neural Networks (ANNs) have been used 

successfully for modeling almost all 

aspects of geotechnical engineering 

problems. The literature reveals that ANNs 

have been extensively used for predicting 

axial and lateral load capacities in the 

compression and uplift of pile foundations 

(Shahin, 2008; Das and Basudhar, 2006), 
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dams (Behnia et al., 2013; Miao et al., 

2013; Mohammadi et al., 2013; Marandi et 

al., 2012; Mata, 2011; Tsompanakis et al., 

2009; Kim and Kim, 2008) and slope 

stability (Erzin and Cetin, 2012; Zhao, 

2008; Ferentinou and Sakellariou, 2007). 

Other applications of ANNs in 

geotechnical engineering include 

Liquefaction during earthquakes (Hanna et 

al., 2007; Javadi et al., 2006; Baziar and 

Ghorbani, 2005) tunnels, and underground 

openings (Mahdevari and Torabi, 2012; 

Gholamnejad and Tayarani, 2010; Yoo and 

Kim, 2007). 

In this article, with respect to successful 

modeling the geotechnical engineering 

problems with ANN method most of the 

aspects of geotechnical engineering 

measurements of earthquake-induced 

deformation, which are recorded in 

different earth dams and embankments, 

have been reviewed and analyzed. For this 

purpose, data sets of observations from 



Barkhordari Bafghi, K. and Entezari Zarch, H. 

272 

152 published case histories on the 

performance of the earth dams and 

embankments during the past earthquakes 

have been used. The data from these case 

studies have been used to train and test the 

developed neural network model, to enable 

the prediction of the magnitude of 

earthquake-induced deformation of the 

earth dams and embankments. 

 

PERMANENT EARTHQUAKE-

INDUCED DEFORMATION OF THE 

EARTH EMBANKMENTS 

 

Newmark (1965) proposed that the seismic 

stability of slopes would be assessed in 

terms of earthquake-induced deformations, 

as this criterion ultimately governs the 

serviceability of the earth structure after 

the earthquake. Newmark surmised that 

the factor-of-safety of a slope would vary 

with time as the destabilizing inertial 

forces imposed on the slope varied 

throughout the duration of earthquake 

shaking. When the inertial forces acting on 

a failure mass are large enough to exceed 

the available resisting forces, the factor-of-

safety of the slope would fall below one, 

thereby initiating an episode of permanent 

down slope displacement. Newmark 

formulated this concept by making an 

analogy that an earth mass sliding over a 

shear surface could be modeled as a block 

sliding along an inclined plane. 

The sliding-block analogy proposed by 

Newmark has provided the conceptual 

framework from which all deformation-

based methods are derived. Today, a suite 

of roughly 30 different deformation-based 

methods are available to practitioners and 

researchers for evaluating the seismic 

slope stability of earth structures and 

embankments. These methods are the 

result of roughly 50 years of research 

focused on method development and 

refinement.  

On a conceptual level, all deformation-

based methods are models-simplified 

approximations of the real physical 

mechanism of seismic-induced 

deformation in the slopes. There are three 

fundamental models that all deformation-

based methods are based on. These model 

categories range from simple to complex 

and differ with respect to the assumptions 

and idealizations used to represent the 

mechanism of earthquake-induced 

deformation, these are: 

 

1. Rigid-block models. The rigid-block 

model was originally proposed by Newmark 

(1965) and is based on the sliding-block 

analogy. To briefly reiterate, the potential 

landslide block is modeled as a rigid mass 

that slides in a perfectly plastic manner on an 

inclined plane. The mass experiences no 

permanent displacement until the base 

acceleration exceeds the critical acceleration 

of the block, at which time the block begins 

to move down the slope displacements are 

calculated by integrating the parts of an 

acceleration-time history that lie above the 

critical acceleration to determine a velocity-

time history. The velocity-time history is 

then integrated to yield the cumulative 

displacement. Sliding continues until the 

relative velocity between the block and base 

reaches zero. Since 1965, many researchers 

such as Newmark (1965), Sarma (1975), 

Jibson (2007), and Bray and Travasarou 

(2007) have developed graphs and relations 

for calculating earthquake-induced 

deformation, based on the rigid-block model. 

