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Abstract: In this paper, an adaptive physics-based method is developed for solving wave 
motion problems in one dimension (i.e., wave propagation in strings, rods and beams). The 
solution of the problem includes two main parts. In the first part, after discretization of the 
domain, a physics-based method is developed considering the conservation of mass and the 
balance of momentum. In the second part, adaptive points are determined using the wavelet 
theory. This part is done employing the Deslauries-Dubuc (D-D) wavelets. By solving the 
problem in the first step, the domain of the problem is discretized by the same cells taking 
into consideration the load and characteristics of the structure. After the first trial solution, the 
D-D interpolation shows the lack and redundancy of points in the domain. These points will 
be added or eliminated for the next solution. This process may be repeated for obtaining an 
adaptive mesh for each step. Also, the smoothing spline fit is used to eliminate the noisy 
portion of the solution. Finally, the results of the proposed method are compared with the 
results available in the literature. The comparison shows excellent agreement between the 
obtained results and those already reported. 

Keywords: Adaptive solution, Deslauries-Dubuc wavelets, Multi-resolution analysis, 
Physics-based solution, Smoothing splines. 

 

INTRODUCTION
 
 

Discrete computation methods such as 

the cellular automaton (CA) method and 

the lattice gas automaton method have 

been already introduced to analyze 

numerous problems in various fields of 

engineering. In this paper, the CA method 

is used for the solution of wave motion 

problem in one dimension. The CA 

method was first developed by von 

Neumann (1966) in Los Alamos National 

Lab. Different types of the CA (e.g., 

deterministic or probabilistic, and/or 

continuous or totalistic) are currently being 
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presented and implemented for various 

kinds of science and engineering problems. 

As the CA systems are intrinsically 

dynamic, this method may be implemented 

to tackle problems which involve dynamic 

behavior. In the CA method, the analysis 

domain is divided into similar finite parts 

called "cells". The state of each cell is 

updated according to local rules at every 

discrete time step. The state of a cell at a 

given time step depends only on its 

previous state and those of its neighbor 

cells. The states of all cells are updated 

synchronously. As a result of such 

computational characteristics, solution can 

be performed for only the desired portion 

of the entire domain. In the last three 
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decades, the CA method has been used to 

model different problems, among which 

some remarkable works are cited here. 

Frisch et al. (1987) implemented the CA to 

model two- and three-dimensional 

simulations of lattice gas hydrodynamics 

problems. Using a two-dimensional CA, 

Rothman (1987) simulated the propagation 

of seismic P-waves in a homogeneous 

medium. Chopard and Droz (1988) 

employed the approach to analyze non-

equilibrium phase transitions in surface 

reaction models, based on static and 

dynamic properties of the undertaken 

domain. Using the CA method, Chopard et 

al. (1989) solved the non-equilibrium 

diffusion and gradient percolation 

problems. Afterwards, Chopard (1990) 

used this method to model large scale 

moving objects such as propagation of 

sound waves. Schreckenburg et al. (1995) 

and Chopard et al. (1996) developed the 

CA method to model traffic flow. In 2002, 

a serious evolution occurred in CA's 

employment in solving various problems, 

after the publication of Wolfram (2002) 

book. Kawamura et al. (2005, 2006) used 

the CA method to model wave propagation 

in a nonlinear vibrating string using 

differential equations and reflection rule. 

The combination of reflection rule and the 

CA method was implemented by Kwon 

and Hosoglu (2008) for modeling SH-

wave propagation in two dimensions. 

Leamy (2008) derived equations of wave 

propagation in two dimensional problems 

(lamb wave) using the bottom-up nature of 

the CA method for rectangular cells. 

Hopman and Leamy (2011) introduced 

triangular automata for two dimensional 

elastodynamic problems. 

The CA’s paradigm may be 

distinguished from other numerical 

methods’ paradigm in different aspects. The 

afore-mentioned researches emphasized on 

the specific property of the method. 

Derivation of neighborhood rules is the 

most crucial issue in problems to be solved 

by the CA. Some researchers derived these 

rules by considering relevant differential 

equations, whereas others tried to make 

these rules by considering the laws of 

physics (e.g., mass conservation and 

momentum balance rules in elastic wave 

propagation problems). Common numerical 

methods (e.g., Finite Element, Finite 

Difference and Boundary Element 

methods) use corresponding differential 

equations of the problem to derive the 

formulation of the problem to be solved. On 

the other hand, some researchers used the 

CA for similar problems in such a way that 

neighborhood rules were derived from 

related concepts in physics. In fact, a 

principally distinguishing aspect of the CA 

modeling is its application for the solution 

of physics-based formulated problems. 

