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Abstract: In this paper, two new quadrilateral elements are formulated to solve plane 
problems. Low sensitivity to geometric distortion, no parasitic shear error, rotational 
invariance, and satisfying the Felippa pure bending test are characteristics of these suggested 
elements. One proposed element is formulated by establishing equilibrium equations for the 
second-order strain field. The other suggested element is obtained by establishing equilibrium 
equations only for the linear part of the strain field. The number of the strain states decreases 
when the conditions among strain states are satisfied. Several numerical tests are used to 
demonstrate the performance of the proposed elements. Famous elements, which were 
suggested by other researchers, are used as a means of comparison. It is shown that these 
novel elements pass the strong patch tests, even for extremely poor meshes, and one of them 
has an excellent accuracy and fast convergence in other complicated problems.    
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INTRODUCTION

 

Free formulation was first based on 

kinematics decomposition. Free 

formulation indicates that the basic part 

fulfills convergence of the finite element. 

Felippa (2006) set up the correct rank of 

the stiffness matrix and increased accuracy 

using the high-order part. Strain gradient 

notation creates a suitable space to find the 

error of the finite element pattern using a 

Taylor series expansion of the strain field. 

This scheme adequately specifies shear 

locking and parasitic shear error. In other 

words, the slopes of the strains point to the 

root of many finite element modeling 

errors (Dow, 1999).  

The parameterized variational principle 

in the formulation of finite element 

technique changed the science of high-

performance elements. In this way, 

                                                 

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scientists could define the continuous 

space of an elastic functional. Making the 

continuous space of the functional 

stationary produces free parameters for 

formulation of the element, creating finite 

element templates (Felippa and Militello, 

1990). Further investigation revealed that 

the template formulations followed 

specific and identical structures. There was 

no need to make the parametrized 

functional stationary to obtain these 

templates. Assigning values to the free 

parameters of these templates provides the 

various elements (Felippa, 2000). 

Optimization of finite element templates is 

difficult, however, and requires innovation. 

The large number of free parameters, 

symbolic processing and matrix structure 

optimization are difficulties faced by 

researchers who study the templates. 

Strain gradient notation is a simple and 

clear demonstration of free formulation. 

An efficient element of SSQUAD (strain 
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state quadrilateral element) was recently 

proposed using strain gradient notation and 

free formulation (Rezaiee-Pajand and 

Yaghoobi, 2012). In this element, the 

optimization constraints of insensitivity to 

distortion, rotational invariance and 

absence of parasitic shear error were 

employed. It was evident that a complete 

selection of strain states from each order 

satisfies all three conditions. In addition, 

the need to establish an optimization 

constraint for bending in the linear strain 

states was identified in the formulation. 

Entering the states of rigid body motion is 

a convergence criterion of the formulation. 

To fulfill this condition, a linear strain 

field is used for the SSQUAD element.  

Equilibrium allowed establishment of 

equations among the strain states. 

Consequently, two strain states could be 

written in terms of other strain states. This 

decreased the number of the strain states 

required in the formulation. Equilibrium 

equations for formulation of the SSQUAD 

element increased the performance of the 

element. It should be noted that hybrid 

stress elements satisfy equilibrium 

conditions in a strong form (Santos and 

Moitinho de Almeida, 2014(. As will be 

demonstrated, completely satisfying the 

equilibrium equation does not produce 

more accurate responses. In fact, using the 

rotational degree of freedoms and 

satisfying equilibrium in second-order 

filed decrease the ability of the suggested 

element. To eliminate this weakness, 

equilibrium should be satisfied in the 

linear displacement field.   

Severe numerical tests display fast 

convergence and insensitivity to distortion 

in the mesh for the SSQUAD element. 

This element, like other good elements, 

such as AGQ6-II, provides answers with 

large error in strong patch tests for 

constant stress and bending with bilinear 

stress for high distortion (Prathap and 

Senthilkumar, 2008).  

The present study uses high-order fields 

and imperfectly establishes equilibrium 

equations to eliminate the weakness of the 

SSQUAD element in the strong patch tests 

of constant stress and bending with bilinear 

stress for high distortion. Selecting a 

complete second-order strain field satisfies 

optimization constraints for insensitivity to 

geometric distortion, absence of parasitic 

shear error, and rotational invariance. The 

new element also satisfies Felippa's pure 

bending test. To apply a second-order strain 

field, 20 strain states are needed to present 

the element.  

Satisfying the equilibrium equations is 

explored using perfect and imperfect types. 

The SSQ14 element (strain state 

quadrilateral element with 14 DOF) is 

obtained by setting up perfect equilibrium 

equations for the second-order strain field. 

The SSQ18 element (strain state 

quadrilateral element with 18 DOF) is 

obtained by employing equilibrium 

equations only for the linear part of the 

strain field. Relationships among the strain 

states are created using equilibrium 

equations. In the new formulation, these 

equations decreases the number of required 

strain states for SSQ14 and SSQ18 to 14 

and 18, respectively.  

The proposed formulations are based on 

Taylor's expansion of the strain field. 

Several optimal constraints are included to 

obtain errorless responses. The equilibrium 

conditions are satisfied, to some extent, 

using only the constant parts of the strains. 

The proposed strategy provides two simple 

elements that pass the patch test and work 

efficiently, even in coarse distorted meshes.  

These types of elements are innovative, 

and their performance is examined using a 

variety of numerical tests. The responses to 

high-quality elements of other researchers 

are also used as a means of comparison. 

Section 4.1 explains the improved 

performance of SSQ18 and SSQ14 elements 

over other good elements, such as SSQUAD 

and AGQ6-II. The SSQ18 element also 

demonstrates superior accuracy and fast 

convergence in other tests.  
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Optimization Constraints 

A formulation that allows optimization 

is required to obtain efficient elements. 

The proposed strategy demonstrates the 

roots of many errors. Sufficient constraints 

must be a component of any formulation to 

improve performance. The following 

subsections explain the constraints used in 

the proposed technique. 

 

In-plane pure bending test 

Felippa used this test to find the 

optimum bending template (Felippa, 2003, 

2004, 2006). He examined the responses of 

the template for in-plane bending by 

evaluating the energy ratios using an 

Euler-Bernoulli beam where xr  and yr  

denote the bending energy ratios of a 

rectangular part of the beam in the x and y 

directions, respectively. If rx = 1, ry = 1, or 

r = 1, the element can model flexure in an 

arbitrary direction. If r > 1 or r < 1, the 

element is either over-stiff or over-flexible. 

For each aspect ratio of element r = 1, the 

element is at flexural optimum. In the case 

of insensitivity to the aspect ratio, r 

increases, and the element will experience 

shear locking.  