  

2. Decoupled models. Soon after 

Newmark published his rigid-block 

method, more sophisticated analyses were 

developed to account for the fact that 

landslide masses are not rigid bodies, but 

deform internally when subjected to 

seismic shaking. The most commonly used 

among these analyses has been developed 

by Makdisi and Seed (1978), Hynes-

Griffin, and Franklin (1984). A rigorous 

decoupled analysis estimates the effect of a 

dynamic response on permanent sliding in 

a two-step procedure: a) A dynamic-

response analysis of the slope, assuming 
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no failure surface, is performed using 

programs such as QUAD4M or SHAKE. 

By estimating the acceleration-time 

histories at several points within the slope, 

an average acceleration-time history for 

the slope mass above the potential failure 

surface is developed. b) The resulting time 

history of the previous step is used as input 

data into a rigid-block analysis, and the 

permanent displacement is estimated. This 

approach is referred to as a decoupled 

analysis because the computation of the 

dynamic response and the plastic 

displacement are performed independently. 

  

3. Coupled models. In a fully coupled 

analysis, the dynamic response of the sliding 

mass and the permanent displacement are 

modeled together, such that, the effect of 

plastic sliding displacement on the ground 

motion is taken into account. The most 

commonly used of such analyses has been 

developed by Bray and Travasarou (2007). 

As mentioned, the most commonly 

available methods for evaluating the 

permanent earthquake-induced deformation 

of the earth embankments are based on the 

sliding-block analogy proposed by Newmark, 

but there has been some concern expressed 

by others that the Newmark method may not 

model the crest settlement caused by the 

earthquake accurately. Day (2002) 

demonstrated that it is theoretically possible 

for dry granular slopes to settle and spread 

laterally without earthquake accelerations 

exceeding the yield values to initiate the 

slides. He states that the Newmark method 

may prove to be unreliable in some instances. 

Matsumoto (2002) described centrifuge shake 

table tests, with supporting nonlinear analyses 

for modeled accelerations up to 0.7g, which 

revealed only shallow raveling with no deep 

shear surfaces in the core zones and no 

definite slip surfaces anywhere in the rockfill 

dam models. Accordingly, he states that the 

hypothesis of deep slide surfaces in the 

Newmark approach “may be somewhat 

erroneous”. 

Swaisgood and Au-Yeung (1991), after 

reviewing many photos of earthquake 

damages to dams, disclosed that crest 

settlements and deformations (for 

structures not subject to liquefaction) seem 

to be from slumping and spreading 

movements that occur within the dam 

body, without distinct signs of shearing 

displacement. This appears to be true for 

earthfill embankments as well as rockfill 

dams. 

Accordingly, Swaisgood (2003) studied 

69 published case histories on the 

performance of earth dams and embankments 

during the past earthquakes and developed a 

mathematical relationship between the crest 

settlement and the three factors, peak 

horizontal ground acceleration (PGA), 

earthquake magnitude (M) and dam height 

(H). Singh et al. (2007), by comparing 

permanent deformations estimated from some 

Newmark methods with observations from 

122 published case histories on performance 

of earth dams and embankments during past 

earthquakes, indicated that the estimated 

permanent earthquake-induced deformations 

were, in general, smaller than the observed 

deformations. Singh et al. developed a 

relationship among permanent earthquake-

induced deformations, the ratio of yield 

acceleration (Ky), and the peak horizontal 

ground acceleration (PGA) based on 

observational data.   

 

ARTIFICIAL NEURAL NETWORK 

 

An ANN model is a mathematical or 

computational model that is inspired by the 

structure and/or functional aspects of 

biological neural networks and is in fact an 

emulation of the biological neural system. 

Neural network analysis can be used to 

handle non-linear problems that are not 

well-suited to be handled by the classical 

analysis methods (Erzin and Cetin, 2012). 

ANN includes two working phases, the 

phase of learning and that of recall. During 

the learning phase, known data sets are 

commonly used as a training signal in the 
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input and output layers. The recall phase is 

performed by one pass using the weight 

obtained in the learning phase (Mahdevari 

and Torabi, 2012).  

