روش نیمه تحلیلی برای میجیت بین نهایت سه ماده‌ای با رفتار ایزوتروب جانبي
در فضای فرانکانسی

عیزیالله اردشیر بهرستاقی 1 و مرتضی اسکندری قادی 2

1دانش آموزی کارشناسی ارشد سازه - دانشگاه علوم و فنون مازندران - بازل
2استادیار گروه علوم بیابانی - برای دانشگاه فنی - دانشگاه تهران

(تاریخ دریافت: ۸/۸/۱۳۹۷، تاریخ تصویب: ۸/۹/۱۳۹۷)

چکیده

در این مقاله فضای کامپیوتر جانبي یک شامل یک نیم فضای بالایی، یک نیم فضای پایینی و یک نیم پایینی طوری در نظر گرفته‌شده که محور این فضای بالایی از نظر ایزوتروبیه به میکروهمیشه می‌باشد.

وزهای کلیه: فضای کامپیوتر جانبي، نیروی سطحی، نیروی مدفون، انتشار امواج، نویپیتاسیل

مقدمه

انتشار امواج در یک میجیت ایزوتروب ناشی از بارگذاری خارجی از یک میکروهمیشه بوده است که در قرن گذشته بسیاری از محققین و مهندسان در زمینه کاربردی و مکانیک نیم‌هندسی را به خود جلب کرده است.

انتشار امواج در محیط‌های ناشناسی‌یک نیز در گذشته مورد توجه بوده است ولی در حال حاضر به توجه به استفاده و روزگارین از مواد ناشناس نیاز به تحقیقات در زمینه انتشار امواج در این محیط‌ها بیشتر احساس
پیمان مستقل و معادلات حاکم

محیط کامل نامنضو ارتجاعی سه‌차원ی با فرآیند ایزوتروپر جانبی را در شرایط مختلف استوانه‌ای (r, θ, z) جوان نظر می‌گیریم که محور z عمده بر صفحه ایزوتروپی نیم‌فضای بالایی، نیم‌فضای پایینی و لایه میانی باشد (شکل 1).

شکل 1: محیط به نهایت سه‌차원ی با فرآیند ایزوتروپر جانبی با آن‌تروپی دلخواه[g(r,θ)]e^{10ux} مربوط به سطح محدود.

در این صورت معادلات حرکت بر حسب نشانه برای هر یک از اجزای محیط نامنضوی به صورت زیر نوشتته می‌شود [19]

\[
\begin{align*}
\frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{\partial \sigma_{r\phi}}{\partial z} + \rho \frac{\partial^2 U}{\partial z^2} &= 0, \\
\frac{\partial \sigma_{\theta\theta}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta\phi}}{\partial \theta} + \frac{\partial \sigma_{\phi\phi}}{\partial r} + \rho \frac{\partial^2 V}{\partial r^2} &= 0, \\
\frac{\partial \sigma_{z\phi}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{z\phi}}{\partial \theta} + \frac{\partial \sigma_{z\phi}}{\partial z} + \rho \frac{\partial^2 W}{\partial z^2} &= 0,
\end{align*}
\]

که în آن تنظیم (i, j = r, \theta, z) σᵢⱼ تانسور نشانه و مؤلفه‌های بردار تغییر می‌کند که ترتیب در اندازه‌گیری ρ جرم مختص محیط و معرف z, θ, r زمان است. رابطه نشانه تنش - کرنش نیم‌فضای ایزوتروپر جانبی به این صورت است [19]:

\[
\begin{align*}
\sigma_{rr} &= A_{11} e_{rr} + A_{12} e_{r\theta} + A_{13} e_{r\phi}, \\
\sigma_{\theta\theta} &= A_{12} e_{r\theta} + A_{11} e_{\theta\theta} + A_{13} e_{\theta\phi}, \\
\sigma_{z\phi} &= A_{13} e_{r\phi} + A_{12} e_{\theta\phi} + A_{11} e_{z\phi}, \\
\sigma_{zz} &= 2A_{44} e_{zz}, \\
\sigma_{\phi\phi} &= 2A_{44} e_{\phi\phi}, \\
\sigma_{\phi\phi} &= 2A_{44} e_{\phi\phi}, \\
\end{align*}
\]
به صورت زیر نوشت می‌شوند:[8] \[U = -\alpha_1 \frac{\partial^2 \tilde{F}}{\partial r^2} - \frac{1}{r} \frac{\partial \tilde{F}}{\partial \theta} \quad \text{و} \quad W = -\alpha_1 \frac{1}{r \partial \theta} \frac{\partial \tilde{F}}{\partial \theta} + \frac{\partial \tilde{F}}{\partial \tilde{r}} \quad (9) \]

