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ABSTRACT: In this paper, a sensitivity analysis of artificial neural networks (NNs) is 

presented and employed for estimating the patch load resistance of plate girders subjected 

to patch loading. To evaluate the accuracy of the proposed NN model, the results are 

compared with the previously proposed empirical models, so that we can estimate the 

resistance of plate girders subjected to patch loading. The empirical models are calibrated, 

for improving the formulae, with experimental data set which was collected from the 

corresponding literature. NNs models are later trained and validated through using the 

existing experimental data. In this process several NNs architectures are taken into account. 

A set of good NNs models are selected and then analyzed regarding their robustness when 

confronted with the test data set and regarding their ability to reproduce the effect of 

uncertainty on the data. A sensitivity analysis is conducted herein in order to investigate the 

effect of variability in material and geometrical properties of plate girders. Thereafter, 

several estimates measuring the efficiency and the quality of the NN model and the 

calibrated models are obtained and discussed. 
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INTRODUCTION 

 

Webs of rolled and built-up beam and plate 

girders can be subjected to local in-plane 

compressive patch loads. Examples that 

could be mentioned are wheel loads, loads 

from purlins, and roller loads during 

construction. The type of loading under 

investigation, in this paper, is shown in 

Figure 1. 

The behavior of plate girders under the 

patch loads shows complex stability and 

elastoplastic problems. This behavior is 

influenced by many different factors that 

even the increasing number of the 

experimental studies and laborious 

theoretical works have not been able to 

provide deep insight into the problem. 

Although some empirical formulae have 

been established (see for example, Roberts 

and Rockey, 1979; Kutmanova and Skaloud, 

1992; Markovic and Hajdin, 1992; Roberts 

and Newark, 1997; Gozzi, 2007; Lagerqvist 

and Johansson, 1996; Graciano and 
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Johansson, 2003; Cevik, 2007), and 

numerical methods such as non-linear finite 

element (Granath and Lagerqvist, 1999; 

Chacon et al., 2009), have been used to 

model the problem, they still contain errors 

when compared to the experimental results. 

Over the past two decades, a different 

prediction method which is based on neural 

networks (NNs), has gained popularity and 

has been used by many researchers for a 

variety of engineering applications. 

However, to the knowledge of the 

researcher, only a limited number of 

researches have been conducted on the patch 

load resistance of plate girders. Fonseca et 

al. (2003) presented a parametric study in 

which he made use of a NN system to 

forecast the patch load resistance of plate 

girders. In another paper, they presented a 

neuro-fuzzy system which was developed to 

predict and classify the behavior of steel 

beam web panels subjected to concentrated 

loads (Fonseca et al., 2008). Gozelbey et al. 

(2006) considered the use of neural networks 

to predict the web crippling strength of cold-

formed steel decks. They also performed 

extensive parametric studies and presented 

them graphically to examine the effect of the 

geometric and mechanical properties on the 

web crippling strength.  

Most of the studies concluded that NNs 

are capable of providing accurate results, 

especially when the structural behavior and 

the associated changes in material and 

geometrical properties were simulated 

numerically and were error-free. However, it 

must be noted that in practice, uncertainties 

in the finite element (FE) model parameters 

and modeling errors are inevitable. It also 

seems impossible to avoid the errors of 

measurement in the measured data; such 

errors are normally used as testing data in a 

NN model. Since the efficiency of a NN 

prediction relies on the accuracy of both 

components, the existence of these 

uncertainties may result in false and 

inaccurate NNs predictions (Bakhary et al., 

2007). Therefore, the impact of uncertainties 

on the reliability of NNs models for the 

patch loading resistance needs to be 

analyzed. 

One of the primary objectives of this 

study is to evaluate the accuracy of NNs 

models in order to estimate the resistance of 

plate girder webs subjected to patch loading. 