Artificial Neural Networks consist of a 

number of artificial neurons variously 

known as processing elements (PEs) 

“nodes” or “units”. For multilayer 

perceptrons (MLPs), which are the most 

commonly used ANNs in geotechnical 

engineering, the processing elements are 

usually arranged in layers: An input layer, 

an output layer, and one or more 

intermediate layers called hidden layers 

(Figure 1). 

Each processing element in a specific 

layer is fully or partially connected to many 

other processing elements via weighted 

connections. The scalar weights determine 

the strength of the connections between the 

interconnected neurons. A zero weight 

refers to no connection between two 

neurons and a negative weight refers to a 

prohibitive relationship. From many other 

processing elements, an individual 

processing element receives its weighted 

inputs, which are summed and a bias unit or 

threshold is added or subtracted. The bias 

unit is used to scale the input to a useful 

range to improve the convergence properties 

of the neural network. The result of this 

combined summation is passed through a 

transfer function to produce the output of 

the processing element (For node j, this 

process is summarized in Eqs. (1) and (2) 

and illustrated in Figure 1) (Shahin et al., 

2008). 

 

1

n

j j ji ii
I w x


   (1) 

( )i jy f I

 

(2) 

 

where 𝐼𝑗: is the activation level of node 

j; 𝑤𝑗𝑖: is the connection weight between 

nodes j and i;  𝑥𝑖:  is the input from node i, 

i,…, 1, 0= n; θj: is the bias or threshold for 

node j; 𝑦𝑖: is the output of node j and f).(: is 

the transfer function. 

The transfer functions are designed to 

map a neuron or layer-net output to its 

actual output. The type of these transfer 

functions depends on the purpose of the 

neural network. Linear (PURELIN) and 

Nonlinear (LOGSIG, TANSIG) functions 

can be used as transfer functions (Figure 

2). As is known, a linear function satisfies 

the superposition concept. The function is 

shown in Figure 2a. The mathematical 

equation for the linear function can be 

written as: 

 

  .y f x x   (3) 

 

where α: is the slope of the linear function. 

As shown in Figure 2b, sigmoidal (S shape) 

function is the most common nonlinear type 

of the activation used to construct the neural 

networks. It is mathematically well-behaved, 

differentiable, and a strictly increasing 

function. A sigmoidal transfer function can 

be written in Eq. (4). 

 

 
1
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where c: is the shape parameter of the 

sigmoid function. Which c is a constant 

that typically varies between 0.01 and 

1.00. By varying this parameter, different 

shapes of the function can be obtained as 

illustrated in Figure 2b; x: is the weighted 

sum of the inputs for a processing unit. 

This function is continuous and 

differentiable. Tangent sigmoidal function 

is described by the following mathematical 

form (Figure 2c) (Park, 2011): 
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Fig. 1. Typical structure and operation of ANNs 

 

 

Fig. 2. Activation Function 

 

Multi-layer Perceptron Network 

One of the most commonly 

implemented ANNs is the Multi-Layer 

Perceptron (MLP) technique. The MLP is 

a universal function approximator, as 

proven by the Cybenko (1989) 

theorem.The MLP is a feed forward ANN 

model and employs a supervised learning 

technique called Back-Propagation (BP), 

for training the network. In supervised 

learning, the connection weights are 

adjusted continuously until the termination 

conditions are met. The adjustment of the 

connection weights is referred to as 

learning or training (Mahdevari and 

Torabi, 2012). 

As shown in Figure 1, the network is 

fully connected such that a neuron in any 

layer of the network is connected to all the 

neurons in the previous layer. Signal flow 

through the network progresses in a 

forward direction, from left to right, and on 

a layer-by-layer basis. Figure 3 shows a 

portion of the multi-layer neural network. 

For the MLP model, two kinds of signals 

are identified: 

1. Forward function signal or an input 

signal that propagates forward (neuron by 

neuron) through the network and emerges 

at the output end of the network as an 

output signal. This output of the ANN 

models is used as the back-propagation 

signal. 

2. Back-propagation signal or an error 

signal originates at an output neuron of the 

network and propagates backward (layer 

by layer) through the network. 

As illustrated in Figure 3, the argument 

'n' denotes the time step of an iterative 

process known as an epoch involved in 

adjusting the weights of neurons j and k. 