و در آن

\[\alpha_1 = \frac{A_{36} + \alpha_{44}}{A_{36}} \quad \alpha_2 = \frac{A_{44}}{A_{36}} \quad \alpha_3 = \frac{A_{13} + A_{44}}{A_{36}} \quad \alpha_4 = \frac{A_{13}}{A_{36}} \quad \beta = \frac{\alpha_2}{1 + \alpha_1} \quad \rho_0 = \frac{\rho}{A_{36}} \]

\[\frac{\partial}{\partial \tilde{r}} \left(\frac{\partial}{\partial \tilde{r}} \right) \tilde{F}(r, \theta, z, t) + \frac{1}{\tilde{r}} \frac{\partial}{\partial \tilde{r}} \left[\frac{1}{\tilde{r}} \frac{\partial \tilde{F}(r, \theta, z, t)}{\partial \tilde{r}} \right] = \alpha_1 \frac{1}{r \partial \theta} \frac{\partial \tilde{F}}{\partial \theta} + \frac{\partial \tilde{F}}{\partial \tilde{r}} \quad (10) \]

\[\tilde{F}(r, \theta, z, t) = 0, \quad (11) \]

که در آن

\[\delta = \frac{A_{36} (1 + \alpha) - 1}{\alpha_2} \quad \mu_1 = 1 \quad \mu_2 = 1 + \alpha = \frac{A_{11}}{A_{36}} \quad \mu_3 = \frac{A_{13}}{A_{44}} \quad \rho_0 = \frac{\rho}{A_{36}} \]

\[\frac{s_0^2}{\alpha_2} = \frac{A_{36}}{A_{44}} \]

پارامترهای ریشه‌های معادله زیر هستند:

\[A_{36} A_{44} + (A_{11} + 2A_{13} - A_{13}, A_{44})^2 + A_{13}, A_{44} = 0 \quad (12) \]

در حالتی که مصالح ابروزپرتو به هستند، ضرایب ارتجاعی تا بر حسب ضرایب لامبدا از:

\[A_{11} = A_{13} = \mu + 2\mu, \quad A_{13} = \lambda, \quad A_{44} = A_{36} = \mu \]

همچنین رابطه کرنش - تغییرکمان در دسته‌های مختلف استوایی به این شرح اسکس [9]:

\[e_{uv} = \frac{\partial U}{\partial \theta}, \quad e_{wr} = \frac{1}{r} \left(\frac{\partial V}{\partial \theta} + U \right), \quad e_{ur} = \frac{\partial U}{\partial \theta}, \]

\[e_{wv} = \frac{1}{2} \left(\frac{\partial V}{\partial \theta} + \frac{\partial W}{\partial \theta} \right), \quad e_{uv} = \frac{1}{2} \left(\frac{\partial U}{\partial \theta} + \frac{\partial V}{\partial \theta} \right) \]

با قرار دادن رابطه (5) در رابطه (6) تشکیل می‌گردد. بنابراین روابط در این هستند تغییر کرنش در معادلات (1) معادلات حرکت بر حسب مولفه‌های بردار تغییر مکان به صورت زیر به دست می‌آیند:

\[A_{11} \left(\frac{\partial^2 U}{\partial \theta^2} + \frac{1}{\tilde{r}} \frac{\partial U}{\partial \tilde{r}} \right) + A_{11} \left(\frac{\partial^2 U}{\partial \theta^2} \right) + A_{13} \left(\frac{\partial^2 V}{\partial \theta^2} \right) + A_{44} \left(\frac{\partial^2 V}{\partial \theta^2} \right) = \frac{1}{r} \left(\frac{\partial V}{\partial \theta} + U \right) \]

\[+ \frac{1}{r} \left(\frac{\partial W}{\partial \theta} \right) \quad \mu_0 = 1 \quad \mu_1 = a_2 = \frac{A_{44}}{A_{11}} \quad \mu_2 = 1 + a_1 = \frac{A_{11}}{A_{36}} \quad \mu_3 = \frac{A_{13}}{A_{44}} \quad \rho_0 = \frac{\rho}{A_{36}} \]

\[s_0^2 = \frac{1}{a_2} = \frac{A_{36}}{A_{44}} \]

بحث‌های کلی معادلات حرکت

معادلات حرکت (6) یک دستگاه معادلات دیفرانسیل درکریگ با مشتقات جزئی هستند. برای مجازاسازی این معادلات از دو نوپای پتانسیل و \tilde{F} و \tilde{F} انتقال می‌شود است. تغییر مکان بر حسب \tilde{F} و \tilde{F} در دسته‌های مختلف استوایی و در حال دینامیکی
شکل 2: بریدگی‌های شاخه بار

\[F_{\text{III}}^m (\xi, z) = A_{\text{III}m} (\xi) e^{-\lambda_3 m \xi} + B_{\text{III}m} (\xi) e^{-\lambda_2 m \xi}, \]
\[\chi_{\text{III}m} (\xi, z) = G_{\text{III}m} (\xi) e^{-\lambda_3 m \xi}, \]