When this test is based on strain states 

and in-plane bending occurs in the x 

direction, the real stress field changes 

linearly in the y direction. The strain field 

for this case is based on the Hooke's law as 

follows: 

 

0   γ,y      ,y   xy43y21x    (1) 

 

where 1 , 2 , 3  and 4 : are constant 

coefficients and Eq. (1) shows that only 

)( yy,ε , )( yx,ε , )( yε  and )( xε  strain states 

exist in this field. For bending in the y 

direction, the real strain field includes 

)( xy,ε , )( xx,ε , )( yε  and )( xε  strain states. 

To obtain the real answer for in-plane 

bending, )( yy,ε , )( xy,ε , )( yx,ε , )( xx,ε , 

)( yε  and )( xε  strain states must be used. 

)( xε : is the magnitude of axial strain xε at 

the origin, )( x,xε , and )( yx,ε  are the rate 

of xε  variations in x and y directions, in 

the vicinity of origin, respectively. Other 

coefficients are also determined by using a 

similar tactic. 

The existence of constant strain states 

and rigid body motions in the assumed 

strain field of the element is a convergence 

criterion and must exist in all cases. The 

bending test based on strain states has no 

limitation for geometric shape or type of 

mesh. It covers elements other than the 

triangular and quadrilateral elements. 

  

Rotational invariance 

The properties of some elements change 

if the coordinate axes rotate. These 

elements are not rotational invariant. An 

element having different rotated shapes in 

the mesh of the structure inevitably 

requires rotational invariance. Rotational 

invariance depends on the complete 

selection of expressions of the strain field 

of each order (Dow, 1999).  

 

Absence of parasitic shear error 

The appearance of axial strain states in 

shear strain interpolation polynomial 

creates parasitic shear error, which leads to 

hardening of the element (Dow, 1999). 

Shear strains, including Taylor series shear 

strain, are independent of axial strain. In 

the shear strain interpolation function of 

elements with parasitic shear error, some 

axial strain states incorrectly appear. If 

such an element experiences flexural 

deformation, the axial strain states are non-

zero and are erroneously representative of 

part of the shear strain. In elements 

formulated using strain gradient notation, 

the parasitic shear error can be eliminated 

by setting aside the spurious strain states 

from the shear strain polynomial. Parasitic 

shear error decreases as the mesh becomes 

finer. Despite this, if an element is free of 

error, coarse mesh will also produce 

correct answers. It should be noted that the 
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selection of the complete strain 

interpolation functions prevents the 

appearance of this error. 

 

Equilibrium conditions 

In formulation of the SSQUAD 

element, setting up the equilibrium 

equations increases the performance of the 

element and decreases the number of strain 

states. By selecting a complete polynomial 

from each order, inclusion of parasitic 

shear and the rotational variance errors can 

be prevented.  

The linear strain field was used to 

formulate the SSQUAD element. SSQ14 

and SSQ18 were formulated using a 

complete second-order strain field. By 

selecting this field, rotational invariance 

and absence of parasitic shear error are 

guaranteed. It is evident that this field can 

satisfy the Felippa pure bending test. The 

difference between SSQ14 and SSQ18 is 

in the establishment of equilibrium 

equations. In the SSQ14 element, complete 

equilibrium equations are set up; in the 

SSQ18 element, the equilibrium equations 

are satisfied for the linear part of the strain 

field.  

The present study shows the superiority 

of the case in which the equilibrium 

equations are partially fulfilled. For the 

strain field of the complete second order, 

20 nodal unknowns are needed. For the 

full and partial establishment of the 

equilibrium equations, 6 and 2 strain 

states, respectively, are written in terms of 

other strain states. The equilibrium 

equations inside an elastic homogeneous 

element for in-plane stress or strain 

become: 
 


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 (2) 

 

where xσ , yσ  and xy : are stresses at any 

point on the element, and )( yx,Fx  and 

)( yx,Fy : are force fields inside the 

element in the x and y directions, 

respectively, in a Cartesian coordinate 

system.  

In plane problems, it is evident that the 

variation of the force field in the direction 

normal to the element plane (z direction 

here) does not exist. The stress fields are 

selected in the Cartesian coordinate 

system. Based on the Hooke's law for a 

homogeneous elastic state, Eq. (2) can be 

written as: 

 

)( yxxx εελ2Gεσ   (3) 
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The λ for plane stress and plane strain 

states are 
))(( ν1ν1

νE


 and 

))(( 2ν1ν1

νE


, 

respectively, and G, ν, and E: are elasticity 

parameters of shear modulus, Poisson’s 

ratio and Young’s modulus, respectively.  

SSQ14 and SSQ18 

The formulation of the SSQ14 and SSQ18 

elements is described below based on the 

assumed strain functions. 

SSQ14 

The formulation of SSQ14 and SSQ18 

employs the strain and displacement fields 

as: 
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2 2

x x x xy r x,x x,y xy,y y,x

3 2 2 3

x,xx x,xy x,yy xy,yy y,xy

2 2

y y xy r y xy,x x,y y,x y,y
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In Eq. (8), the coefficient of xy: 

is )( xxy,yyx, εε  . This is derived from the 

strains compatibility condition, which 

is  )()()( xxy,yyx,xyxy, εεγ  . The formulation 

of SSQ14 satisfies the equilibrium 

equations completely; thus, the strain field 

in Equation (8) is substituted into Eq. (6). 

In equilibrium equations, the body forces 

of )( yx,Fx  and )( yx,Fy  are ignored. As a 

result, the relationship among the strain 

states is: 
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The number of unknowns in the 

formulation has now decreased to 14. The 

formulation is carried out using the 14 

residual strain states and the vector of the 

strain states is: 

 


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 (10) 
 

 

The displacements and strains are 

transformed to the next matrix as: 
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



















































 




λ12G

yG 

2

yx

6G

x λ2G

2

xy
λ12G

x λG

6G

yλG

 

λ12G

y λG

6G

xλG
λ12G

xG 

2

xy

6G

yλ2G

2

yx

    

2G

xλ2G

2

y
xy

2G

xλG

0
2G

yλG
xy

  

0
2

x
y0x10

2G

yλ2G

2

x

2

y
0xy01

3232

33

33

3232

222

2

22

q

6

6

6

6

)(

)()(

)()(

)(

)()(

)(

)(

N̂

 
(12) 

q̂.B̂ε q  (13) 

q

2
2

2

2 2

2

2 2

2 2

0 0 0 1 0 0 x

B̂ 0 0 0 0 1 0 0

(2G λ)
0 0 0 0 0 1 y

G
y 0 0

0 x y

(2G λ)λ λx y x
G G G

y Gxy x
2 (4G 2λ)

(G λ)
0 y

(4G 2λ)

(2G λ)λ x y xy
2G 2G

(G λ)
0 x

(4G 2λ)

Gxxy y
2 (4G 2λ)

(2G λ)λ y x xy
2G 2G







 



  










 

 
 




 


  


 

 (14) 



Rezaiee-Pajand, M. and Yaghoobi, M. 