For instance, neuron k is driven by the 

function signals produced by one or more 

previous layers. The output signal of 

neuron k is denoted by yk(n). This output 

signal is compared with a desired response 

or target output, denoted by dk(n). 

Consequently, an error signal, denoted by 

ek(n), is produced: 
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   k k ke n d y n   (6) 

 

The error signal is then propagated back 

to adjust the weights and bias levels of 

each layer. A neural network learns about 

the relationships between the input and 

output data through this iterative process. 

Ideally, the network becomes more 

knowledgeable about relationships after 

each iteration or the epoch of the learning 

process, by using the back-propagation or 

error back-propagation algorithm (Hertz et 

al., 1991; Rumelhart et al., 1986). 

 

Artificial Neural Networks for Predicting 

Permanent Earthquake-Induced 

Deformation of Earth Embankments 

 

Network Architecture 
Generally, there is no direction or a 

precise method for determining the most 

appropriate number of neurons that need to 

be included in each hidden layer in the 

neural networks. This problem becomes 

more complicated as the number of hidden 

layers in the network increases. The 

concept of the neural networks appears to 

indicate that increasing the number of 

hidden neurons provides a greater potential 

for developing a solution that maps or fits 

the training patterns closely, as they 

increase the number of possible function 

calculations. However, a large number of 

hidden neurons can lead to a solution, 

which, while mapping the training points 

closely, deviates dramatically from the 

optimum trend. Although, the network can 

provide almost perfect answers to the set 

of problems with which it was trained, it 

may fail to produce meaningful answers to 

other ‘‘new’’ problems. This is a result of 

‘overfitting’. Overfitting problem or poor 

generalization capability occurs when a 

neural network over learns during the 

training period. As a result, ‘a too well-

trained model’ may not perform well in an 

unseen data set, on account of its lack of 

generalization capability. Several 

approaches have been suggested in 

literature to overcome this problem. The 

first method is an early learning stopping 

mechanism in which the training process is 

concluded as soon as the overtraining 

signal appears. The signal can be observed 

when the prediction accuracy of the trained 

network applied to a test set gets worsened 

at that stage of the training period, when it 

gets worsened. The second approach is the 

Bayesian Regularization. This approach 

minimizes the overfitting problem by 

taking into account the goodness-of-fit as 

well as the network architecture. The early 

stopping approach requires the data set to 

be divided into three subsets: Training, 

test, and verification sets. The training and 

the verification sets are the norm in all 

model training processes. The test set is 

used to test the trend of the prediction 

accuracy of the model trained at some 

stages of the training process. At much 

later stages of the training process, the 

prediction accuracy of the model may start 

worsening for the test set. This is the stage 

when the model should cease to be trained 

to overcome the over-fitting problem 

(Park, 2011). Furthermore, a large number 

of hidden neurons slow down the operation 

of the network. 

Most Feed-forward Back-Propagation 

Neural Networks use one or two hidden 

layers. In order to obtain a good 

performance of the ANN, tuning of the 

ANN architecture and parameters is 

essential (Mahdevari and Torabi, 2012). In 

our case, the ANN architecture has been 

tested with various numbers of hidden 

layers and nodes per hidden layers, and the 

ANN parameters are checked with various 

transformation functions to find better 

values and architecture. The transformation 

functions used are purelin, logistic sigmoid 

(logsig), and the hyperbolic tangent sigmoid 

(tansig) function. 

 

Input Parameters 
An important step in developing ANN 

models is to select the model input 

variables that have the most significant 



Civil Engineering Infrastructures Journal, 48(2): 271-283, December 2015 

277 

impact on model performance. A good 

subset of input variables can substantially 

improve model performance.  

It is difficult to determine all the relevant 

parameters that influence the prediction of 

earthquake-induced deformation of earth 

embankments. The selected parameters 

affecting earthquake-induced deformation 

of earth dams and embankments, used in 

this study were: Dam type, dam height (H), 

magnitude of the earthquake (MW), peak 

ground acceleration (PGA), predominant 

period of the earthquake ground motion 

(TP), fundamental (elastic) period of the 

earth structure (TD), and yield acceleration 

(Ky).  