To evaluate the accuracy of the proposed 

NN model, the results are compared with 

some empirical models that have been 

proposed in the past to estimate the 

resistance of plate girders subjected to patch 

loading. The empirical models are calibrated 

for improving the formulae with an 

experimental data set collected from the 

literature.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Patch loading and girder dimensions. 
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The experimental results collected from 

the literature are used to train and evaluate 

the quality of the NN model and the 

empirical models. As the first step of this 

investigation, the calibration factors are 

computed to improve the accuracy of the 

empirical models for estimating the patch 

load resistance of plate girders on the full 

training data set. The NNs models undergo a 

special trial. The reason is that, herein, the 

focus is not on a given NN model which 

may have been identified as "the best one" at 

the end of a random iterative process. On the 

contrary, a population of "good NNs 

models" will be selected and its quality will 

be evaluated. 

In order to gain a better insight into the 

influence of the important parameters 

variation on the patch load resistance of 

plate girders, this paper presents a sensitivity 

analysis that takes into consideration the 

effect of changing material and geometrical 

properties of the plate girders on the 

performance of the models. 

For sensitivity analysis two approaches 

are taken in this paper. The first approach to 

evaluate the performance of the models is 

the probabilistic sensitivity analysis. For this 

purpose, material and geometrical properties 

of the plate girders are supposed to be 

uncertain and to have Gaussian or Log-

normal distributions. Additionally, Monte 

Carlo simulation is used to generate the 

uncertain variables. The models are 

compared in this probabilistic framework. In 

the deterministic analysis, as the second 

approach, the sensitivity analysis of the 

models is performed through changing the 

web thickness at a time near the web 

thickness of the test girders. The efficiency 

of the NNs for sensitivity (reliability) 

analysis is then investigated. 

 

 

 

 

PATCH LOADING 

 

The Empirical Patch Loading Resistance 

Models 

As a result of extensive theoretical and 

experimental investigations, (Roberts and 

Rockey, 1979; Kutmanova and Skaloud, 

1992; Markovic and Hajdin, 1992; Roberts 

and Newark, 1997; Gozzi, 2007; Lagerqvist 

and Johansson, 1996; Graciano and 

Johansson, 2003; Cevik, 2007), it has been 

observed that the patch load resistance of 

plate girders (Pu) may depend on the web 

thickness (tw), web depth (dw), web width 

(bw), flange thickness (tf), flange width (bf), 

load length (c), Young's modulus (E), web 

yield stress, ( w ) and flange yield stress  

( f ). However, recent studies conducted by 

Chacón et al. (2010), demonstrate that the 

flange yield stress ( f ) does not play a 

mechanical role in the resistance to patch 

loading.  

To even further predict the resistance of 

plate girders subjected to patch loading, a 

number of differentempirical models have 

been proposed. This provides the 

relationships for nine models, outlined in 

Table 1. 

The complexity of relationships presented 

in Table 1 is variable, because the number of 

parameters varies from 1 (model 1) to 6 

(models 4, 5, 8 and 9). It can be expected 

that the higher the number of parameters, the 

better the model's ability to fit the 

experimental data set. However, the 

"practical cost", due to the necessity of 

identifying input parameters, as well as the 

sensitivity to uncertainty, also depends on 

the number of parameters. 

The main focus of this study is to 

investigate that how the NNs models are 

able to: (a) predict the resistance of plate 

girders subjected to patch loading, and to (b) 

reproduce the influence of uncertainty on the 

inputs, which is a requirement for using 
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them in stochastic analysis. The neural 

network system was trained with a collection 

of experimental results that were obtained by 

Roberts and Newark (1997). The geometry 

of cross-section variables of the tested 

girders is shown in Figure 1.  
 

Table 1. Empirical models for patch load resistance of plate girders. 
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For the sake of the comparison of the NN 

model with the empirical models, from the 

total of 116 tests, 20 tests were kept as the 

test data set on which the predictive ability 

of the identified model was tested, and 96 

tests were used for calibration of the 

empirical models. In addition, for the NNs 

models, from the 96 tests, 76 were used for 

training and 20 were used for validating the 

models, as it is usually done by NNs users. 
 