138 

SSQ18 

The displacement and strain fields of 

Eqs. (7) and (8) are used in the formulation 

of the SSQ18 element. Equilibrium 

equations (Eq. (6)) are set up for the linear 

part of the strain field in Eq. (8). As a 

result, )( xxy,γ  and )( yxy,γ  are written in 

terms of other strain states. 
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The number of the unknowns has now 

decreased to 18 and the formulation is 

performed for the 18 residual strain states. 

The vector of the strain states is: 
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The qN̂  and qB̂  matrices are: 
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Degrees of freedom  

SSQ14 and SSQ18 elements have 14 

and 18 DOF, respectively. The 

arrangements of the DOF of the two 

elements are shown in Figure 1.  
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Fig. 1. The degrees of freedom for SSQ14 and SSQ18 elements. 
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Finding the stiffness matrix 

By allotting qN̂ , qB̂ , and q̂  matrices for 

each SSQ14 and SSQ18 element, their 

stiffness matrices can be found. The 

displacement unknowns are denoted by the 

vector of the strain states ( q̂ ). The nodal 

DOF are denoted by vector D. The 

relationship q̂.N̂U q  holds between the 

displacement functions in the x and y 

directions, U, and the displacement 

unknowns ( q̂ ). The nodal rotations are 

defined as )(
y

y

u

x

u

2

1 x









. The nodal 

displacements are the shifts in the x and y 

directions plus the nodal rotation. The 

following equations connect the nodal 

DOF and the displacement unknowns:  
 

q̂.ĜD q  (19) 

D̂.Ĝq̂
1

q




 
(20) 

 

The qĜ  matrix is obtained by inserting 

the nodal coordinates of each element into 

the corresponding qN̂  and sets up the 

relation between the vector of the strain 

states and the nodal displacement vector. 

Consequently, the displacement boundary 

conditions can be entered into the 

formulation. The displacement and strain 

fields for the nodal displacement vector in 

matrix form are: 
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The functional of the potential energy for 

the elasticity matrix of E is: 
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1

dvdv
2

1

TT
T

T

T
T

F.ND̂D̂)B.E.B(D̂

F.Uε.E.εΠ

 

 (23) 

Optimization of the potential energy 

results in: 
 

0
D̂





 (24) 

0F.ND̂)B.E.B(
D̂





 dv dv T

T
 (25) 

 

This equation can be expressed as: 
 

  dv dv T
T

F.ND̂)B.E.B(  (26) 

 

Stiffness matrix K and nodal load 

vector P are: 
 

dv
T

B.E.BK   (27) 

 dvT
F.NP  (28) 

 

The shape function matrices are defined 

by N. Analytical schemes are used to find 

the stiffness matrix. Using triangular 

coordinates, the quadrilateral element is 

divided into two triangular shapes and the 

stiffness matrix is easily integrated. 

NUMERICAL TESTS 

The abilities of the proposed elements 

were evaluated using 12 difficult test 

problems. To demonstrate the power of 

new formulation, the answers of the good 

elements of other researchers were used 

for comparison. These elements are: 

 4-node isoparametric element: Q4 

(Chen et al., 2004; Wisniewski and Turska, 

2009) 

 Element with internal parameters 

formulated by QACM-I: AGQ6-II (Cen et 

al., 2009; Chen et al., 2004) 

 Element with internal parameters 

formulated by QACM-I: QACM4 (Cen et 

al., 2007) 

 Quadrilateral element in 

MSC/NASTRAN: CQUAD4 (Choi et al., 

2006; MacNeal, 1971) 

 4-node isoparametric element with 

internal parameters: HL (Bergan and 

Felippa, 1985; Cook, 1974) 
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 Stress hybrid element: PS (Cen et al., 

2009; Chen et al., 2004; Pian and 

Sumihara, 1984) 

 Triangular element with rotational 

DOF: FF(α=1.5, β=0.5) (Bergan and Felippa, 

1985) 

 Allman’s element: ALLMAN (Allman, 

1984; Choo et al., 2006; Cook, 1986) 

 Membrane element with drilling DOF: 

Q4S (Cen et al., 2009; MacNeal and 

Harder, 1988) 

 Hybrid element with internal 

parameters: NQ6 (Cen et al., 2009; Wu et 

al., 1987) 

 Non-conforming isoparametric element 

with internal parameters: QM6 (Cen et al., 

2009; Chen et al., 2004; Choi et al., 2006; 

Taylor et al., 1976) 

 Non-conforming isoparametric element 

with internal parameters: Q6 (Cen et al., 

2007, 2009; Wilson et al., 1973) 

 Ibrahimbegovic plane element with true 

rotation: IB (Choi et al., 2006; 

Ibrahimgovic et al., 1990) 

 Membrane element with drilling DOF: 

D-type (Cen et al., 2009; Ibrahimgovic et 

al., 1990) 

 Hybrid Trefftz plane element: HT 

(Choo et al., 2006; Jirousek and 

Venkatesh, 1992) 

 Assumed strain element: PEAS7 

(Andelfinger and Ramm, 1993; Chen et al., 

2004) 

 Modified enhanced assumed strain 

element: MEAS (Choi et al., 2006; Choo et 

al., 2006; Yeo and Lee, 1997) 

 Quadrilateral element with two 

enhanced strain modes: QE-2 (Cen et al., 

2009; Piltner and Taylor, 1995, 1997 ) 

 Assumed strain element: B-Q4E (Cen et 

al., 2009; Piltner and Taylor, 1997) 

 Quadrilateral hybrid Trefftz element 

with rotational DOF: HTD (Choo et al., 

2006) 

 HR element with 5 modes in skew 

coordinates: HR5-S (Wisniewski and 

Turska, 2006, 2009) 

 Enhanced assumed displacement 

gradient element with 4 modes: EADG4 

(Wisniewski and Turska, 2008, 2009) 

 Mixed 4-node elements based on Hu-

Washizu functional: HW12-S, HW14-S, 

HW10-N, HW14-N, HW18 (Wisniewski 

and Turska, 2009) 

 Free formulation quadrilateral: FFQ 

(Felippa, 2003; Nygard, 1986) 

 4-node membrane elements with 

analytical element stiffness matrix: QAC-

ATF4 (Cen et al., 2009) 

 8-node membrane element based on 3 

quadrilateral area coordinate methods 

QACM-I, -II, and -III: CQAC-Q8 (Long et 

al., 2010) 

 8-node element formulated using 

quadrilateral area coordinates: QACM8 

(Cen et al., 2007) 

 Conventional 8-node quadrilateral 

isoparametric elements: Q8  

 Hybrid stress element using first Piola–

Kirchhoff stresses of degree 4 and 

displacements of degree 2: Hybrid stress 

element with dp=4, dv=2 (Santos and 

Moitinho de Almeida, 2014) 

Cantilever Beam with Distortion 

Parameter 

The cantilever beam shown in Figure 2 

has two elements, the shapes of which vary 

with the variation of distorted parameter e. 