که در آن
\[\lambda_3 = \sqrt{a_3 \xi^2 + b_3 + 0.5 c_3 \xi^4 + d_3 \xi^2 + e_3}, \]
\[\lambda_2 = \sqrt{a_2 \xi^2 + b_2 + 0.5 c_2 \xi^4 + d_2 \xi^2 + e_2}, \]
\[\lambda_1 = \sqrt{a_1 \xi^2 + b_1 + 0.5 c_1 \xi^4 + d_1 \xi^2 + e_1}. \]

با قرار دادن روابط (15) در معادلات (10) و (11) این معادلات به صورت زیر نوشته می‌شوند:

\[F_{\text{III}}^m (r, z) = 0, \]
\[\lim_{r \to 0} F_{\text{III}}^m (r, z) = 0. \]

\[i = 0, 1, 2, \]
\[i = 0, 1, 2 \]

\[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} - \frac{m^2}{r^2} + \frac{1}{\xi^2} \frac{\partial}{\partial \xi} \mu_i \rho_i \omega_i^2. \]

\[F_{\text{III}}^m (r, \xi) = \int_0^r F_{\text{III}}^m (r, \xi) J_m (\rho \xi) \partial \rho. \]

\[F_{\text{III}}^m (r, \xi) = \int_0^\infty F_{\text{III}}^m (r, \xi) J_m (\rho \xi) \partial \rho. \]

\[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} - \frac{m^2}{r^2} + \frac{1}{\xi^2} \frac{\partial}{\partial \xi} \mu_i \rho_i \omega_i^2. \]

\[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} - \frac{m^2}{r^2} + \frac{1}{\xi^2} \frac{\partial}{\partial \xi} \mu_i \rho_i \omega_i^2. \]

\[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} -

\[F_{\text{III}}^m (r, \xi) = \int_0^r F_{\text{III}}^m (r, \xi) J_m (\rho \xi) \partial \rho. \]

\[F_{\text{III}}^m (r, \xi) = \int_0^\infty F_{\text{III}}^m (r, \xi) J_m (\rho \xi) \partial \rho. \]

\[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} - \frac{m^2}{r^2} + \frac{1}{\xi^2} \frac{\partial}{\partial \xi} \mu_i \rho_i \omega_i^2. \]

\[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} - \frac{m^2}{r^2} + \frac{1}{\xi^2} \frac{\partial}{\partial \xi} \mu_i \rho_i \omega_i^2. \]

\[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} - \frac{m^2}{r^2} + \frac{1}{\xi^2} \frac{\partial}{\partial \xi} \mu_i \rho_i \omega_i^2. \]
شرايط پيسترنگ داده شده باید در فضای هنکل - قوريه نوشت شود. تا با چاپکارنی معادلات (55) در \(G_{\text{lim}} \) افزایشی یا رفع به دست آورده برای این هدف تغییر مکان ها و نشانه های به صورت با هم ترکیب شده و حسب توابع یک مخطط می‌تواند، نوشته شود:

\[
\begin{align*}
 u_{m-l}^{m-l} - iv_{m-l}^{m-l} &= -\alpha_{m}^{m-l} dF_{m-l}^{m-l} / dz - i \xi_{m-l}^{m-l}, \\
 u_{m-l}^{m-l} + iv_{m-l}^{m-l} &= \alpha_{m}^{m-l} dF_{m-l}^{m-l} / dz - i \xi_{m-l}^{m-l}, \\
 w_{m-l} &= (1 + \alpha_{m}) [-\xi_{m-l}^{2} + \frac{\beta}{\xi_{m-l}^{2}} + \frac{\rho_{m}^{2}}{1 + \alpha_{m}}] F_{m-l}^{m-l} \\
\end{align*}
\]

(47)

\[
\begin{align*}
 \sigma_{m-l}^{m-l} - i \sigma_{m-l}^{m-l} &= A_{3}^{m-l} \left[(\alpha_{m}^{m-l} - \alpha_{m}^{m-l}) d^{2} / dz^{2} + \xi_{m-l}^{2} (1 + \alpha_{m}) - \rho_{m}^{2} \xi_{m-l}^{2} \right] F_{m-l}^{m-l} / dz, \\
 \sigma_{m-l}^{m-l} + i \sigma_{m-l}^{m-l} &= A_{3}^{m-l} \left[(\alpha_{m}^{m-l} - \alpha_{m}^{m-l}) d^{2} / dz^{2} + \xi_{m-l}^{2} (1 + \alpha_{m}) - \rho_{m}^{2} \xi_{m-l}^{2} \right] F_{m-l}^{m-l} / dz, \\
 \sigma_{m} &= \frac{d}{dz} \left[\alpha_{m} F_{m} \xi_{m}^{2} (1 + \alpha_{m}) + A_{33} \right], \\
 \frac{d}{dz} &= \left[\alpha_{m} F_{m} \xi_{m}^{2} (1 + \alpha_{m}) + A_{33} \right].
\end{align*}
\]