Examination of the Empirical Models 

The cost/efficiency of the empirical 

models has been studied in details by several 

researchers (Shahabian et al., 2013). For the 

sake of being concise, in the current study, it 

was decided to check only three models (# 1, 

# 3, # 9), with 1, 4 and 6 parameters for 

comparison with the NN model, 

respectively. The other six models have the 

same type of response as these first three. It 

seems necessary to note that model # 9 has 

been identified to be the most accurate of all 

empirical models.  

In calculating the theoretical patch load 

resistance of plate girders, determined in 

accordance with the selected empirical 

models, the mean of Young's modulus E has 

been taken as 205 GPa. For each modelj (j 

=1, 3, 9) and each experiment i (i = 1, 2, …, 

20), the ratio  is calculated.  

In order to further assess the accuracy of 

the empirical models, arithmetic mean m, 

standard deviation s, average relative error 

, Eq. (1), R-squared value R
2
, Eq. (2), and 

root mean square error RMSE, Eq. (3), are 

computed for each model. The results are 

presented in Table 2. 
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where n = number of experiments, which in 

this case is 20. 

Arithmetic mean is a measure of the bias 

of each model towards underestimating or 

overestimating. Values larger than one 

represent a tendency to overestimate the 

patch load resistance and values smaller than 

one correspond to a tendency to 

underestimate the patch load resistance. 

 

Table 2. Statistical parameters of the NN model and the empirical models. 

Model ratio 

Original Models Calibrated Models NN Model 

       

Arithmetic Mean(m) 0.85 0.98 1.09 1.01 1.04 1.04 1.03 

Standard Deviation (s) 0.18 0.19 0.16 0.22 0.20 0.15 0.11 

(%) Eq. (1) 17 15 14 19 16 13 9 

R-squared value (R
2
) 0.81 0.90 0.92 0.81 0.90 0.92 0.96 

RMSE Eq. (2) (kN) 20.03 14.28 16.14 16.43 16.28 13.60 8.28 
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 The results presented in Table 2 (original 

models, columns 2 to 4) indicate that the 

model with the m = 1.09, s = 0.16,  = 

12%, R
2
 = 0.92 and RMSE = 16.14 predicts 

the patch load resistance of plate girders 

with more accuracy than the other models. 

However, this comparison tells us nothing 

about the safety that results from the choice 

of one specific model. 

 

MODEL CALIBRATION 

 

Because most of the models that were 

developed in the original studies were based 

on a limited range of experimental 

conditions, the coefficients in the models 

may not be the optimal values for a more 

extended data set (Rattanapitikon, 2007; 

McCabe et al., 2005). Therefore, the errors 

in Table 2 may not be taken as factors to 

judge the applicability of the selected 

models. The coefficients in all models 

should be calibrated before comparing the 

applicability of the models.  

The linear regression model can be 

written as follows: 

 

ucalcalu PkP   (4) 

 

where  is the calibrated patch load 

resistance model,  is the existing patch 

load resistance model, and  is the 

calibration factor.  

Calibration can be carried out by using 

arithmetic mean )
m

k( cal
1

  for each 

model. The data were used to calibrate the 

models through using a simple multiplying 

factor. From a total of 116 tests, 96 tests 

were used for model calibration and the 

remaining ones were used as the test data 

set. 

The above option leads to very similar 

results. For the calibrated models, arithmetic 

mean, standard deviation, average relative 

error, R-squared value and root mean square 

error are computed and shown in Table 2. 

The results can be summarized as 

follows: 

(a)  After calibration, the accuracy of model 

# 9 has been improved. 

(b)  The overall accuracy of the calibrated 

models in a descending order is the 

models 9, 3 and 1. This order is the 

inverse of that of the number of 

parameters. 

(c)  Considering the overall accuracy of all 

models in Table 3, it can be concluded 

that most of the calibrated models can be 

used for practical purposes. However, 

less error is more desirable. Thus, the 

model that gives the best prediction (with 

Er  of 13%) is model 9. 

