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ABSTRACT: Stability of foundations near slopes is one of the important and complicated 

problems in geotechnical engineering, which has been investigated by various methods 

such as limit equilibrium, limit analysis, slip-line, finite element and discrete element. The 

complexity of this problem is resulted from the combination of two probable failures: 

foundation failure and overall slope failure. The current paper describes a lower bound 

solution for estimation of bearing capacity of strip footings near slopes. The solution is 

based on the finite element formulation and linear programming technique, which lead to a 

collapse load throughout a statically admissible stress field. Three-nodded triangular stress 

elements are used for meshing the domain of the problem, and stress discontinuities occur 

at common edges of adjacent elements. The Mohr-Coulomb yield function and an 

associated flow rule are adopted for the soil behavior. In this paper, the average limit 

pressure of strip footings, which are adjacent to slopes, is considered as a function of 

dimensionless parameters affecting the stability of the footing-on-slope system. These 

parameters, particularly the friction angle of the soil, are investigated separately and 

relevant charts are presented consequently. The results are compared to some other 

solutions that are available in the literature in order to verify the suitability of the 

methodology used in this research. 
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INTRODUCTION 

 

Some structures are often forced to be built 

on or near slopes in civil engineering 

practices. Such structures mainly include 

buildings and towers built near slopes, 

particularly in mountainous countries (e.g. 

Japan), abutments of bridges, electrical 

transmission towers, and also buildings that 

are constructed on or near vertical cuts in 

urban areas.   

Stability of foundations adjacent to slopes 

is a challenging problem in geotechnical 

engineering because both overall slope 

stability and foundation bearing capacity 

should be taken into consideration. 
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Numerous researchers have studied this 

problem via various methods and solutions, 

including limit equilibrium techniques 

(Meyerhof, 1957; Azzouz and Baligh, 1983; 

Narita and Yamaguchi, 1990; Castelli and 

Motta, 2008), slip-line methods (Sokolovski, 

1960), yield design theory (de Buhan and 

Garnier, 1994, 1998), finite element method 

(Georgiadis, 2010), upper bound technique 

(Davis and Booker, 1973; Kusakabe et al., 

1981; Michalowski, 1989; Farzaneh et al., 

2008; Shiau et al., 2011) and lower bound 

technique (Lysmer, 1970; Davis and Booker 

1973; Shiau et al., 2011). Georgiadis (2010) 

and Shiau et al. (2011) studied the problem 

of footing-on-slope only for undrained 

loading. In this paper, drained condition is 

considered and the effect of soil friction 

angle is investigated. In addition, design 

charts are presented for both purely cohesive 

and cohesive-frictional soils. 

The limit equilibrium technique is often 

favored due to its simplicity and 

applicability in problems with complicated 

geometry, loading, soil properties and 

boundary conditions. However, this solution 

is not as accurate as other solutions such as 

the slip-line method and bounds theorems of 

limit analysis.  The slip-line method is 

mathematically robust and accurate but is 

difficult to use in problems with complex 

loading conditions or geometries. 

Bounds theorems of limit analysis (i.e. 

upper and lower bounds) are the direct 

approaches of classical plasticity theory for 

calculation of collapse load in stability 

problems. The static and kinematic 

approaches of limit analysis lead to lower 

and upper estimation of true collapse load, 

respectively. As the lower bound solution 

gives a load that is below the exact ultimate 

load, it is at safe side and therefore more 

appealing. During last two decades, 

numerous researches have been undertaken 

to simplify the application of bounds 

theorems (particularly the lower bound 

theory) in geotechnical engineering 

problems. The main achievement of these 

researches was a finite-element limit 

analysis approach, which allows large and 

complicated problems to be solved using 

appropriate computers. 

Sloan (1988, 1989), Sloan and Kleeman 

(1995), Lyamin and Sloan (2002a,b) and 

Krabbenhoft et al. (2005) developed some 

efficient finite element formulations for 

numerical solution of stability problems by 

limit analysis method. In the current study, 

the formulation of Sloan (1988) is used. The 

theory and formulation of the finite-element 

lower bound method is briefly presented 

here, and more details can be found in 

relevant references. In this research, a 

MATLAB code is also developed for 

computing the lower bound estimation of 

bearing capacity of strip footings near 

slopes.  

 

PROBLEM DEFINITION          

 

The ultimate bearing capacity of a shallow 

strip footing resting on level homogenous 

ground can be classically calculated using 

Terzaghi’s equation:   

 

BNqNcNp qcu 
2

1
  (1) 

 

where cN , qN
 
and N are the dimensionless 

bearing capacity factors, c is the soil 

cohesion, q is the surcharge, is the unit 

weight of the soil and B  is the footing width. 