(55)

همانطور که در قبل آمده است، به منظور تک مقداری کردن توابع \(\lambda_{\text{q}}^{\text{q}} \) برای هیکلی باده مثال \(\text{Re} \left(\lambda_{\text{q}}^{\text{q}} \right) \geq 0 \) انتخاب می‌شود که

\[
0, \quad \text{زدن (2)}, \quad \text{با انتخاب برای هیکلی با شکل ذکر شده و} \quad e^{-\lambda_{\text{q}}^{\text{q}}}, \quad e^{\lambda_{\text{q}}^{\text{q}}} \quad \text{و} \quad e^{-\lambda_{\text{q}}^{\text{q}}} \quad \text{در روابط (25) و جملات} \quad e^{\lambda_{\text{q}}^{\text{q}}} \quad \text{در روابط (27) حذف شده است. مطلب گزاره (1) فرض می‌شود}
\]

\[
\frac{d}{dr} \left(r \cdot \theta \right) e^{i \theta t}
\]

که نیروی هارمونیک دامنه به شدت روز صفحه \(\pi_{0} = 0 \) اعمال می‌شود. بر این اساس شرایط پیسترنگ در فضای فرقانی

\[
\begin{align*}
 \sigma_{m} (r, \theta, z = 0) &= \sigma_{m} (r, \theta, z = 0) = P (r, \theta), \\
 \sigma_{m} (r, \theta, z = 0) &= \sigma_{m} (r, \theta, z = 0) = Q (r, \theta), \quad (r, \theta) \in \pi_{0}, \\
 \sigma_{m} (r, \theta, z = 0) &= \sigma_{m} (r, \theta, z = 0) = R (r, \theta), \\
 \sigma_{m} (r, \theta, z = 0) &= \sigma_{m} (r, \theta, z = 0) = 0, \\
 \sigma_{m} (r, \theta, z = 0) &= \sigma_{m} (r, \theta, z = 0) = 0, \quad (r, \theta) \notin \pi_{0}, \\
 \sigma_{m} (r, \theta, z = 0) &= \sigma_{m} (r, \theta, z = 0) = 0, \\
 \sigma_{m} (r, \theta, z = 0) &= \sigma_{m} (r, \theta, z = 0) = 0, \\
 U_{m} &= U_{m}, \quad V_{m} = V_{m}, \quad W_{m} = W_{m}, \quad (r, \theta, z = 0). \\
\end{align*}
\]

(32)

\[
\begin{align*}
 \sigma_{m} (r, \theta, z = s) &= \sigma_{m} (r, \theta, s = z, s) = 0, \\
 \sigma_{m} (r, \theta, z = s) &= \sigma_{m} (r, \theta, z = s, s) = 0, \\
 U_{m} &= U_{m}, \quad V_{m} = V_{m}, \quad W_{m} = W_{m}, \quad (r, \theta, z = s). \\
\end{align*}
\]

(33)

در نهایت دور (\(r \rightarrow \infty \)) یا همه \(r \rightarrow \infty \) با نگهذایی تابع تابع توابعهای تابع دوی آیشیا صفر هستند.

\[
\begin{align*}
 \mathcal{N}_{\text{lim}} (r, \theta) &= \mathcal{N}_{\text{lim}} (r, \theta) \rightarrow 0, \\
 \mathcal{N}_{\text{lim}} (r, \theta) &= \mathcal{N}_{\text{lim}} (r, \theta) \rightarrow 0, \quad (r, \theta) \in \pi_{0}, \\
 \mathcal{N}_{\text{lim}} (r, \theta) &= \mathcal{N}_{\text{lim}} (r, \theta) \rightarrow 0, \\
 \mathcal{N}_{\text{lim}} (r, \theta) &= \mathcal{N}_{\text{lim}} (r, \theta) \rightarrow 0, \quad (r, \theta) \notin \pi_{0}, \\
 \mathcal{N}_{\text{lim}} (r, \theta) &= \mathcal{N}_{\text{lim}} (r, \theta) \rightarrow 0, \\
 \mathcal{N}_{\text{lim}} (r, \theta) &= \mathcal{N}_{\text{lim}} (r, \theta) \rightarrow 0, \\
 U_{m} &= U_{m}, \quad V_{m} = V_{m}, \quad W_{m} = W_{m}, \quad (r, \theta, z = s). \\
\end{align*}
\]