 

Data Preparation 
Before training and implementing, the 

data set was divided randomly into training, 

validation, and test subsets. In the present 

study, the data sets of observations from 152 

published case histories on the performance 

of earth dams and embankments during the 

past earthquakes were collected. Some of 

these data are given in Table 1. 

From these, 70% of the data were 

chosen for training, 15% for validation, 

and 15% for the final test. The training set 

was used to generate the model and the 

validation set was used to check the 

generalization capability of the model. 

Once the available data have been 

divided into their subsets (i.e., training, 

testing, and validation), it is important to 

pre-process the data in a suitable form 

before applying them to the ANN. Data 

pre-processing is necessary to ensure that 

all variables receive equal attention during 

the training process (Maier and Dandy, 

2000). Moreover, pre-processing usually 

speeds up the learning process. Pre-

processing can be in the form of data 

scaling, normalization, and transformation 

(Masters, 1993). 

In this study the input and output data 

were scaled to lie between 0 and 1, by 

using Eq. (7).  

 

min

max min

( )

( )
norm

x x
x

x x





 (7) 

 

where xnorm: is the normalized value, x: is 

the actual value, xmax: is the maximum 

value and xmin: is the minimum value. 

 

 

Fig. 3. Signal-flow schematic diagram of back-propagation neural networks 
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Table 1. Some of case history  

∆ (m) 
TD (s), ay (w/o and 

with vert. accn) (g) 

Earthquake: Date, Mw, amax (g), 

Dist. (km), Tp (s) 
Dam, type, height (m) 

0.0410 1.08, 0.34, 0.24 10/17/89, 7.0, 0.26, 16, 0.32 Anderson, 8, 73.2 

0.0140 1.08, 0.27, 0.20 4/24/84, 6.2, 0.41, 16, 0.32 Anderson, 8, 71.6 

0.6000 0.08, 0.28, 0.21 10/17/89, 7.1, 0.33, 27, 0.32 Artichoke, 2, 4.0 

0.7890 0.79, 0.21, 0.17 10/17/89, 7.0, 0.58, 11, 0.32 Austrian, 7, 21.5 

0.7000 0.53, 0.08, 0.07 10/23/04, 6.8, 0.12, 24, 0.32 Asagawara regulatory, 7, 56.4 