The existence of coarse mesh, an aspect 

ratio of 2.5 for e = 0 and intense distortions 

in the mesh make it an appropriate test for 

evaluating the sensitivity of the distortion 

of the mesh. The modulus of elasticity is 

75, Poisson’s ratio is 0.25, and thickness of 

the structure is 1.  

Figure 3 shows analysis of the 

cantilever beam under 3 loadings at the 

free end of the beam. This structure has an 

axial force of 1 at the free end of the beam 

for the constant stress patch test. For the 

bending patch test with linear stress, a 

moment equal to 1 is applied to the free 

end of the beam. A shear load equal to 1 is 
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applied to the free end of the structure for 

the bending patch test with bilinear stress. 

The displacements of the proposed 

elements at A for each loading and for 

different magnitudes of e are listed in 

Tables 1 to 3. The exact vertical 

displacement of point A under the bending 

moment is 1 and under a shear load is 

6.8333. The exact horizontal displacement 

at point A under the axial load is 0.0667 

(Prathap and Senthilkumar, 2008).   

Some very good elements, such as 

SSQUAD and AGQ6-II, give poor results 

and can lead to considerable error in the 

patch tests for constant stress and bending 

with bilinear stress for poor mesh. SSQ18 

and SSQ14 are proposed to obtain 

adequate performance in these strong patch 

tests, even for extremely poor mesh.

 
(1) (2) 

Fig. 2. The geometry of the two and one-element mesh of the cantilever beam with the distorted parameter of e. 
 

 
Fig. 3. The three loadings used for the cantilever beam. 

 

Table 1. The normalized vertical displacement of point A of the cantilever beam under the bending moment. 

4 3 2 1 0.5 0 e 

14.5 13.7 13.6 17.5 24.5 31.5 HT 

17.9 31.8 56.7 90.7 95 93.8 ALLMAN 

23.1 26.9 30.8 39.2 59.5 100 MEAS 

110.5 102.4 92.8 86.9 93.2 100 Q6 

51.2 53.6 54.4 62.7 80.9 100 QM6 

53.1 54.7 55 62.9 81 100 PS 

57.9 57.5 56.5 63.4 81.2 100 QE2 

57.9 57.5 56.5 63.4 81.2 100 B-Q4E 

57.8 83.6 100.9 99.6 99.2 100 HTD 

100 100 100 100 100 100 AGQ6-II 

60.3 61.4 60.1 66.5 83.8 100 QACM4 

100 100 100 100 100 100 QAC-ATF4 

32.01 59.7 89.39 99.3 99.9 100 Q8 

103.7 101.9 100.7 100.2 100 100 QACM8 

100 100 100 100 100 100 SSQUAD 

102.8 101.2 100.7 100.1 100 99.8 SSQ14 

116.8 105.3 100.4 98.5 97.6 96.6 SSQ18 

100 100 100 100 100 100 Exact (Prathap and Senthilkumar, 2008) 

e 

2 

5 5 

e 

e 

5 5 

A A 

M=1 P=1 

V=1 

 e  e 

 e 

 A  A 

  A 
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Table 2. The normalized horizontal displacement of point A of the cantilever beam under the axial load. 

4 3 2 1 0 e 

2.084 1.544 1.225 1.054 1.000 AGQ6-II 

2.082 1.540 1.218 1.046 0.991 SSQUAD 

1.581 1.295 1.123 1.065 1.064 SSQ14 

1.014 1.014 1.014 1.010 1.002 SSQ18 

1.000 1.000 1.000 1.000 1.000 Exact (Prathap and Senthilkumar, 2008) 

 
Table 3. The normalized vertical displacement of point A of the cantilever beam under the shear load on the free end. 

4 3 2 1 0 e 

1.5916 1.2370 1.0520 0.9650 0.9396 AGQ6-II 

0.3255 0.5478 0.7992 0.9298 0.9765 Q8 

0.8421 0.8489 0.8830 0.9483 0.9765 QACM8 

1.5899 1.2344 1.0493 0.9635 0.9390 SSQUAD 

1.0415 1.0080 0.9948 0.9885 0.9849 SSQ14 

1.1136 1.0284 0.9915 0.9740 0.9458 SSQ18 

1.0000 1.0000 1.0000 1.0000 1.0000 Exact (Prathap and Senthilkumar, 2008) 

 

SSQ18 showed less than 5% error in 

analysis of the cantilever beam under a 

moment for magnitudes of e equal to 0, 

0.5, 1, 2 and 3. The errors for the beam 

under axial and shear loading at 

magnitudes of e equal to 4 were 1% and 

11%, respectively. The errors by AGQ6-II 

were 108% and 59%. These outcomes 

demonstrate that SSQ14 results for shear 

and moment loading showed better 

accuracy than the SSQ18 results. 

A cantilever beam was analyzed using 

SSQ18 in one-element mesh (Figure 2b). 

The displacement at point A by SSQ18 for 

V, P and M loadings and different 

magnitudes of e are listed in Table 4. 

These results show the insensitivity of 

SSQ18 to the arrangement of nodes. 

 

MacNeal Thin Beam 

This test evaluates the decrease in 

accuracy for parallelogram-shaped and 

trapezoidal mesh. Figure 4 shows a thin 

cantilever beam with rectangular, 

parallelogram-shaped and trapezoidal 

mesh. MacNeal suggested this benchmark 

for testing sensitivity to distortion in the 

mesh for quadrilateral elements (MacNeal 

and Harder, 1985). Six elements are used 

for analysis. The aspect ratio of the 

elements in the rectangular mesh is 5. 

Since a high aspect ratio creates distortion 

in the parallelogram-shaped and 

trapezoidal mesh, it is an appropriate test 

to evaluate the efficiency of the elements. 