(34)
با گذاری ضایعات ام سری فوریی تغییریکان در بسط فورییه مربوط به آن دامنه مولفه‌های تغییریک می‌باشد. شرک تابع دست می‌آید:
\[
u(r, \theta, z) = \sum_{m,n} \left[u_m(r, z) v_n(r, \theta) w_n(r, \xi) \right] e^{im\theta}
\]
بنابراین با استفاده از (9) مولفه‌ای تغییریکان

\[
u(r, \theta, z, t) = \left[u(r, \theta, z) v(r, \theta, \xi) w(r, \xi) \right] e^{im\theta}
\]

نتایج برای تحریک هارمونیک خاص

در قسمتهای گذشته معادلات حرکت برای تحریک هارمونیک دلخواه در سطح \(z = 0 \) به دست امدادن در این قسمت دو بارگذاری خاص معرفی می‌شوند و نتایج عدید برای آنها آمده خواهد شد. این بارگذاری‌ها به‌عنوان از (1) بارگذاری کنکاشفت‌های با پیش‌بند واحد در امتداد قائم مؤثر بر سطح دارای دو عدد و (2) بارگذاری کنکاشفت‌های در امتداد افق مؤثر بر سطح دارای یکعدد به شکل

\[
\begin{aligned}
\sigma_{e,m,n}(r, z) &=\frac{1}{2} \int_0^{\pi} \left[A_{4,4} \xi \left((\alpha_4 - \alpha_5) \frac{d^2}{dz^2} + \xi^2 \right) + \xi^2 \right] F_n^m(r, \xi) J_m(\xi r) d \xi \\
\sigma_{e,m,n}(r, z) &=\frac{1}{2} \int_0^{\pi} \left[A_{4,4} \xi \left((\alpha_4 - \alpha_5) \frac{d^2}{dz^2} + \xi^2 \right) + \xi^2 \right] F_n^m(r, \xi) J_m(\xi r) d \xi
\end{aligned}
\]

همچنین برای بار بگذاری کنکاشفت با پیش‌بند واحد در جهت افقی (در راستای محور \(x \)) مؤثر بر سطح دارای عدد \(a \) شکل

\[
\begin{aligned}
\sigma_{e,m,n}(r, z) &=\frac{1}{2} \int_0^{\pi} \left[A_{4,4} \xi \left((\alpha_4 - \alpha_5) \frac{d^2}{dz^2} + \xi^2 \right) + \xi^2 \right] F_n^m(r, \xi) J_m(\xi r) d \xi
\end{aligned}
\]
نتایج عددي

هماهنگي ملاحظه شده است، مؤلفه‌هاي بردار تغيير ممكن به صورت انگرال‌های یک بعدی نيم‌تيانه با توابع انتگرال (توبع زير علامت انگرال) مخاطب به دست آمده‌اند. اين انگرال‌ها حتي در حالاتي ساده مربوط به مصالح بازتوپ هم به صورت تحليلي قابل انتگرال گيري نستند. با اين انگرال به صورت عددی یا شرط برودن توابع انتگرال، توابعي پيچيده رفتار تابع، مثلاً عدد توابع بسلي به دست آنها دردسر مي كند، اما روند همگوني اين توابع در نهایت به كنست است، به همين دليل كي از موارد مهم در پرداختانه اين عينین پيچيده رفتار تابع، همچنين توابع انگرال شامل نقطه نهایت وارتوپ یا نقطه شرطي یافتند در حالات كي راي مصالح بازتوپ جابجايي سه بعدي است، جواب نژاد خواحي در مسیر انگرال گيري و جوداد. اين نقاط بر اساس رابطه (31) در ($\xi = 1, 2, 3$) واقع شدهاند. در حالات كي برای يك مورد اين رويکرد گيزي سه بعدي، سه موج حجمي و جوداد واقع گردند نقطه خوشي یافتند، در اين حال، موج منتوحي با اين امواج هستند. اما راي حالات مربوط به مصالح بازتوپ تعداد نقطه شاخائي ذكر شده، به دو کاهش مي بايد:

$$\xi_i = k = \frac{\alpha}{C_{\text{w}}}, \xi_{\text{w}} = \xi_{\text{w}} = \frac{\alpha}{C_{\text{w}}}, q = 1, II, III.$$ (43)

علاوه بر اين، ريشته‌اي متعلق به مداران طبقي خاص از دترمينات ماتريسي ضرايپ در مدارهای (32) و (33) بر حسب ضرایب استفاده شده در روابط (25) تا (27) مي باشد. مصالح بازتوپ راي مناسب، نيم‌تياني از گليSI و H_{1}, G_{11}, H_{12} مربوط به نيعلي ضرايپ هستند. مداران مربوط به مصالح بازتوپ ضرايپ:

$$Y(\xi, s) = \left[(q_1 + \tilde{q}) \left(\tilde{q}_1 + \tilde{q}_1 \right) e^{-z_{\text{w}}} \right]$$ (43)