Briefly, in the CA method, each part (or, 

cell) of the solution domain shows a 

relatively independent role. The behavior of 

each cell depends on its neighbors, whereas 

in other mentioned numerical methods, 

differential equation acts in the whole 

domain. This feature distinguishes the CA 

from other numerical methods, and leads to 

remarkable computational advantages. 

Despite these advantages, the CA has some 

shortcomings. In definition, the CA divides 

the solution domain into a number of cells 

with their own dimensions and properties. 

An accurate solution of a problem with low 

computational cost may be obtained, when 

discretization of the solution domain and/or 

order of the solution are appropriate to the 

complexity level of the solution. For this 

purpose, various methods were employed in 

recent years, among which the Deslauries-

Dubuc (D-D) (1989) interpolating wavelets 

are very popular. 

In this study, these two concepts (i.e., 

physics-based formulation and the D-D 

interpolating wavelets) are used to solve 

the wave motion problem in one 

dimension (that is, string, rod, and beam 

problems) in an adaptive form. In the next 

section, the D-D interpolating wavelets are 

discussed, and then the formulation of 
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physics-based solution is presented 

afterwards. 

METHODOLOGY 

The D-D Interpolating Wavelets 

Adaptive wavelet grid-based methods 

were successfully applied in elliptic, 

parabolic and hyperbolic partial differential 

equations (PDEs) by Cruze et al. (2001), 

Liu et al. (2000), Jameson (1998), Vasilyev 

and Paolucci (1996) and Holmström 

(1999). Special characteristics of the 

wavelet concept such as complete multi-

resolution property, fast algorithms and data 

compression ability, posed this method as a 

fast versatile tool for various purposes. In 

multi-resolution analyses, each wavelet 

coefficient may be linked to a given point 

of the underlying grid. The solution of the 

problem begins through the same cells. In 

this regard, centroid to each cell is a 

solution point, as well as a sample for 

multi-resolution analysis. Depending on the 

gradient of the solution, cells should be 

regenerated in finer or coarser forms in 

some regions. In order to achieve a good 

resolution in all parts of the solution 

domain, this process has to be repeated. 

Assume j is a scale level for the solution 

of the first step. At the coarser level (i.e., j-

1), the D-D interpolating scheme can 

predict the eliminated values. The 

difference of eliminated value and 

predicted value in each solution point 

shows whether each point is needed at 

level j, or not. In each point, this 

comparison is independent of other points 

of the solution domain. In some parts of 

the solution domain, on the other hand, the 

initial resolution may not be sufficient. In 

these parts, new solution points should be 

added in the middle point of current 

solution points (i.e., level j+1). This 

process may be continued until the 

solution values and predicted values (from 

a coarser level) reach an acceptable 

difference. More details of the approach 

are illustrated in the next sections. 

 

The CA Formulation for Vibration of 

String 

In the first step, the solution domain is 

divided into equal parts (or, cells) as 

shown schematically in Figure 1, in which 

each cell has two neighbors. For example, 

the ith cell is in the neighborhood with 

cells i+1 and i-1. 

As shown in Figure 1, black points 

separate the cells from each other, while 

cross sign (i.e., mid-points of the cells) are 

assumed as solution points. As discussed 

earlier, this mesh would be used only in 

the first step of the solution. In general, the 

presented solution may be used for both 

regular and irregular meshes. 

The solution of the problem using the 

CA method is mainly the derivation of 

local rules for all possible conditions. As 

previously discussed, in comparison with 

other numerical methods, the CA uses 

local rules to solve a problem. In the 

establishment of equations, the balance of 

forces is considered on a discrete cell, 

which results in global equations called 

"rules." Figure 2 assumes a cell of a 

vibrating string. In this figure, the x-axis is 

assumed to be in the string’s direction 

when the string has no displacement. The 

y-axis is normal to the x-axis in the plane.