The modulus of elasticity is 10000000, 

Poisson’s ratio is 0.3 and thickness of the 

structure is 0.1. This problem has two 

types of loading; pure bending under a 

bending moment and bending under a 

shear force of one at the free end of the 

beam. The exact vertical displacement at 

point A of the free end of the beam for 

moment and shear loading are 0.0054 and 

0.1081, respectively (Cen et al., 2009).  

 
Table 4. The normalized displacement of point A of the cantilever beam in the one-element SSQ18 mesh (Exact 

solution (Prathap and Senthilkumar, 2008) is equal to 1.0000). 

e 
Load 

4 3 2 1 0 

0.9442 0.9442 0.9442 0.9442 0.9442 V 

0.9944 0.9944 0.9944 0.9944 0.9944 P 

0.9612 0.9612 0.9612 0.9612 0.9612 M 
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Fig. 4. The rectangular, parallelogram-shaped and trapezoidal meshes of the MacNeal beam. 

 

Table 5 shows that for both types of 

loading, SSQ14 and SSQ18 in trapezoidal 

and parallelogram-shaped mesh showed no 

sensitivity to distortion. The results of 

other elements showed high sensitivity to 

distortion such that the error of the results 

for trapezoidal mesh increased 

significantly for both types of loading. 

SSQ18 provided an accurate response for 

both types of loading and for all types of 

mesh. Furthermore, SSQ14 showed a low 

error for both types of loading. 

Shear Wall without Opening 

SSQ14 and SSQ18 are used to analyze 

a cantilever shear wall without an opening. 

The geometry and loading of this wall is 

shown in Figure 5a. The elasticity modulus 

is 20,000,000 kN/m
2
 and the structural 

Poisson’s ratio is 0.2. Loads P and q are 

100 kN and 500 kN, respectively.  

The shear wall is analyzed for the types 

of mesh shown in Figure 5b. The lateral 

displacement at the top of the shear wall is 

calculated for the types of mesh using 

SSQUAD, SSQ14, SSQ18 and Q8 

elements. For comparison, the opt* element 

was also used and its results are available 

elsewhere (Paknahad et al., 2007). The 

powerful opt* element was specifically 

created for analysis of shear walls.  

Figure 6 shows the high accuracy of the 

SSQ18 element. For refined mesh, SSQ14 

produced larger responses. This indicates 

that the rotational DOF and satisfying the 

equilibrium condition in the domain of the 

second-order field decreased the ability of 

SSQ14. To eliminate this weakness, the 

equilibrium condition was satisfied in the 

linear displacement field. 
 

Shear Wall with Opening 
The geometry and loading of a 

cantilever shear wall with an opening is 

shown in Figure 7a. The modulus of 

elasticity is 20,000,000 kN/m
2
 and the 

Poisson’s ratio is 0.25. The thickness of 

the wall is 0.4 m and force P is 500 kN. 

Two types of mesh, a and b, are used in the 

analysis of this shear wall (Figure 7b). 

SSQ14 and SSQ18 were used to calculate 

the lateral displacement at floor level on 

stories 2, 4, 6, and 8 for both types of 

mesh. The opt* element results were again 

used as a means of comparison (Paknahad 

et al., 2007).  

The results for SSQUAD and Q8 are 

shown in Table 6. For assessment 

purposes, the results for Q8 were 

calculated for fine mesh for this shear wall. 

The shear wall was divided into 10×10 

rectangular elements and the mesh denoted 

as c and had 26880 Q8 elements 

1 

1 

1 

1 

1 

1 

1 

1 

1 

45  

45  
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(Paknahad et al., 2007). Table 6 shows that 

the responses for SSQ18 for mesh b 

showed minimum error. Accurate results 

were achieved by solving for the cantilever 

shear wall with an opening using SSQ18 

and SSQUAD. 
 

 
 mesh1 (15)             mesh2 (210)                mesh3 (420)    

(1)            (2) 
 

Fig. 5. The geometry, loading and mesh of the cantilever shear wall without opening. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The normalized lateral displacement at the top of the cantilever shear wall without opening. 
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Table 5. The normalized vertical displacement at point A of the MacNeal beam. 

Bending Moment at Free End Shear Force at Tip 
Elements 

Trapezoidal Parallelogram Rectangular Trapezoidal Parallelogram Rectangular 

- - - 0.051 0.632 0.600 CQUAD4 

- - - 0.805 0.873 0.904 ALLMAN 

- - - 0.044 0.621 0.993 MEAS 

0.093 0.759 1.00 0.106 0.677 0.993 Q6 

0.037 0.722 1.00 0.044 0.623 0.993 QM6 

0.167 0.852 1.00 0.221 0.798 0.993 PS 

- - - 0.217 0.795 0.982 PEAS7 

1.00 1.00 1.00 0.994 0.994 0.993 AGQ6-II 

0.046 0.722 1.00 0.052 0.635 0.993 QACM4 

1.00 1.00 1.00 0.994 0.994 0.993 
QAC-

ATF4 

0.939 0.994 1.00 0.854 0.919 0.951 Q8 

1.00 1.00 1.00 0.895 0.903 0.951 QACM8 

1.00 1.00 1.00 0.994 0.994 0.993 SSQUAD 

0.992 0.991 0.989 0.988 0.987 0.983 SSQ14 

1.00 1.00 1.00 1.00 1.00 1.00 SSQ18 

1.000 1.000 1.000 1.000 1.000 1.000 

Exact  

(Cen et al., 

2009) 
 

 
 mesh a                                      mesh b 

(1) (2) 
Fig. 7. The geometry, loading and meshes of the cantilever shear wall with opening. 

 

Table 6. The lateral displacement at the levels of the floors of the 2, 4, 6, and 8 stories of the cantilever shear 

wall with opening. 

Lateral Displacement at Floor Level 
Model Element 

Floor 8 Floor 6 Floor 4 Floor 2 

4.43 

4.51 

3.19 

3.28 

1.91 

1.98 

0.71 

0.74 

a 

b 
opt 

3.62 

4.16 

2.59 

3.02 

1.53 

1.82 

0.56 

0.68 

a 

b 
Q8 

4.70 

4.70 

3.40 

3.43 

2.06 

2.08 

0.77 

0.78 

a 

b 
SSQUAD 

6.63 

7.70 

4.61 

5.49 

2.62 

3.22 

0.90 

1.14 

a 

b 
SSQ14 

4.61 

4.81 

3.36 

3.51 

2.03 

2.13 

0.76 

0.80 

a 

b 
SSQ18 

5.35 3.91 2.38 0.90 c Q8 

    4 m   4 m 
   2 m 

8 @ 4.0 m 

 P 

 P 

 P 

 P 
0.8 m 

3.2 m 



Rezaiee-Pajand, M. and Yaghoobi, M. 