$\alpha_i = a_i = a_i \alpha_i \nu_i I_{1, s},$ با (32) نتایج عددی راي با يک نيم‌تياني از پرداخت بر اساس عادتي انتگرال شده است.

$$\frac{\alpha_i}{C_{\text{w}}} = \frac{\alpha_i}{C_{\text{w}}} = \frac{\alpha_i}{C_{\text{w}}} q = 1, II, III.$$ (43)

$\alpha_i = a_i = a_i \alpha_i \nu_i I_{1, s},$ با (32) نتایج عددی راي با يک نيم‌تياني از پرداخت بر اساس عادتي انتگرال شده است.

$$\frac{\alpha_i}{C_{\text{w}}} = \frac{\alpha_i}{C_{\text{w}}} = \frac{\alpha_i}{C_{\text{w}}} q = 1, II, III.$$ (43)

$\alpha_i = a_i = a_i \alpha_i \nu_i I_{1, s},$ با (32) نتایج عددی راي با يک نيم‌تياني از پرداخت بر اساس عادتي انتگرال شده است.

$$\frac{\alpha_i}{C_{\text{w}}} = \frac{\alpha_i}{C_{\text{w}}} = \frac{\alpha_i}{C_{\text{w}}} q = 1, II, III.$$ (43)

$\alpha_i = a_i = a_i \alpha_i \nu_i I_{1, s},$ با (32) نتایج عددی راي با يک نيم‌تياني از پرداخت بر اساس عادتي انتگرال شده است.

$$\frac{\alpha_i}{C_{\text{w}}} = \frac{\alpha_i}{C_{\text{w}}} = \frac{\alpha_i}{C_{\text{w}}} q = 1, II, III.$$ (43)
این تحقیق برای فرکانس های پیش‌بینی شده در جهت محور x بر حسب تغییر تغییر مقدار مطلق‌ها تجربه شد. در مقاله با توجه به رفتار از‌ترپوانی در مورد این سه ماده مربوط به ماده مورد نظر، با توجه به مجموعه کلیه‌ی مراحل برای فرکانس‌ها، نوسان‌های طول موج کاهش می‌یابد. نتایج برای فرکانس‌های مختلف مقدار می‌یابد هنگامی که در حالت کلی امواج با فرکانس‌های مختلف مقدار می‌یابد به مدت بزرگتر، دیرتر (در فاصله دورتر) مستهلک می‌شود.

جدول 2: خصوصیات مکانیکی مصالح مختلف در حالت‌های مختلف برای تغییر جواب عده.

<table>
<thead>
<tr>
<th>Case</th>
<th>i</th>
<th>ii</th>
<th>iii</th>
<th>iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

با دقت در شکل‌های (4) و (5) مشاهده می‌شود که Case(ii) و Case(iii) در تغییر مقدار با حسیت و بالا رفتن فاصله به مدت بیشتر، بر حسب وصیت ماده (2) و (3) است. در هم‌نظر با کلیه‌ی شکل‌های (5) و (6) حسیت فاصله افتی شده می‌باشد. ماده M به جنس لایه‌های متفاوت بوده و لایه ایلی افتی اپتی می‌دهد.

![شکل 3: مقایسه مقدار تغییر مقدار در جهت محور x بر حسب عمق در فضای نیمه‌تاناهی به رفتار از‌ترپوانی.](image)

برای ارائه تحلیل گرافیکی ترکیبی از مصالح جدول (1)، مطلق جدول (2) تعریف شده و نتایج آن می‌توان با رفتار از‌ترپوانی برای آن را پژوهش کرد. نتایج در شکل (4) نشان داده شده است. در جدول (2) و (3) نیز در شکل (5) صفر به عنی‌های وجود نداشتن مصالح است.

جدول 1: خصوصیات مکانیکی مصالح مختلف

<table>
<thead>
<tr>
<th>Material</th>
<th>A_{11}</th>
<th>A_{33}</th>
<th>A_{44}</th>
<th>A_{11}</th>
<th>A_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Isotropic)</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(T.L)</td>
<td>5.5</td>
<td>15.9</td>
<td>2</td>
<td>2</td>
<td>1.8</td>
</tr>
<tr>
<td>(T.L)</td>
<td>14</td>
<td>7.5</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>(T.L)</td>
<td>26</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

اثربی افتی اپتی با یک یا دو مؤثر بر سطح دایره‌ای به شش با فرکانس a بعد $0.5 = 0$ می‌تواند. برای مقایسه، در سال 1987 پژوهشگران با یک مصالح از ایزوترپیک مقایسه شدند در Pak (10^3) به صورت نقطه تیور نشان داده شده است. تطبیق خوب جواب‌ها چه در قسمت حاضری و چه در قسمت مسیه‌ای معرفی درسی ناتوان به دست آمده در این بخش است.