 

NEURAL NETWORK MODELING 

 

Architecture of Neural Networks 

Neural networks are commonly classified 

by their network topology (i.e., feedback, 

feedforward), and learning or training 

algorithms (i.e., Supervised, Unsupervised). 

For example, a multilayer feedforward 

neural network with backpropagation 

indicates the architecture and the learning 

algorithm of the neural network. 

In this study, multilayer perceptrons 

(MLP) with backpropagation (BP) are used. 

The reason for choosing these is mainly due 

to their adaptive structure and  the efficient 

learning algorithms nowadays available 

(Lanzi, 2004). 
 

Optimal NN Model Selection 

The performance of a NN model mostly 

depends on the network architecture and 

parameter settings. One of the most difficult 

tasks in NNs studies is to find this optimal 

network architecture which is based on 

determining the numbers of the optimal 

layers and neurons in the hidden layers 

9uP Er

caluP 

uP

calk
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through a trial and error approach. There is 

no well defined rule or procedure to obtain 

an optimal network architecture and 

parameter setting where the trial and error 

method still remains valid. This process is 

very time consuming. 
 

Table 3. Comparison of NNs models with different architectures. 

NNs 

models 

Number of 

neurons 

in the first 

hidden layer 

Number of 

neurons in the 

second hidden 

layer 

 

Mean error of the best ten 

for validation  

data set (%) 

2m  

Mean error of the best ten for 

 test  

data set (%) 

8-1-1 1 - 10.29 10.03 

8-2-1 2 - 10.00 11.54 

8-3-1 3 - 8.99 11.57 

8-4-1 4 - 9.82 15.34 

8-5-1 5 - 11.05 15.99 

8-6-1 6 - 11.81 18.11 

8-7-1 7 - 16.97 25.32 

8-8-1 8 - 18.48 22.77 

8-9-1 9 - 18.52 22.94 

8-10-1 10 - 19.11 25.22 

8-1-1-1 1 1 9.69 9.67 

8-1-2-1 1 2 9.41 9.97 

8-1-3-1 1 3 9.06 9.94 

8-1-4-1 1 4 8.76 9.36 

8-1-5-1 1 5 9.13 11.33 

8-2-1-1 2 1 10.49 13.09 

8-2-2-1 2 2 9.76 11.18 

8-2-3-1 2 3 10.39 12.92 

8-2-4-1 2 4 9.78 11.53 

8-2-5-1 2 5 9.57 13.44 

8-3-1-1 3 1 9.54 12.89 

8-3-2-1 3 2 9.98 12.65 

8-3-3-1 3 3 9.30 11.80 

8-3-4-1 3 4 10.43 14.93 

8-3-5-1 3 5 10.73 15.82 

8-4-1-1 4 1 10.19 14.44 

8-4-2-1 4 2 10.78 13.45 

8-4-3-1 4 3 10.71 17.92 

8-4-4-1 4 4 10.41 15.77 

8-4-5-1 4 5 15.66 19.29 

8-5-1-1 5 1 11.27 14.86 

8-5-2-1 5 2 10.82 17.38 

1m
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The number of neurons in the input layer 

is equal to the number of input variables, and 

the number of neurons in the output layer is 

1 which returns the patch load resistance of 

plate girders. The number of hidden layers 

and the number of neurons in each hidden 

layer are the key parameters in determining 

the development of the NN model. Various 

NNs architectures with 1-2 hidden layers 

with 1-10 neurons in each hidden layer were 

tested to compare their efficiency. In this 

study, Matlab NN toolbox has been utilized 

for NNs applications. Levenberg-Marquardt 

backpropagation was used as the network 

training function that updates weights and 

bias values for optimization task and a Log-

sigmoid function was used as an activation 

function. 