Bearing capacity factors depend on internal 

friction angle of the soil, and can be obtained 

separately by appropriate assumptions and 

using the superposition principle. For 

example, cN can be determined in weightless 

soil which has no surcharge (q,0) or qN  

can be determined in weightless 

cohesionless soil (c,).The superposition 
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principle is then applied for calculation of 

the ultimate bearing capacity using 

Terzaghi’s equation. 

The problem of bearing capacity of strip 

footings adjacent to a slope is shown in 

Figure 1. Geometric parameters include the 

slope angle , distance of footing from the 

slope a, footing width B and height of the 

slope H. It is assumed that the soil obeys the 

associated flow rule and Mohr-Coulomb 

yield criterion, and has the cohesion of c, 

internal friction angle of  and unit weight of 

 The footing is assumed to be smooth and 

rigid.  

Complexity of a footing-on-slope 

problem is due to the combination of two 

interactive problems: the overall stability of 

the slope and the bearing capacity of the 

footing itself. Unlike the problem of a strip 

footing resting on level ground, the limit 

behavior of a footing-on-slope system is 

notably influenced by the weight of the soil 

mass. So, the assumption of a weightless soil 

is not reasonable in this case and the bearing 

capacity factors are not calculated 

separately. Herein, the limit pressure gained 

from the lower bound theory is presented as 

the ultimate bearing capacity of the footing-

on-slope system. The approach followed in 

this paper is to consider the normalized limit 

pressure as a function of dimensionless 

parameters affecting the stability of the so-

called system, which can be stated as: 

 

),,,,( 



 B

c

B

H

B

a
f

B

p
  (2) 

 

where p is the average limit pressure under 

the footing base. All of the above parameters 

will be discussed separately in the following 

sections and related design charts will be 

presented accordingly. 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Fig. 1. Problem parameters. 
 

Lower Bound Analysis          

The lower bound limit theory (Drucker et 

al., 1952) can be stated as: 

“If all changes in geometry occurring 

during collapse are neglected, a load 

obtained from a statically admissible stress 

field is less than or equal to the exact 

collapse load.”  

A statically admissible stress field is one 

which satisfies equilibrium, the boundary 

conditions and nowhere violates the yield 

criterion. The aim of lower bound theory is 

to maximize the integral below which is 

called the objective function in the 

mathematical terminology: 

 



pA

pdAP  
(3) 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Lower bound limit pressure. 
 

in which p is the unknown traction acting on 

the surface area Ap which is to be optimized.  
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By assembling all equalities and 

inequalities, the discrete formulation of the 

lower bound theory leads to following 

constrained optimization problem:  

maximize P(x), subject to    









},,1{,0)(

},,1{,0)(

nJjg

mIif

i

i





x

x
, where P is 

the collapse load, x is the vector of problem 

unknowns, fi are the equality functions 

derived from element equilibrium, 

discontinuity equilibrium and boundary 

conditions, while gj are inequality functions 

derived from yield criterion and other 

inequality constraints.   

The formulation used in this paper 

follows that of Sloan (1988) in which the 

linear finite element method is applied and 

the domain of the problem is discretized by 

3-noded triangular elements. Unknowns of 

the problem are nodal stresses (x, y, xy). 

Figure 3 shows typical elements and 

extension elements used in the lower bound 

limit analysis. The main difference between 

lower bound mesh and usual finite element 

mesh is that some nodes may have the same 

co-ordinate. Thus, the statically admissible 

stress discontinuities can occur at shared 

edges of adjacent elements (Figure 4). By 

using the linear finite elements and 

linearized yield function, the lower 

estimation of true collapse load can be 

obtained through linear programming 

techniques. 

As Lyamin and Sloan (2002a) discussed 

elaborately, the application of linear finite 

elements is the most appropriate way for 

discretizing the domain of the problem in the 

lower bound theory.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Typical linear triangular element (a), mesh (b) and extension elements (c) used in lower bound analysis. 
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Fig. 4. Statically admissible stress discontinuity (Shiau et al., 2003). 

 

Thus, the stresses vary linearly 

throughout an element according to: 
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 (4) 

 

where 
l
x , l

y  and l
xy  are nodal stress 

components and Nl are linear shape 

functions.  

When there is no body force in the x 

direction and the gravitational force is the 

only body force in the y direction, 

equilibrium equations in 2D can be 

expressed as: 

 



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
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yx
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 (5) 

 

 Combination of Eqs. (4) and (5) leads to a 

matrix form of element equilibrium 

equations. 