![شکل 4: جدول مقادیر ضرایب A_j برای این موارد.](image)
شکل ۳: قسمت‌های حقيقی و موهومی مؤلفه تغییر مکان در جهت محور Z ناشی از بار گسترده یکواخت با براین واحد در جهت محور Z مؤثر بر داده‌ای به شما a بر حسب عمق در فرکانسی پی بعد ۱/۵.

شکل ۴: قسمت‌های حقيقی و موهومی مؤلفه تغییر مکان در جهت محور Z ناشی از بار گسترده یکواخت با براین واحد در جهت محور Z مؤثر بر داده‌ای به شما a بر حسب عمق در فرکانسی پی بعد ۱/۵.

شکل ۵: قسمت‌های حقيقی و موهومی مؤلفه تغییر مکان در جهت محور Z ناشی از بار گسترده یکواخت با براین واحد در جهت محور Z مؤثر بر داده‌ای به شما a بر حسب فاصله افکت در فرکانسی پی بعد ۱/۵.

شکل ۶: قسمت‌های حقيقی و موهومی نشان از بار گسترده یکواخت با براین واحد در جهت محور Z مؤثر بر داده‌ای به شما a بر حسب عمق در فرکانسی پی بعد ۱/۵.

شکل ۷: قسمت‌های حقيقی و موهومی نشان از بار گسترده یکواخت با براین واحد در جهت محور Z مؤثر بر داده‌ای به شما a بر حسب عمق در فرکانسی پی بعد ۱/۵.

شکل ۸: قسمت‌های حقيقی و موهومی نشان از بار گسترده یکواخت با براین واحد در جهت محور Z مؤثر بر داده‌ای به شما a بر حسب عمق در فرکانسی پی بعد ۱/۵.

شکل ۹: قسمت‌های حقيقی و موهومی نشان از بار گسترده یکواخت با براین واحد در جهت محور Z مؤثر بر داده‌ای به شما a بر حسب عمق در فرکانسی پی بعد ۱/۵.

شکل ۱۰: تغییر مکان і و نشان‌های برای حالات (i) و (ii) در دو فرکانسی پی بعد ۱/۵.

برای حالات (i) و (ii) در دو فرکانسی پی بعد ۱/۵، و ۳۰ نشان می‌دهد. صفر بودن مقدار موهمی نشان و گستره‌نبرد قسمت‌های حقیقی آن در z = 0 است. نشان‌های C ردیابی پایین با روند بسیار آرامی تغییر می‌کند، در حالی که در فرکانس بالا بسیار نوسانی است. شکل های (۱۰) تا (۱۲) تغییر مکان і و نشان‌های برای حالات (i) و (ii)
با توجه به این نکته که در حالی که بازگشت به هم و تغییر مکان در راستای افقی (در صفحه ایزوتورپی) است، می‌توان انظار داشت که تغییر مکان‌ها و تشک‌ها، باعث طرح خاص متغیرات از ضریب

A_{11} می‌شود. پارامتر مؤثر بر مدول یاگن در صفحه ایزوتورپی یاد شده است.

نمونه‌های ارائه شده در شکل 12 (TA 16) این موضوع را به خوبی نشان می‌دهد.

شکل ۱۲: قسمت‌های حلقی و موهمی مؤلفه تغییر مکان در جهت محور x ناشی از بار گسترده یککوخت با برایند واحد در جهت محور x مؤثر بر دایره‌ای به شعاع a بر حسب عمق در فرکانس‌های 0.5 و 3.0.

شکل ۱۳: قسمت‌های حلقی و موهمی مؤلفه تغییر مکان در جهت محور x ناشی از بار گسترده یککوخت با برایند واحد در جهت محور x مؤثر بر دایره‌ای به شعاع a بر حسب عمق در فرکانس‌های 0.5 و 3.0.

شکل ۱۴: قسمت‌های حلقی و موهمی مؤلفه تغییر مکان در جهت محور x ناشی از بار گسترده یککوخت با برایند واحد در جهت محور x مؤثر بر دایره‌ای به شعاع a بر حسب عمق در فرکانس‌های 0.5 و 3.0.

شکل ۱۵: قسمت‌های حلقی و موهمی تنش شرکت در جهت محور x ناشی از بار گسترده یککوخت با برایند واحد در جهت محور x مؤثر بر دایره‌ای به شعاع a بر حسب عمق در فرکانس‌های 0.5 و 3.0.

شکل ۱۶: قسمت‌های حلقی و موهمی تنش شرکت در جهت محور x ناشی از بار گسترده یککوخت با برایند واحد در جهت محور x مؤثر بر دایره‌ای به شعاع a بر حسب عمق در فرکانس‌های 0.5 و 3.0.