 

 

Fig. 1. The string problem, in which cells (separated by points), solution points (indicated by cross sign), and 

boundary conditions are drawn 
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Fig. 2. A part of the string along with applied forces 

 

As shown in Figure 2, the internal 

forces of the ith cell, in the y-direction, 

may be written as: 
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In the linear vibration of a string, both 

angles of Left  and 
Right : are assumed to 

be small, and therefore 1coscos  RightLeft  . 

As a result, the net horizontal force is 

equal to zero and LeftLeft  tansin  ,  and 

RightRight  tansin  . Based on the values of 

neighbor cells,
Righttan  and 

Lefttan  

would be available. Consequently, Eqs. (1) 

and (2) may be rewritten as: 
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(4) 

 

whose parameters are introduced in Figure 

2. The balance of momentum for the ith 

cell yields in the following equation: 

 

)( Left

yi
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yiExternaliii FFFalm   (5) 

where ExternalF  and ia : are the external 

force and the acceleration of the ith cell, 

respectively. Moreover, im : denotes the 

linear mass of the ith cell. Knowing the 

acceleration of the cell in each step and 

using first-order updates, the velocity (v) 

and displacement (u) of each cell are 

available as: 
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n
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 (7) 

 

where n: represents the number of steps 

per unit of time. Time step size can be 

varied to satisfy the Courant’s condition 

(Courant, 1928). Superscripts j and j+1, 

denote the values of each variable in steps 

j and j+1, respectively. 

Furthermore, in the next step, the 

boundary conditions (BCs) should be 

considered in the most left and the most 

right cells of the domain. In the present 

research, two known BCs of Dirichlet and 

Neumann were taken into account. 

Satisfying Dirichlet BC, displacement, and 

velocity of each cell were set equal to zero 

(or a known value) at the end of each step. 
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For Neumann BC on the other hand, an 

imaginary cell should be used in the 

neighborhood of the free cell. In this 

imaginary cell, force is known and 

displacement would be determined in such 

a way that the known force is satisfied. For 

a known force value in the left end of the 

string (Figure 1), one may write 

 

1

Im1
111 sin

l

uu
TTF LeftLeftLeftLeft

y


   (8) 

 

where uIm: indicates the displacement of 

the imaginary cell. The length of the 

imaginary cell is considered to be equal to 

u1. Furthermore, the following equation 

may be easily written: 
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11
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The above procedure may be followed 

for a vibrating rod in a similar manner in 

order to derive its vibration formulation 

using the CA. 

 

The CA Formulation for Vibration in a 

Beam 
The well-known Euler-Bernoulli beam 

theory was used for derivation of the 

formulation. In this theory, the effect of 

shear deformation and rotary inertia was 

neglected. For the case of Euler-Bernoulli 

beam of this research, the radius-r CA with 

r=2 was employed (Figure 3). 

For the ith cell, the radius of curvature 

is given by: 
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where y: is the vertical deflection and x: 

indicates the location of the ith cells. In 

addition, the first- and second-order 

derivatives of y are given by the following 

well-known finite difference equations for 

regular cells: 
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where ix : denotes the length of the ith 

cell. In accordance with basic assumptions 

of bending in beams (Timoshenko, 1953), 

the bending moment of each cell is written 

as: 

 

i
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R
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in which iE : is the Young’s modulus, and 

iI : denotes the moment of inertia. Figure 4 

depicts the applied shear forces and 

bending moments to the ith cell of the 

domain. 

As shown in Figure 4, the equilibrium 

equation for the y-direction may be written 

as: 

 

iiiii
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i
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 (14) 

 

where ),( txq : is the external distributed 

force, and ia : denotes the acceleration of 

the cell. Moreover, Right

iV  and Left

iV : are 

shear force on the right and left sides of the 

cell. These forces may be easily obtainable 

from the following relations: 

 

 
Fig. 3. The target cell (cell i) and the radius-r neighbors ( 2r ) 
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Fig. 4. Schematic view of a cell and applied internal and external loads 
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Furthermore, the right side and left side 

bending moment of the ith cell may be 

determined as: 
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Knowing the acceleration of the cell in 

each step and using first-order updates, 

velocity (v) and displacement (y) of each 

cell would be easily computed. 

The BCs should be properly 

implemented in the next step of the problem 

solution. Obviously, various BCs are 

expected for the beam problem. Usually, 

among four existing parameters (i.e., 

bending moment, shear force, slope, and 

deflection of the beam), two parameters are 

known, while two others are unknown. 