Since the NNs models used in this study 

are strictly data-driven models, their overall 

quality in terms of accuracy in interpolation 

and validity in prediction are highly 

dependent on the number and the quality of 

data sets used for training and testing 

purposes. Generally speaking, to achieve a 

valid model, the data selected for training 

must be "representative" of the overall 

behavior of the input or output data space.  

The assignment of initial weights and 

other related parameters may also influence 

the performance of the NNs to a great extent. 

As the initial weights are randomly assigned 

to each run each time, it considerably 

changes the performance of the trained NNs, 

even when all parameters and NNs 

architecture are kept constant. In fact, if the 

same process is repeated, it may converge 

towards different NNs configurations. The 

way how the "best" NN has been chosen is 

usually not presented in the published 

applications. The selection of the optimal 

network architecture and parameter setting is 

therefore a real challenge when quality and 

robustness of prediction is searched for. To 

overcome this difficulty, each NN 

architecture with various numbers of layers 

and neurons in the hidden layers has been 

tested several times both for the first and the 

second hidden layers for a constant epoch 

equal to 500 in order to select the best NNs 

architecture with minimum error ER% for 

validating the data set. For instance, a NN 

architecture with 1 hidden layer with 5 

neurons is tested 100 times and the best ten 

NNs are stored. This process is repeated for 

changing number of neurons in the first and 

the second layer.  

 

Results of the NNs Training 

In this study, from a total of 116 tests, 20 

tests were kept as the test data set and the 

remaining ones were used for the NNs 

training (76) and validation (20). Each 

training data sample is composed of 

geometrical and material parameters and the 

experimental ultimate load Pex. The "best 

ten" (out of 100) were selected as the ones 

that, after training on 76 tests, gave smaller 

error on the 20 tests for validation. 

The results of the training for different 

NNs architectures are presented in Table 3. 

In  Table 3,  and  are the mean error 

of the best ten out of 100 for the validation 

and the test data sets, respectively. As it can 

be seen in Table 3, the NN model 8-1-4-1 

with 1 neuron in the first hidden layer and 4 

neurons in the second hidden layer is the 

most efficient to predict the patch resistance 

of plate girders. 

 

Comparison of the NN Model with the 

Empirical Models 

Through using the test data, the NNs 

results were compared with the results 

computed with the calibrated empirical 

models in Table 2. The results presented in 

Table 2 indicate that the NN model nnP with 

the m = 1.03, s = 0.11,  = 9%, R
2
 = 0.96 

and RMSE = 8.28 predicts the patch load 

resistance of plate girders with more 

accuracy than the empirical models. 

1m 2m

Er
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SENSITIVITY ANALYSIS  

 

Sensitivity analysis has been widely applied 

in engineering design to explore the model 

response behavior, evaluate the accuracy of 

a model, test the validity of the assumptions 

made, and etc. In the deterministic design, 

sensitivity analysis is used to find the rate of 

the changes in a model output due to the 

changes in the model inputs. That is usually 

performed by changing input variables one 

at a time near a given central point which 

involves partial derivatives and is often 

called deterministic sensitivity analysis. 

When uncertainty is considered, 

sensitivity analysis has different meanings. 

We assume that the uncertainty in a design 

performance can be described 

probabilistically through its mean ( ), 

variance (
2 ), more generally through the 

probability density function (PDF), the 

cumulative distribution function (CDF), and 

etc. Correspondingly, the sensitivity analysis 

under uncertainty needs to be performed on 

the stochastic characteristics of a model 

response with respect to the stochastic 

characteristics of the model inputs (Liu and 

Chen, 2004). 

Safety in construction standards, e.g., 

Eurocodes, was accounted for by 

recognizing three main sources of 

uncertainty and errors: those in the load 

definition, in the material properties and in 

modeling. In the previous sections, the focus 

was on model uncertainties. Each model 

requires input data relative to geometrical 

and material properties. Thus, for a given 

model, any uncertainty on these data will 

leave further effects on the distribution of 

Pnn, Pu and then Pu-cal. 