شکل ۱۷: قسمت‌های حلقی و موهمی تنش شرکت در جهت محور x ناشی از بار گسترده یککوخت با برایند واحد در جهت محور x مؤثر بر دایره‌ای به شعاع a بر حسب عمق در فرکانس‌های 0.5 و 3.0.

شکل ۱۸: قسمت‌های حلقی و موهمی تنش شرکت در جهت محور x ناشی از بار گسترده یککوخت با برایند واحد در جهت محور x مؤثر بر دایره‌ای به شعاع a بر حسب عمق در فرکانس‌های 0.5 و 3.0.
استفاده از ارتباط مؤلفه‌های بردار تغییرمکان و توابع پتانسیل در ضایعات نرمال به صورت تحلیلی به دست آمده است. مؤلفه‌های بردار تغییرمکان در ضایعات واقعی به صورت انگرال‌های یک بعدی نیمه متناهی با توابع انگرال (توابع زیر علاوه بر انگرال) مخاطب به دست آمده‌اند. توابع انگرال توابع پیچیده با رفتار نوسانی به طول وجود توابع سبل، می‌باشند. توابع سبل در پی نهایت به صمت صریح می‌کند. اما روند همگرایی این توابع در پی نهایت بسیار کند می‌باشد. به همین دلیل یکی از موارد مهم در برآورده‌ایان تطابق نیهایت می‌باشد. همچنین توابع انگرال نهایت نکن محدودی است و در برآورده‌ایان باید توجه خاصی به این نکات کرد. این نکات تکنیک نهایت ناش است. نتایج عادی برای میکراتهای ایزوتروپ با استفاده از جواب‌های تحقیق شده برای میکرهای ایزوتروپ جابجایی به دست آمده و با نتایج موجود برای میکرهای ایزوتروپ مقایسه گردیده است. همچنین نتایج این مقاله برای میکرهای ایزوتروپ جابجایی یک در نتایج موجود در حالی نیمه‌ضایعات متناظر از بر سطحی مقایسه شده است.

برای نشان دادن تأثیر فرکانس تحریک و میزان نابایوزی مصالح بر پاسخ نتایج عادی مختلف برای مؤلفه‌های تغییر مکان ارائه شده است. تأثیر انگرال تغییر مکان در ارتباط با فاصله در فرکانس‌های کم بسیار کوچک است. در حالی که در فرکانس‌های زیاد این تأثیر نوسان بوده و با افزایش فرکانس نوسان تور می‌شود. همچنین با افزایش فرکانس نوسان، طول موج کاهش می‌یابد. نتایج برای فرکانس‌های مختلف نشان می‌دهد که در حالی که در فرکانس‌های کم، تأثیر نابایوزی مصالح به میزان ان نابایوزی مصالح به تغییر مکان در خاصیت فرکانس‌های کوچک به طور مستقیم بسته به اندازه نیمه‌ضایعات های ارتحال در این امتداد است. در حالی که در فرکانس‌های بزرگ انتقال پاسخ‌ها نیم‌ناپایه باید می‌باشد.

واژه‌های انگلیسی به ترتیب استفاده در متن:

1 - Transversely isotropic
2 - Frequency domain
3 - Potential Function
4 - Fourier series
5 - Hankel transform
6 - Radiation condition
<table>
<thead>
<tr>
<th>Arabic Numbers</th>
<th>English Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Branch points</td>
</tr>
<tr>
<td>9</td>
<td>Impedance function</td>
</tr>
<tr>
<td>11</td>
<td>Anisotropic</td>
</tr>
<tr>
<td>13</td>
<td>Orthotropic</td>
</tr>
<tr>
<td>15</td>
<td>Transformed space</td>
</tr>
<tr>
<td>17</td>
<td>Stress tensor</td>
</tr>
<tr>
<td>19</td>
<td>Multiple valued</td>
</tr>
<tr>
<td>21</td>
<td>Branch cut</td>
</tr>
<tr>
<td>23</td>
<td>Integrand</td>
</tr>
<tr>
<td>25</td>
<td>Wave numbers</td>
</tr>
<tr>
<td>8</td>
<td>Poles</td>
</tr>
<tr>
<td>10</td>
<td>Wave propagation</td>
</tr>
<tr>
<td>12</td>
<td>Composite materials</td>
</tr>
<tr>
<td>14</td>
<td>Rayleigh wave</td>
</tr>
<tr>
<td>16</td>
<td>Real space</td>
</tr>
<tr>
<td>18</td>
<td>Lame coefficients</td>
</tr>
<tr>
<td>20</td>
<td>Single valued</td>
</tr>
<tr>
<td>22</td>
<td>Singular point</td>
</tr>
<tr>
<td>24</td>
<td>Volumetric wave</td>
</tr>
</tbody>
</table>