These two known parameters may be 

combined in different manners. For the case 

of a known displacement for example, 

displacement of the boundary cell may be 

updated according to the known value (or, a 

set of known values in a time domain). For 

other BCs, depending on the type of the 

Neumann BCs, imaginary cells are added to 

the solution domain. In these imaginary 

cells, displacement may be determined in 

such a way that known parameters (i.e., 

bending moment, shear force, and/or slope 

of the beam) are satisfied. 

 

Wavelet Concept and Adaptive Solution 

Wavelets are usually introduced by 

defining scaling functions kj , , wavelets 

kj , , and the associated function spaces jV  

(corresponding to kj , ) and 

jW (corresponding to kj , ) (Mallat, 1999). 

Since an interpolating wavelet transform was 

used, it is possible to define the transform in 

terms of interpolation on dyadic grids, 

instead. First, we present the interpolating 

subdivision idea proposed by Deslauriers and 

Dubuc (1989). Assume that we have a set of 

dyadic grids on the real line as: 

 

 ZZR   jkxkxV kj

j

kjj ,,2 ,,  

 (19) 

 

where R and Z: denote the real and integer 

numbers, respectively. Figure 5 shows the 

locations of these points on the 

aforementioned grid. 
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Fig. 5. The position of points in a dyadic grid 

 

Let us assume that the given function 

values on jV are denoted by }{ ,kjf , where 

)( ,, kjkj xff  : is a function defined on the 

grid points in jV . Now, we would like to 

extend jV  to all points kjf ,1  in 1jV . The 

interpolating subdivision idea is a suitable 

algorithm to achieve this goal. For this 

purpose, the even-numbered grid points 

kjx 2,1  are already in existence in jV , 

therefore, the corresponding function values 

remain unchanged. The values at the odd-

numbered grid points 12,1  kjx  were 

computed using polynomial interpolation 

from the values at the even-numbered grid 

points. The degree of this interpolating 

polynomial is 1p , as such we say that the 

interpolation is in order of p. The order is 

chosen to be even, in order to make the 

interpolation symmetric. As earlier 

discussed, the given function values on a 

coarse grid, and the interpolating subdivision 

idea generates function values on a finer 

grid. In the reverse direction, we could just 

throw away half of the grid points at each 

level, but we would lose some information. 

Instead, for odd-numbered grid points at 

each level, we may compute the difference 

between the known function value and the 

function value predicted by interpolation 

from the coarser grid. These differences in 

function values’ wavelet coefficients are 

indicated by kjd , . The computation of a 

wavelet coefficient is illustrated in Figure 6, 

for the case of a cubic curve ( 4p ). 

Repeating the mentioned procedure 

recursively, a new algorithm is established 

for computing the full wavelet representation 

from function values on a fine grid. The 

wavelet representation is illustrated in Figure 

7. 

 

Fig. 6. Prediction of a known value from higher resolution using cubic curve, and determination of 

corresponding wavelet coefficient 
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Fig. 7. Points in basis space (
0V ) and the added points corresponding to added spaces (

210 ,, WWW ) which are 

related to wavelets 

 

After the above algebraic manipulations, 

sets of numbers in each level are available. 

Depending on the expected order of 

accuracy, some values of kjd ,  smaller than 

a specified threshold e may be eliminated. 

Considering these eliminations, a 

remarkable number of wavelet coefficients 

would be eliminated for the case of smooth 

function. The number of remaining 

coefficients mainly depends on the 

variation of the gradient in the original 

function. In conclusion, it should be noted 

that for the case of boundary grids, 

boundary wavelets introduced by Donoho 

(1992) were used in this work. 

 

Smoothing of the Noisy Data 

During the problem solving, various 

types of errors may occur. Depending on 

the type of problem, these errors may 

remain in the domain and create larger 

errors. When an adaptive solution is 

desired, these errors create erroneous 

adapted grid zones. Therefore, smoothing 

fit is adopted to eliminate the noisy portion 

of the solution. Smoothing function is 

constructed using the solution points 

( , )i ix y , which are generally irregular. Let 

us assume that ( )f x  is the smoothest 

function for the mentioned points. It is 

known that ( )f x  may be obtained from 

minimizing the following functional: 

2

1

2
( )

( )

( ) , 0











  

  





n

j j j

j

m

F W y f x
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in which,   and jW : are Lagrangian 

parameter and weight factor at point j, 

respectively. In addition, m: denotes the 

derivative order. Odd degree splines 

( 2 1m    with 2 2m  continuous 

derivatives) have optimal solution for Eq. 