The Mohr-Coulomb yield criterion in the 

plain strain condition is stated as: 

0)sin)(cos.2(

)2()(

2

22









yx

xyyx

c

F
 (6) 

 

in which tensile stresses are taken as 

positive. The inequality (6) includes the 

inner points of a circle in the X-Y coordinate 

system with the center of (0, 0) and can be 

expressed as: 

 222 RYX    
where yxX   , xyY 2  and 

 sin)(cos.2 yxcR  . The Mohr-

Coulomb yield function is approximated by 

an interior polygon in the lower bound limit 

analysis. Figure 5 shows a linearized Mohr-

Coulomb yield criterion with m sides and m 

vertices. 

 To obtain a rigorous lower bound 

solution, extension elements (see Figure 3) 

are used to extend the statically admissible 

stress field into a semi-infinite domain. The 

comprehensive details of these types of 

elements can be found in relevant references 

(Lyamin, 1999 and Lyamin and Sloan, 

2003). Inhere; the special yield conditions of 

these elements are only presented. Referring 

to Figure 3, the yield criteria for two types of 

extension elements are stated as below:  
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Fig. 5. Linearized Mohr-Coulomb yield function. 
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 (8) 

 

where 321 ,, σσσ  are nodal stress vectors.  

 Considering equalities and inequalities 

altogether, the discrete form of the lower 

bound theory can be expressed as: 

 

                      Maximize σc
T

 

Subject to        
22

11

bσA

bσA




 

(9) 

 

where c is the vector of objective function 

coefficients, A1 is the overall matrix of 

equality constraints which is derived from 

elements equilibrium, discontinuities 

equilibrium and boundary conditions, b1 is 

the corresponding right-hand vector of 

equality equations, A2 is the overall matrix 

of inequality constraints which is derived 

from the yield criterion, b2 is the 

corresponding right-hand vector of 

inequality constraints and  is the total 

vector of unknown stresses.  

 Since all constraints are linear, Eq. (8) is 

known as a “linear programming” problem 

in the mathematical terminology which can 

be solved by various methods. In this paper, 

the “active-set” algorithm of the linear 

programming technique is adopted for 

solving (optimizing) the finite element form 

of lower bound analysis. In comparative 

analyses conducted by the authors, the 

“active-set” algorithm was more efficient 

and faster than other algorithms of the linear 

programming technique such as “simplex” 

and “interior-point” methods.  

 

Details of Analyses           

Based on the finite element formulation 

of the lower bound method, the bearing 

capacity of strip footings near slopes is 

calculated and relevant charts are presented. 

The current study investigates a range of 



Civil Engineering Infrastructures Journal, 47(1): 89 – 109, June 2014 

95 

 

dimensionless parameters affecting the 

stability of  the footing-on-slope system, 

including the slope angle (), footing 

distance to the crest of the slope (a/B), 

height of the slope (H/B), strength ratio due 

to cohesion (c/B) and internal friction angle 

of the soil (). As discussed by Shiau et al. 

(2011), the footing roughness increases the 

bearing capacity slightly and the assumption 

of the smooth footing is conservative in the 

design of foundations near slopes. So, in the 

present study, the footing is assumed 

smooth. The number of sides in the 

linearized Mohr-Coulomb yield function is 

assumed 24 in all analyses (i.e. m=24). The 

domain of the problem is adopted large 

enough to cover the plastic zone without the 

presence of the extension elements. Then, in 

order to obtain a rigorous lower estimation 

of the true collapse load, the extension 

elements are used to expand the statically 

admissible stress field into a semi-infinite 

domain. To obtain more accurate results, 

fine meshes are used and stress 

discontinuities are set between all shared 

edges of adjacent elements. A typical finite-

element mesh for a slope with  =30˚ and 

(a/B) = 2, consisting of 2168 elements, 6504 

nodes and 3199 stress discontinuities, is 

illustrated in Figure 6. The important note in 

the stability of footings near slopes is the 

failure mode of the system, which can be 

divided into two main modes: the bearing 

capacity failure and overall slope failure. 

These modes are shown in Figure 7(a-c) and 

will be discussed in the following sections. 

The ratio of (H/B) used in all analyses is 

equal to 3 in order  to guarantee that the 

“bearing capacity” mode dominates the limit 

load of the footing-on-slope system. This is 

further explained in the following section. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Typical finite element mesh used in lower bound analysis (= 30˚, a/B = 2). 
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Potential Failure Modes for the Footing-

on-Slope Problem 

Figure 7 shows different typical failure 

modes for the footing-on-slope problem. 

Failure mode (a) can be seen when the slope 

is stable itself and the footing reaches its 

limit pressure. Failure mode (b) is known as 

a overall slope failure and occurs under 

gravitational loading due to the weight of the 

soil mass. Failure mode (c) happens when 

the footing distance to the crest of the slope 

becomes large and the effect of slope angle 

gets slight and the system resembles to the 

bearing capacity of a footing on level 

ground.  
 

Comparison of Results with Some Other 

Methods 

In order to verify the method used in this 

study, the obtained results are compared 

with results acquired from other researches. 