The uncertainty in material properties can 

be represented through the means of random 

variables. This includes the assumption of a 

particular probability distribution model. In 

general, it is the response to static and time 

dependent material loading that matters for 

structural design (Chaves et al., 2010; Kala, 

2005; Gracino et al., 2011). Table 4 shows 

the parameters and distributions of random 

resistance variables considered in the current 

paper (JCSS, 2001-2). 
 

(a) The Effect of Variability on the 

Cumulative Distribution Functions for All 

Test Girders 

To investigate the stochastic performance 

of the NN model and the calibrated models 

to predict the patch load resistance of plate 

girders, the Monte Carlo simulation method 

is used in which over 1000 samples are 

generated for each set of experimental 

results iPex  (i= 1, 2, 3, …, 20), NN model, 

and each calibrated model calujP   (j = 1, 3, 

9). Cumulative density functions (CDF) of 

the NN model and the calibrated models for 

all test girders (1000 simulations for each of 

20 experiments) have been built.   

 

Table 4. Statistics of random resistance variables. 
Variable Symbol Distribution Coefficient of Variations (COV) 

Web thickness  tw Normal 0.03 

Web depth dw Normal 0.03 

Web width bw Normal 0.03  

Flange thickness tf Normal 0.03 

Flange width  bf Normal 0.03 

Load length c Normal 0.03 

Young's modulus E Log-normal 0.03 

Web yield stress  Log-normal 0.07 

Flange yield stress  Log-normal 0.07 
w

f
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(b) Comparison of the Stochastic Results 

of the NN Model and the Calibrated 

Models 

The average error ( Er ) for each model is 

calculated as follows: 
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
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where kP  is the estimated resistance by each 

model for the k-th sample of the generated 

random variable and exiP  is the 

experimental result for the i-th number of 

experiment. 

A summary of the stochastic results for 

the models is shown in Table 5. It is 

noteworthy that, by comparing Table 5 with 

Table 2, that the results seem to be quite 

similar.  

 

(c)  The Effect of Variability on the 

Predicted Response of Different Test 

Girders  

To further assess the stochastic 

performance of the models, cumulative 

density functions (CDF) of the NN model 

are compared with the calibrated model 9 for 

different test girders (# 5, # 12, #15 and # 

18) in Figures 2 and 3, respectively. 

 

 

 
 

Fig. 2. Comparison of cumulative density functions of the stochastic NN model for different test girders. 
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Table 5. Summary of stochastic results for the models. 

Model ratio 
ex

stcalu

P

P 1  

ex

stcalu

P

P 3  

ex

stcalu

P

P 9  

ex

stnn

P

P   

Average error 19 16 14 9 

Standard deviation 0.22 0.20 0.16 0.12 

 

 
 

Fig. 3. Comparison of cumulative density functions of the stochastic calibrated model 9 for different test girders. 

 

Two major findings are worth noting 

here. First, the Pnn-st/Pex ratio is very close to 

the one for the selected girders (this 

corresponds to the values in Figure 2), while 

this is not the case with model 9. Second, the 

shape of the four individual CDFs is very 

similar to model 9; this similarity shows the 

sensitivity of the model to the variation of 

material and geometrical properties. This is 

clearly different for the NN model, since the 

sensitivity to small variations of the inputs 

has completely different effects on the four 

girders. If model 9 is taken as a reference, 

one can deduce that, even after selection and 

careful validation, the NN model is not able 

to reproduce the sensitivity of the patch load 

to random fluctuations of the inputs. 

(d) The Effect of the Variability on the 

Predicted Response of a Test Girder 

The analysis of sensitivity is not 

straightforward because of the large number 

of variables and the coupling effects 

between these variables. Such couplings are 

obvious in the Equation of model 9 (see 

Table 1), but also exist in the NN model as a 

result of its architecture. To have a better 

understanding of the sensitivity of the NN 

model, it is however possible to privilege 

one input parameter. Initially, one can 

consider variations of the web thickness 

which is known to be the most influent 

parameter for the patch load (Gozzi, 2007). 