2.5000 0.89, 0.06, 0.06 7/28/76, 7.8, 0.20, 150, 0.52 Baihe, 7, 66.0 

0.0010 0.54, 0.16, 0.14 7/21/52, 7.3, 0.12, 74, 0.40 Bouquet Canyon, 5, 62.0 

0.0010 0.76, 0.25, 0.17 1/17/94, 6.9, 0.19, 67, 0.45 Brea, 7, 27.4 

0.6000 0.45, 0.16, 0.13 7/21/52, 7.3, 0.30, 32, 0.32 Buena Vista, 5, 6.0 

0.4500 0.99, 0.12, 0.11 4/18/06, 8.3, 0.57, 32, 0.32 Chabbot, 5, 43.3 

0.0010 0.99, 0.12, 0.11 10/17/89, 7.0, 0.10, 60, 0. Chabbot, 5, 43.3 

2.6400 0.25, 0.05, 0.05 1/26/01, 7.6, 0.50, 13, 0.32 Chang, 7, 15.5 

0.0700 0.38, 0.09, 0.08 10/23/04, 6.8, 0.10, 21, 0.32 Chofukuji, 7, 27.2 

3.8700 0.11, 0.01, 0.01 12/17/87, 6.7, 0.12, 40, 0.32 Chonan, 4, 6.1 

0.3500 0.83, 0.28, 0.23 4/4/43, 7.9, 0.19, 89, 0.60 Cogoti D/S, 9, 85.0 

0.0010 0.24, 0.28, 0.83 3/28/65, 153, 0.04, 7, 1, 0.55 CogotiD/S, 9, 85.0 

0.0010 0.83, 0.28, 0.24 7/8/75, 7.5, 7, 0.05, 165, 0.57 CogotiD/S, 9, 85.0 

0.0010 0.83, 0.28, 0.24 3/8/85, 7.7, 0.03, 280, 0.96 CogotiD/S, 9, 85.0 

0.0010 0.69, 0.13, 0.11 10/1/87, 0, 6, 0,06, 29, 0.25 Cogswell 9, 85.0 

0.0160 0.69, 0.15, 0.14 6/28/91, 5.6, 0.26, 4, 0.25 Cogswell 9, 85.0 

0.0500 0.23, 0.26, 0.24 1/26/01, 7.6, 0.20, 90, 0.55 Demi 1, 7, 17.0 

1,6400 0.22, 0.34, 0.24 7/8/76, 7.8, 0.90, 20, 0.30 Douhe 4, 16.0 

0.0300 0.65, 0.12, 0.10 7/21/52, 7.3, 0.12, 72, 0.28 DryCanyon 5, 22.0 

32.000 0.49, 0.00, 0.00 3/28/65, 7.2, 0.80, 40, 0.32 ElCobre 12, 32.5 

0.0460 1.58, 0.55, 0.39 3/14/79, 7.6, 0.23, 110, 0.55 ElInfiernilloD/S 8, 148.0 

0.0400 1.58, 0.08, 0.08 10/11/75, 5.9, 0.08, 79, 0.34 ElInfiernilloU/S 8, 46.0 

0.0200 1.58, 0.09, 0.08 11/15/75, 7.5, 0.09, 23, 0.32 ElInfiernilloU/S 8, 146.0 

0.1280 1.58, 0.19, 0.18 3/14/79, 7.6, 0.23, 110, 0.55 ElInfiernilloU/S 8, 148.0 

0.0600 1.58, 0.05, 0.03 10/25/81, 7.3, 0.05, 81, 0.34 ElInfiernilloU/S 8, 146.0 

0.1100 1.58, 0.11, 0.10 9/19/85, 8.1, 0.13, 76, 0.53 ElInfiernilloU/S 8, 146.0 

(1): Dam types: 1: 1-zone levee, 2: Multi zone levee, 3: 1-zone earth dam, 4: 1-zone embankment, 5: 1-zone hydraulic fill 

dam; 6: Multi-zone hydraulic fill; 7: Compacted multi-zone dam; 8: Multi-zone rockfill dam; 9: Concrete-Faced rockfill Dam 

(CFRD); 10: Concrete-faced decomposed granite or gravel dam; 11: Natural slope; 12: Upstream constructed tailings dam; 

13: Downstream constructed tailings dam. 

 
 

Training of the Network 
In a supervised BP training, the 

connection weights are adjusted 

continuously until termination conditions are 

met. The adjustment of the connection 

weights is referred to as learning or training 

(Pezeshk et al., 1996). The back-propagation 

learning algorithm has been applied with 

great success to model many phenomena in 

the field of geotechnical engineering (Shahin 

et al., 2001). Several training algorithms of 

back-propagation have been developed (for 

example; Gradient descent and Levenberg-

Marquardt) (Mohammadi and Mirabedini, 

2014). In this study the Levenberg-

Marquardt back-propagation algorithm was 

chosen for training the ANNs, because it is 

known to be the fastest method for training 

moderate-sized feed-forward neural 

networks. The resulting target network 

should produce a minimum error for the 

training pattern and give a generalized 
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solution that performs well with the testing 

pattern. It has lower memory requirements 

than most algorithms and usually reaches an 

acceptable error level quite rapidly, although 

it can then become very slow in converging 

properly on an error minimum (Erzin and 

Cetin, 2013). 

 

Validation and Testing the ANN Model 
Once the training phase of the model has 

been successfully accomplished, the 

performance of the trained model should be 

validated. The purpose of the model 

validation phase is to ensure that the model 

has the ability to generalize within the limits 

set by the training data in a robust fashion, 

rather than simply having memorized the 

input-output relationships that are contained 

in the training data. 

Testing and validation of the ANN 

model was done with new data sets. These 

data were not previously used while 

training the network.  

The Mean Squared Error (MSE) and 

coefficient of correlation factor (R) 

between the predicted and measured values 

were taken as the performance measures. 

The MSE was calculated as: 

 

21
( )

Q

MSE d o
Q

   (8) 

where d, o, and Q: represent the target 

output, the output, and the number of 

input-output data pairs, respectively. 