(20) (Reinsch, 1971). In this research, 

cubic spline 3   was then employed 

(that is, 2f C ). It is clear that the 

Lagrangian parameter ( ), sets the 

amount of smoothness. When   

approaches to infinity, Eq. (20) yields the 

usual interpolating spline, whereas 0   

corresponds to the least square straight 

line. For the mentioned interval, when   

decreases, the interpolating property 

vanishes, while the smoothing property 

increases. Accordingly, selection of the 

Lagrangian parameter is the most 

important part of the smoothing procedure. 

In this study, all sample points jW  are 

assumed to be unit. Considering the results 

of other studies, the Lagrangian parameter 

is assumed as 4  . 

Based on the above explanations, the 

adaptive solution of the mentioned 

problems involves the following 

algorithm: 
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1. Select appropriate points for scale 

function. 

2. Solve the problem for this level and 

then other existing ones at the finer level. 

3. Apply the smoothing scheme for 

solution points and find the corrected 

solution. 

4. Find the difference of the predicted 

values and the existing ones at the finer 

level. 

5. Eliminate points for which ed kj ,
. 

6. Refine the remaining mesh for regions 

where ed kj ,
 and solve the problem 

again. In this regard, the time step may 

change in accordance with Courant’s 

condition. 

7. Proceed to step 6, until there still exist 

any points where ed kj ,
. 

8. Go to step 2 to solve the problem in the 

next time step. 

NUMERICAL EXAMPLES 

Forced Vibration of a Rod 
The first example is related to 

longitudinal wave motion in a rod with 

zero initial conditions as shown in Figure 

8. The rod’s length is 10 m and the 

material properties of the rod are as follow: 

the Young’s modulus 210E  GPa, and 

the mass density 7850 kg/m
3
. The left 

end of the rod ( 0x ) is fixed, while the 

right end ( 10x m ) is subjected to a 

known stress time history as given: 
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t 


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  (21) 

    

where t: represents time (in milliseconds), 

and  : represents the applied stress (in 

MPa). Smoothing scheme is employed for 

this problem with the mentioned 

Lagrangian parameter. In this case, the 

Lagrangian parameter was examined for 

the analytical solution with a random zero 

mean and variance noise. Random noise 

was eliminated from the solution, and the 

result is coincident with the original signal. 

 

 
 

Fig. 8. The first example. A sample rod excited by 

an end stress field 

 

 
Fig. 9. The variation of applied external traction at the right end of the rod
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The results of this study's method were 

compared with the analytical results 

obtained by Yang (2008). The comparisons 

show that the results of the two methods are 

identical and indistinguishable. 

Furthermore, the solution results of the 

study's method are given for three different 

time steps in Figure 10. Also, the horizontal 

displacement of the mid-point of the rod is 

shown in Figure 11.  
 

 
(a) 

 

 
(b) 
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(c) 

Fig. 10. Horizontal displacement of the rod at various time steps; (a) 50.0t ms, (b) 15.2t ms, (c) 

30.4t ms 

 

Fig. 11. Horizontal displacement of the rod ( 5x m) 

 

For this problem, the proposed 

algorithm was employed. It is remarkable 

that in a new time step in the time 

marching process, the solution begins with 

the adapted mesh of the previous time step. 

In the first step of this problem, the scale 

space is constructed by 124   points. In 

addition, j and e are assumed as 9 and 1E–

14, respectively. 

 

Free Vibration of a String 

The next example corresponds to wave 

propagation in a string with unit length and 

unit wave velocity. The initial velocity of 

the string is assumed to be zero in the 
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whole domain. The initial displacement of 

the string is represented by the following 

relation: 

 
0.01(1 cos(20 )); 0.45 0.55

( )
0 ; 0.55 or 0.45

x x
f x

x x

  
 

 

 

 (22) 

 

Results of this study's method were 

compared with the analytical solution 

achieved by d’Alambert’s method (Yang, 

2008). Again, the scale space was 

constructed by 124   points, which forms 

uniform cells. Although the D-D scheme 

can eliminate the redundant nodes in the 

scale space (corresponding to 1j ); 

however, this feature was not used in this 

example. Moreover, the D-D scheme may 

reconstruct an arbitrary function with 

minimum samples. Figure 12 shows that 

the function f in Eq. (22) has been 

reconstructed ( 6j  and 5E1 e ). 