146 

Cook's Beam 

Cook's trapezoidal cantilever beam is 

used to evaluate the efficiency of the 

general quadrilateral elements (Cook et al., 

1989). In this test, shear displacement is 

dominant and distorted quadrilateral 

elements are employed. Figure 8 shows 

that Cook's beam is fixed at one end and 

under uniformly distributed shear (P=1) at 

the other end. The modulus of elasticity is 

1, Poisson’s ratio is 1/3, and thickness of 

the structure is 1. 

Mesh sizes of 2×2, 4×4, 8×8 and 16×16 

are used for analysis. The results for 

deflection at point C are given in Table 7. 

The maximum principal stress at point A 

and the minimum principal stress at point 

B are listed in Table 8. 

The results for other good elements 

were used for comparison. The results for 

GT9M8 in 64×64 mesh were similar to the 

exact results (Long and Xu, 1994). The 

high accuracy of the displacement 

response and stress for SSQ18 for coarse 

mesh demonstrates the capability of the 

proposed element. Table 7 indicates that 

displacement of SSQ18 in 2×2 coarse 

mesh showed minimum error.  

Results of the SSQ14 converged with 

larger answers when the mesh is refined. 

For this element, the nodal rotations were 

defined as )(
y

y

u
-

x

u

2

1 x








. This nodal 

rotation was unsuitable for SSQ14. 

Tables 7 and 8 were used as a basis of 

comparison for the proposed element with 

the responses of the recent hybrid stress 

element )Santos and Moitinho de Almeida, 

2014(. The results for the hybrid stress 

element are based on the quadratic load 

variation and the proposed results arise on 

a constant distributed load. The hybrid 

stress element uses a fourth-order stress 

function and second-order displacement 

function. The stress field of the proposed 

element is linear. Appendix A provides the 

stress contours for the Cook trapezoidal 

cantilever beam. These contours are for 

stresses of xσ , yσ  and xyτ  for a 4×4 mesh 

using SSQ18 and SSQ14. 

 

 
 

Fig. 8. The geometric properties and the loading of the Cook's beam. 
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Table 7. The displacement of point C of the Cook's beam. 

16×16 8×8 4×4 2×2 Elements 

23.68 22.95 20.61 15.04 HT 

23.79 23.41 22.42 20.36 FF(α=1.5, β=0.5) 

23.88 23.65 23.01 21.02 CQUAD4 

23.86 23.66 23.06 21.27 ALLMAN 

23.88 23.69 23.06 21.59 MEAS 

23.88 23.79 23.11 21.66 FFQ 

23.91 23.80 23.48 22.94 Q6 

- - 23.02 21.05 QM6 

23.81 - 22.03 18.17 HL 

- - 23.02 21.13 PS 

23.88 - 23.04 21.35 QE2 

23.88 - 23.04 21.35 B-Q4E 

23.91 23.83 23.64 23.25 HTD 

23.97 24.04 24.37 25.92 AGQ6-II 

- 23.69 22.99 20.74 QACM4 

- 23.89 23.84 24.36 QAC-ATF4 

- 23.88 23.71 22.72 Q8 

- 23.89 23.74 22.98 QACM8 

- 23.89 23.74 22.98 CQAC-Q8 

23.96 24.01 24.27 25.65 SSQUAD 

24.15 24.16 24.21 24.53 Hybrid stress element with dp=4, dv=2 

32.44 31.85 30.48 27.61 SSQ14 

23.92 23.86 23.70 23.45 SSQ18 

23.96 Reference value (Long and Xu, 1994) 

 
Table 8. The stress answer in the Cook's beam for the 2×2, 4×4, 8×8 and 16×16 meshes. 

Minimum Stress at B Maximum Stress at A 
Elements 

16×16 8×8 4×4 2×2 16×16 8×8 4×4 2×2 

-0.1710 -0.1620 -0.2150 -0.2820 0.2310 0.2280 0.2020 0.1050 HT 

-0.1981 -0.1902 -0.1706 -0.1804 0.2333 0.2309 0.2129 0.1700 FF(α=1.5,β=0.5) 

-0.2062 -0.1891 -0.1672 -0.0778 0.2422 0.2461 0.2499 0.1960 CQUAD4 

-0.1990 -0.1800 -0.1520 -0.2310 0.2380 0.2380 0.2360 0.1600 ALLMAN 

-0.1790 -0.1690 -0.1760 -0.0700 0.2410 0.2450 0.2470 0.1930 MEAS 

-0.2028 -0.1997 -0.1915 -0.1734 0.2361 0.2334 0.2258 0.2029 Q6 

- - -0.1856 -0.1580 - - 0.2243 0.1928 QM6 

-0.2005 - -0.1700 -0.1335 0.2294 - 0.1980 0.1582 HL 

- - - - 0.2364 - 0.2241 0.1854 PS 

- - - - 0.2364 - 0.2261 0.1956 QE2 

- - - - 0.2364 - 0.2261 0.1956 B-Q4E 

-0.1980 -0.1930 -0.1880 -0.2310 0.2350 0.2300 0.2180 0.1720 HTD 

-0.2035 -0.2027 -0.2014 -0.1999 0.2365 0.2352 0.2286 0.2169 AGQ6-II 

- -0.1987 -0.1866 -0.1452 - 0.2345 0.2256 0.1936 QACM4 

- -0.2001 -0.1934 -0.1809 - 0.2350 0.2277 0.2127 QAC-ATF4 

- -0.2041 -0.2007 -0.2275 - 0.2390 0.2421 0.2479 Q8 

- -0.2041 -0.2024 -0.2142 - 0.2389 0.2414 0.1959 QACM8 

- -0.2041 -0.2024 -0.2144 - 0.2389 0.2415 0.2523 CQAC-Q8 

-0.2036 -0.2028 -0.2013 -0.1988 0.2363 0.2343 0.2260 0.2137 SSQUAD 

-0.2038 -0.2046 -0.2058 -0.1887 0.2367 0.2362 0.2352 0.2363 
Hybrid stress element 

with dp=4, dv=2 

-0.1933 -0.2054 -0.2223 -0.2596 0.2805 0.2864 0.2976 0.3381 SSQ14 

-0.2047 -0.2094 -0.2014 -0.2195 0.2373 0.2378 0.2360 0.2628 SSQ18 

-0.2023 0.2362 
Reference value 

(Long and Xu, 1994) 



Rezaiee-Pajand, M. and Yaghoobi, M. 