For instance, a sensitivity analysis of the NN 

model is performed through changing the 
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web thickness around the web thickness of 

the test girder 15 (i.e. tw = 3 mm) with the 

step of 0.02 mm with a range between 2 to 4 

mm, and calculating the corresponding 

ultimate load. In this analysis, all input 

parameters except the web thickness of the 

selected girder are kept constant. The NNs 

results nnP  are compared with the calibrated 

model 9 results caluP 9 , following the same 

procedure in Figure 4. 

The local value of the sensitivity is the 

value of the first derivative dPst-nn/dtw at each 

point, i.e., the slope of the curve in Figure 4. 

Figure 4 shows two very different curve 

shapes for model 9 and NN model. While 

the sensitivity that is calculated for model 9 

follows a very regular variation 

(corresponding, in fact, to the partial 

derivative that can be calculated from the 

Equation of model 9), the sensitivity 

calculated for the NN model follows a very 

different pattern. To quantify this fact, the 

slopes for three values of tw are calculated 

and compared in Table 6. The results 

confirm that the NN model follows an 

unexpected pattern, as well (Figure 4). This 

phenomenon seems appealing as it explains 

the weaknesses of the NNs for sensitivity 

(reliability) analysis. However, if one uses 

the NNs models for the reliability analysis, 

probably it would be necessary to add a 

specific training stage where sensitivity 

values at some points of the research domain 

would have to be fitted by the model. 

 

 
Fig. 4. Comparison of the NNs results with the calibrated model 9 results for girder #15. 

 
Table 6. Comparison of slope for the NN model and the model 9 for girder #15. 

 Partial Derivative dPst-nn/dtw Slope (Figure 4) Slope (Figure 4) 

tw Pu9_cal Pu9_cal Pnn 

mm kN/mm kN/mm kN/mm 

2 48.50 48.69 59.76 

3 66.64 66.81 41.42 

4 83.80 83.63 12.47 
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CONCLUSIONS 

 

The behavior of plate girders that are 

subjected to the patch loading represents 

complex stability and elastoplastic problems. 

Some empirical formulae were established, 

but they still contain major errors when 

compared to the experimental results. 

The accuracy of the proposed NN model 

and the empirical models in estimating the 

patch load resistance of plate girders has 

been evaluated. Subsequently, the 

verification results have been presented in 

terms of arithmetic mean, standard 

deviation, average relative error, Er , R-

squared value, and root mean square error. 

Because most of the empirical models were 

developed on the basis of the limited 

experimental conditions, the models may not 

be taken so much as the optimal ones. 

Therefore, all the empirical data have been 

calibrated for comparing the applicability of 

the models. Consequently, the comparison 

has shown that, after a careful validation 

process, the NN model is the one that has the 

best predictive efficiency on a given data set 

(with Er  of 9%).   

However, it is common in engineering 

design to incorporate uncertainties, either 

those resulting from selecting the analytical-

physical model or those inherent in 

geometry and material properties. In this 

paper, the uncertainties in geometry and 

material properties have been taken into 

account. To investigate the performance of 

the patch load resistance models, Monte 

Carlo simulation method has been used in 

which over 1000 samples were generated for 

each set of models and experiment results. 

The NNs results were then compared with 

the experimental results and the calibrated 

models. NNs models seemed to be able to 

reproduce the same general pattern for a data 

set when it was considered as a whole, for 

instance, regarding the global CDF. 

Nevertheless, a more specific attention to the 

issue of sensitivity has shown that the NN 

model, however carefully selected, suffers 

from major drawbacks and is not able to 

reproduce accurately the sensitivity to small 

variations of the input parameters. If this 

behavior is not modified and improved, it 

can prevent any use of such models in 

reliability analysis where small variations of 

material parameters and geometry must be 

considered. This point needs to be further 

researched for more reliable results; for 

instance, in order to fit sensitivity values at 

some points of the learning domain, adding 

some constraints during the NN learning 

process is one of the possible ways. 
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