Furthermore, the mentioned smoothing 

scheme is applied to this problem. 

The results of the solution with this 

method are presented in three different 

time steps as shown in Figure 13. In this 

solution, the presented algorithm was used. 

It should be noted that in a new time step 

of the time marching process, the solution 

starts with the adapted mesh in the 

previous time step. For this example, j and 

e were selected as 6 and 1E–5, 

respectively. 

Also, displacement of the string at point 

25.0x  obtained by the study's method is 

compared with the analytical solution 

(Yang, 2008). When the results as plotted 

in Figure 14 were compared, the results of 

this study's method show excellent 

agreement with the analytical solution. 

 

 
Fig. 12. Reconstruction of function f using the D-D scheme 
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(a) 

 
(b) 

 
(c) 

Fig. 13. Vertical displacement of the string at various time steps; (a) 03.0t , (b) 06.0t , (c) 52.0t . In 

this problem, time and length variables are dimensionless 
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Fig. 14. The second example; Vertical displacement of the string ( 25.0x ) 

 

Free Vibration of an Infinite Beam 

In the last example, flexural wave 

propagation in the Euler-Bernoulli beam 

was examined. Consider an infinite beam 

with the following initial excitations: 

 
2 /64( ,0) , ( ,0) 0xy x e y x   (23) 

 

in which y represents transverse deflection, 

and x denotes the longitudinal axis of the 

beam. In addition, the dot superscript 

indicates the derivative of the transverse 

deflection with respect to time (that is, 

initial velocity of the beam). For this type of 

initial and boundary conditions, the 

analytical solution is available by using 

integral transform (Fourier, 1822). It is 

clear that the velocity of flexural wave in 

the Euler-Bernoulli beam strongly depends 

on the frequency content of the wave. This 

phenomenon may be related to 

shortcomings of this theory compared to 

higher order theories, such as the 

Timoshenko beam theory (1974). For the 

case of infinite members of this example, 

when the propagating wave reaches the end 

cells, required cells would be added to the 

solution domain. Furthermore, the required 

points for the D-D scheme were added to 

the solution domain from both sides of the 

domain, when needed. The selected loading 

includes the entire range of existing 

frequencies, whose participation is 

different. As pointed out earlier, these 

frequencies would be separated due to time 

marching process. When the participation 

of a specific frequency is smaller than the 

D-D threshold, this frequency would be 

eliminated. Figure 15 shows the transverse 

displacement of the specified points 

obtained from the analytical and study's 

methods. 

Furthermore, Figure 16 represents the 

snapshot solutions corresponding to two 

various moments ( 6E5 e ). As shown 

in Figure 16, dense solution points are 

present in the wave-front. This 

phenomenon is related to high frequency 

waves traveling with higher wave 

velocities. As a result, we may conclude 

that for the case of loading, the Euler-

Bernoulli based models may not provide 

acceptable results. 
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(a) 

 
(b) 

Fig. 15. Transverse displacement of the beam at (a) 10x cm, and (b) 100x cm; The study's method and 

analytical method are represented with dashed-black and solid-blue lines, respectively. 
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(a) 

 
(b) 

Fig. 16. Transverse deflection of the Euler-Bernoulli beam at (a) 08.0t ms, and (b) 16.0t ms 
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CONCLUSIONS 

In this research, an adaptive method was 

developed for solving wave motion 

problems of one-dimensional domains. At 

first, considering the conservation of mass 

and the balance of momentum, a physics-

based method was developed. Afterwards, 

adaptive points of discretized domain were 

determined using the D-D wavelets. The 

advantages of the CA method as an 

efficient method for the solution of these 

types of problems are promising. The 

results of the present method are in 

excellent agreement with those reported in 

literature and those achieved by analytical 

solutions. When compared to other 

existing numerical methods, the present 

method directly obtains all unknowns of 

the problem which have physical meanings 

(e.g., stresses, strains, internal forces); 

whereas other well-known numerical 

methods, need to calculate derivatives or 

other post-processing operations to get 

these unknowns. 
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