148 

High-Order Patch Test 

The high-order patch test uses a straight 

beam under pure bending. The length of 

the beam is 10 and the width is 1 under 

pure bending. Regular and distorted mesh 

is used to analyze the structure. Six 

elements are employed for each mesh. The 

loading and mesh of the beam is shown in 

Figure 9; ux and uy show the displacements 

in the x and y directions, respectively. 

Maximum displacement is listed in Table 

9. The most accurate response was based 

on beam theory (Choi et al., 2006). It is 

evident that SSQ14 and SSQ18 provided 

accurate responses for both regular and 

distorted mesh. 

Thin Cantilever Beam under In-Plane 

Shear 

A cantilever beam with a length of 100, 

width of 1, and thickness of 1 is shown in 

Figure 10. The modulus of elasticity is 

1000000 and the Poisson’s ratio is 0.3. A 

force of 1 at the free end is a strong test for 

the structure. A mesh size of 1×100 is 

employed for analysis of the cantilever 

beam. The number of parts in the x and y 

directions are 100 and 1, respectively. In 

this size mesh, the aspect ratios of the 

elements are equal to one. Size 2×100 mesh 

was also used. The exact displacements of 

the beam's free end in the x and y directions 

are 0.03 and 4, respectively (Wisniewski 

and Turska, 2009).  

 
 

 

Fig. 9. The loading and meshes of the straight beam under pure bending.  

 

Table 9. The displacement of the beam under pure bending.  

Distorted Mesh Regular Mesh 
Elements 

Maximum uy Maximum ux Maximum uy Maximum ux 

1.215 -0.498 1.5 -0.6 ALLMAN 

1.384 -0.554 1.5 -0.6 QM6 

1.124 -0.459 1.5 -0.6 IB 

1.5 -0.6 1.5 -0.6 SSQUAD 

1.5 -0.6 1.5 -0.6 SSQ14 

1.5 -0.6 1.5 -0.6 SSQ18 

1.5 -0.6 1.5 -0.6 Exact (Choi et al., 2006) 

1.6667 1.6667 1.6667 1.6667 1.6667 1.6667 

45  45  

1 

1 

10 

P=1 

P=1 

P=1 

P=1 

x 

y 
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The responses of good elements are 

shown in Table 10 and it can be seen that 

the solution errors for SSQ18 were very 

low. The number of errors for SSQ14 in 

2×100 mesh increased because of the 

rotational DOF and equilibrium condition 

being satisfied in the domain of the 

second-order field. 

Cantilever Beam with Irregular Mesh 

Figure 11 shows the geometric 

properties, loading and 5-element mesh. 

The modulus of elasticity is 1500 and the 

Poisson’s ratio is 0.25 without the unit. 

Two loading cases are employed for 

analysis: a pure bending under the bending 

moment of M and linear bending under the 

concentrated force of P. Real vertical 

displacements of the beam at point A for 

M and P loading are 100.00 and 102.60, 

respectively (Cen et al., 2009). 

The structure was analyzed using 

irregular 5-element mesh (Figure 11). The 

responses of elements of other researchers 

were used as a basis of comparison. Table 

11 compares the results of the various 

elements for the two types of loading and 

show that errors for SSQ14 and SSQ18 

were only 1.5% for the pure bending case. 

The response error for SSQ18 and SSQ14 

for P loading were 0.9% and 1.5%. 

  

 

Fig. 10. The geometry of the thin cantilever beam under in-plane shear. 

 

Table 10. The displacement of the free end of the thin cantilever beam under in-plane shear. 

uy ux×100 Mesh Elements 

4.0002 3 1×100 
HW14-S, HW14-N, HW18 

3.9978 2.9988 2×100 

3.6402 2.73 1×100 
HW12-S, HW10-N 

3.9013 2.9264 2×100 

2.6965 2.0222 1×100 
Q4 

2.8371 2.128 2×100 

4.0002 3 1×100 
EADG4, HR5-S 

3.9978 2.9988 2×100 

4.006691 3.004621 1×100 
SSQUAD 

3.998181 2.999078 2×100 

4.000242 3.000006 1×100 
SSQ14 

4.258160 3.193297 2×100 

3.996738 2.998288 1×100 
SSQ18 

3.998032 2.998900 2×100 

4 3 Reference value(Wisniewski and Turska, 2009) 

b=1 

L=100 

b=1 

h=1 
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x 
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Fig. 11. The cantilever beam with irregular mesh. 

 
Table 11. The displacement of the cantilever beam in two loading cases. 

P M Elements 

100.40 98.40 Q6 

97.98 96.07 QM6 

98.00 96.10 NQ6 

98.05 96.18 PS 

98.26 96.50 QE-2 

98.26 96.5 B-Q4E 

102.7 100.0 AGQ6-II 

98.0 96.0 QACM4 

102.4 100.0 QAC-ATF4 

101.5 99.7 Q8 

102.8 101.3 QACM8 

102.79 100.00 SSQUAD 

104.16 101.66 SSQ14 

103.52 101.48 SSQ18 

102.60 100.00 Exact(Cen et al., 2009) 

 

Cantilever beam with four-element 
In the mesh of the cantilever beam of 

this test, 4 irregular Cantilever beam with 
4 elements quadrilateral elements are used. 
The geometry of the beam is shown in 
Figure 12. The modulus of elasticity is 
30000, the Poisso’s ratio is 0.25, and the 
thickness of the beam is 1. The free end of 
the beam is under a parabolic distributed 
shear load. The vertical displacement at 
points A and B are listed in Table 12. The 
displacement of the beam at both A and B 
points is equal to 0.3558 (Cen et al., 2009). 
This test evaluates the capability of the 
elements for shear deformations for an 
irregular mesh. The low error of the 
SSQ14 and SSQ18 elements is evident in 

Table 12. These errors for SSQ18 and 
SSQ14 elements were 1% and 0.03%. 

Thick Curved Beam 

A thick curved beam is analyzed in 

Figure 13 under a shear force of 600 on the 

free end. The modulus of elasticity is 1000, 

Poisson’s ratio is 0, and the thickness of 

the structure 1. A 4-element mesh is used 

for analysis. The vertical displacement at 

point A is listed in Table 13. The accurate 

response for vertical displacement at point 

A is 90.1 (Cen et al., 2007). The response 

error for SSQ14 and SSQ18 was 3.5% and 

4%, respectively. 

P=150 P=150 

P=150 

2 2 1 1 4 

1 1 2 3 3 

2 

M=2000 
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Fig. 12. The cantilever beam with four-element. 