 

RESULTS AND DISCUSSION 

 

As there is no direct, precise way of 

determining the most appropriate number 

of hidden layers and number of neurons in 

each hidden layer, a trial and error 

procedure is typically used to identify the 

best network for a particular problem 

(Gholamnejad and Tayarani, 2010). After 

building several MLP models based on 

trial and error, the best results of each 

model, listed in Table 2, are compared and 

the one with the maximum correlation 

factor (R) and minimum Mean Squared 

Error (MSE) is chosen. Therefore, based 

on these criteria, the optimum ANN 

architecture was found to be a four-layer, 

feed-forward, back-propagation neural 

network with a topology of 7-9-7-1. This 

ANN architecture is shown in Figure 4. As 

shown in Table 2, for optimum ANN 

architecture, the correlation factor and 

minimum of Mean Squared Error are 

1.600E-03 and 0.982, respectively. 
 

 

Table 2. Performance of the neural network models 

No. Model architecture Transfer function MSE (training) MSE (validation) MSE (test) R (All) 

1 7-10-1 logsig-purelin 2.700E-03 1.700E-03 2.400E-03 0.910 

2 7-12-1 logsig-purelin 1.869E-04 2.110E-02 1.360E-02 0.823 

3 7-10-1 tansig-purelin 1.700E-03 5.345E-04 1.900E-03 0.943 

4 7-12-1 tansig-purelin 1.422E-04 5.100E-03 3.600E-03 0.948 

5 7-7-5-1 logsig-logsig-purelin 1.449E-04 5.200E-03 1.800E-02 0.883 

6 7-9-7-1 logsig-logsig-purelin 1.941E-04 9.652E-04 1.600E-03 0.982 

7 7-11-7-1 logsig-logsig-purelin 1.225E-04 4.394E-04 3.145E-03 0.977 

8 7-13-7-1 logsig-logsig-purelin 2.519E-04 6.195E-04 2.839E-03 0.976 

9 7-7-5-1 tansig-tansig-purelin 4.700E-03 5.700E-03 1.190E-02 0.822 

10 7-9-7-1 tansig-tansig-purelin 2.500E-03 1.800E-03 7.470E-04 0.924 

11 7-7-5-1 logsig-tansig-purelin 7.721E-04 6.000E-03 1.700E-03 0.935 

12 7-9-7-1 logsig-tansig-purelin 6.654E-05 1.800E-03 5.100E-03 0.965 

13 7-9-7-1 tansig-logsig-purelin 2.490E-04 1.100E-03 6.100E-03 0.956 

14 7-11-7-1 tansig-logsig-purelin 1.286E-03 4.257E-03 1.628E-03 0.936 
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Fig. 4. Optimum ANN model 

 

Figure 5 shows the correlation coefficient 

between the measured and predicted 

deformation for the optimum model and 

Figure 6 shows a graph comparing the 

measured and predicted data for the 

optimum ANN model. It appears that the 

optimum model has predicted values close to 

the measured ones. The result obtained for 

this validation shows the satisfactory quality 

of the analysis. 
 

 
Fig. 5. Correlation coefficient between measured and predicted settlement 
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Fig. 6. Comparison between measured and predicted settlement 

 

CONCLUSIONS 

 

This study investigated the potential of 

artificial neural networks (ANN) for 

predicting earthquake-induced deformation 

of earth dams and embankments. It was 

found that the feed-forward back-

propagation neural network models 

successfully learned from the training 

samples in a manner in which their outputs 

converged to values very close to the 

desired outputs. However, the relationship 

among the inputs and outputs is very 

complex. The results obtained are still 

highly encouraging and satisfactory. The 

optimum ANN architecture was found to 

have seven neurons in the input layer, nine 

and seven neurons in two hidden layers, 

and one neuron in the output layer (7-9-7-

1). As a neural network can update “its” 

knowledge over time, if more training data 

sets are processed, the neural networks will 

result in greater accuracy and more robust 

prediction than any other analysis 

technique. With regard to the fact that the 

accuracy of the proposed ANN model is 

reasonably high, this model can be used to 

predict earthquake-induced deformation of 

earth embankments. 
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