 

Table 12. The displacement of the cantilever beam under the shear parabolic distributed load on the free end. 

Tip Deflection 
Elements 

Average Point B Point A 

0.2978 - - Q4S 

0.3065 - - D-type 

0.3402 0.3409 0.3395 Q6 

0.3275 0.3286 0.3264 QM6 

0.3533 0.3530 0.3535 AGQ6-II 

0.3293 0.3305 0.3280 QACM4 

0.3520 0.3516 0.3523 QAC-ATF4 

0.3479 0.3474 0.3481 Q8 

0.3520 0.3517 0.3524 QACM8 

0.3524 0.3520 0.3529 CQAC-Q8 

0.3528 0.3525 0.3530 SSQUAD 

0.3559 0.3559 0.3559 SSQ14 

0.3523 0.3520 0.3526 SSQ18 

0.3558 Exact(Cen et al., 2009) 

 
 

 
 
 

Fig. 13. The geometry and loading of the thick curved beam. 

 

Table 13. The displacement of the point A in the thick curved beam under shear force at its free end. 
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Thin Curved Beam 

Figure 14 shows the geometry of a thin 

curved beam with a fixed end. The other 

end is subjected to a shear force of 1. The 

modulus of elasticity is 10000000, 

Poisson’s ratio is 0.25, and the beam 

thickness is 0.1. The real vertical 

displacement under the load is 0.08734 

(Choo et al., 2006). Table 14 lists the 

responses for vertical displacement for the 

different elements. SSQ18 provided the 

best answer of all good elements. In coarse 

mesh, the response of SSQ14 showed very 

low error, but as the mesh became finer, 

error increased to 2%. 

 
Fig. 14. The geometry of the thin curved beam under shear force on its free end. 

 
Table 14. The vertical displacement of the thin curved beam under the load. 

Near   

Exact (Fu 

et al., 2010) 

SSQ18 SSQ14 SSQUAD Q8 HTD MEAS ALLMAN HT Elements 

-0.0886 

-0.08745 -0.08748 -0.08901 -0.08759 -0.08420 -0.07756 -0.07756 -0.00662 6×1 

-0.08840 -0.08895 -0.08844 - -0.08808 -0.08736 -0.08736 -0.02201 12×2 

-0.08850 -0.08925 -0.08846 - -0.08843 -0.08827 -0.08808 -0.04850 24×4 

 

Thick-Walled Cylinder 

To investigate the behavior of nearly 

incompressible materials, a plane strain 

problem for a thick-walled cylinder under an 

internal pressure of one was analyzed. 

Symmetry requires that only 1/4 of the 

cylinder be used. Figure 15 shows the 

geometry and mesh of the structure. The 

modulus of elasticity is 1000 and the inner 

and outer radii of the cylinder are 3 and 9, 

respectively. The central angle is divided into 

9 parts, each equal to 10%. The details of 

meshing are shown in Figure 15b. The 

measurements of the parts of the radius are 

also given in Figure 15b. Normalized radius 

displacement of the inner surface by variation 

in the Poisson’s ratio is shown in Table 15. 

Accurate displacement for each Poisson’s 

ratio is recorded in the last row of the table. 

The responses of the other good elements 

were used for comparison. Table 15 shows 

that the responses for SSQ18 and SSQ14 

were insensitive to variation in the Poisson's 

ratio. The response error for SSQ18 and 

SSQ14 were 4% and 18%, respectively. 

x 

y 4.32 

4.12 

0.2 

1 
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(1) (2) 
 

Fig. 15. The loading and mesh of the thick walled cylinder under internal pressure. 

 

Table 15. The normalized displacement in the thick walled cylinder under internal pressure. 

0.4999 0.499 0.49 0.3  

1.03162 1.03162 1.02976 1.01092 HT 

0.99209 0.99012 0.99206 0.99563 CQUAD4 

0.05736 0.37154 0.91270 1.13537 ALLMAN 

0.99209 0.99012 0.99206 0.99563 MEAS 

1.03162 1.03162 1.02976 1.01092 HTD 

0.97942 0.97903 0.97894 0.97988 SSQUAD 

1.18461 1.18412 1.18388 1.18049 SSQ14 

0.95988 0.95928 0.95767 0.93602 SSQ18 

0.00506 0.00506 0.00504 0.00458 Exact (Choo et al., 2006) 
 

 

CONCLUSIONS 

 

Utilizing the free formulation and the 

strain gradient notation methods, 

quadrilateral elements SSQ14 and SSQ18 

were created and tested. These elements 

were obtained based on the complete 

second-order function for strain. This kind 

of the field guarantees fulfillment of 

Felippa's pure bending test, rotational 

invariance and absence of parasitic shear 

error. Moreover, this study makes use of 

the equilibrium equations in perfect and 

imperfect forms. Establishing equilibrium 

condition decreases the number of the 

strain states required in the formulation.  

The numerical results showed that the 

establishment of equilibrium equations only 

for the linear part of the strain field leads to 

more accurate responses than for the 

complete equilibrium equations for the 

second-order strain field. Based on results of 

numerical tests, SSQ14 was shown to provide 

larger responses when the mesh is refined. 

This study indicates that using rotational DOF 

and satisfying the equilibrium condition in the 

domain of the second-order field decreased 

the ability of this element. 

The efficient SSQ18 element has all the 

good characteristics of the SSQUAD 

element. Furthermore, the responses for 

SSQ18 in the strong patch tests of constant 

stress and bending with bilinear stress 

showed good accuracy, even for 

substantial mesh distortion. These strong 

patch tests can result in many errors when 

good elements, such as SSQUAD and 

AGQ6-II, are utilized. Several difficult 

numerical tests were used to illustrate the 

accurate performance of SSQ18. It was 

shown that SSQ14 provided high-quality 

responses in most of these experiments.  

Pi=1 

3 0.5 0.7 1 1.55 2.25 
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Appendix A 

The stress contours for the Cook's 

trapezoidal cantilever beam are provided 

here. The following contours show the 

stresses of xσ , yσ  and xyτ  for a 4×4 mesh 

for elements SSQ18 and SSQ14. 
 

 

Fig. 16. Stress contours for xσ  in SSQ18. 
 

 

Fig. 17. Stress contours for yσ  in SSQ18. 
 

 
 

Fig. 18. Stress contours for xyτ  in SSQ18. 

 

Fig. 19. Stress contours for xσ  in SSQ14. 

 

 

Fig. 20. Stress contours for yσ  in SSQ14. 

 

 

Fig. 21. Stress contours for xyτ in SSQ14. 
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