In Figure 8, values of Nc are plotted against 

various values of (c/B) for an undrained 

condition ( = 0) with a slope with  =30˚ 

and (a/B) = 0. These values are obtained 

according to solutions of Hansen (1961), 

Vesic (1975), Kusakabe et al. (1981), Narita 

and Yamaguchi (1990) and Georgiadis 

(2010). In these analyses, the dimensionless 

factor of Nc is considered as Nc = p/c where 

p is the ultimate pressure under footing and c 

is the cohesion of the soil.  For low values of 

c/B (c/B <0.5), the present lower bound 

solution is not converged and the overall 

slope failure (failure mode b) occurs. This 

failure mode can also be observed in the 

upper bound solution of Kusakabe et al., the 

finite element solution of Georgiadis and the 

limit equilibrium solution of Narita & 

Yamaguchi. For c/B ≥1 there is a good 

agreement between the LB solution and 

other methods; for example, the maximum 

difference is about -7% with respect to the 

solution presented by Narita & Yamaguchi 

for c/B = 25, while the corresponding 

values for the N and Y and current LB 

methods are 4.26 and 3.96, respectively.  

 
 

 

 
 

Fig. 7. Different typical failure modes for footing-on-slope problem: bearing capacity failure (a, c) and overall slope 

failure (b). 
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Fig. 8. Variation of bearing capacity with c/B ( = 30˚, a/B = 0,  = 0). 

 

Shiau et al. (2011) obtained the undrained 

bearing capacity of strip footings near slopes 

using the finite-element limit analysis 

method and proposed design charts based on 

averaged LB and UB results. Figure 9 shows 

a comparison between the current LB 

solution under  = 60˚ a/B =2, as presented 

by Shiau et al. and various values of c/B. 

The maximum difference is about -5.6 % 

which is related to c/B =10, while the 

corresponding value under the method 

presented by Shiau et al is 48.75 and the 

current LB method is 46.02. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Variation of bearing capacity with c/B ( = 60˚, a/B = 2,  = 0). 
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RESULTS AND DISCUSSION  

 

As mentioned before, in the current study, 

the H/B is considered to be 3 in all analyses 

in order to ensure that the bearing capacity 

mode of the footing-on-slope system 

(Failure modes a and c in Figure 7) will 

occur.  

Figure 10 shows the undrained 

dimensionless limit pressure p/B for 

various values of H/B, c/B ratios of 0.5, 1, 

1.5, 2.5, 5 and slopes with  = 30˚ and  = 

60˚ while a/B = 0. For low ratios of c/B 

(i.e. c/B≤0.5), the bearing capacity of the 

footing is negligible and the overall slope 

failure occurs even for low ratios of H/B. For 

higher values of c/B (i.e. c/B≥1), charts 

can be divided into three main parts. The 

initial part, which takes place at low ratios of 

H/B (i.e. H/B≤1), begins with a certain value 

of p/B and decreases steeply down to reach 

a constant value. This part of the diagrams 

shows a transition from the bearing capacity 

of a footing rested on level ground to the 

bearing capacity of a footing rested on a 

slope. The starting point of this part shows 

the bearing capacity of a footing on level 

ground and the ending point shows the 

bearing capacity of that footing on the slope. 

The intermediate part of the diagrams is 

related to failure mode (a) in which the 

failure mechanism extends to the slope in a 

way that it is not affected by the height of 

the slope. In this part, the bearing capacity 

remains constant until the height of the slope 

(H/B) reaches a critical value. The third part 

of the diagrams, which is related to failure 

mode (b), begins when the slope height 

approaches its critical value and the overall 

slope failure happens due to gravity force. 

The range of the intermediate part and 

ultimate slope height increases as the ratio of 

c/B increases. As the aim of the present 

study is to estimate the bearing capacity of 

footings near slopes, the ratio of H/B should 

be adopted so that the overall slope failure 

doesn’t occur. So, the H/B ratio is 

considered to be 4 in all analyses by which 

failure mode (b) doesn’t take place. For a 

slope with  = 90˚, the results show that 

using the H/B ratio of 3 is also enough in 

this case. As the bearing capacity diagrams 

seen in Figure 10 are generated for an 

undrained condition and a/B = 0, for a 

drained condition and a/B≥ 0 these results 

are conservative and assuming the H/B  ratio 

equal to 3 is adequate for other cases. 

Shiau et al. (2011) proposed a procedure 

for distinguishing between the bearing 

capacity failure and overall slope failure 

which was based on the stability number of 

slopes. Taylor’s stability number (1937) is 

stated as: 

 

sHF

c
N


  (10) 

 

where N = stability number,   = unit weight 

of the soil, H = height of the slope, Fs = 

factor of safety for stability of the slope.  

Taylor (1937) used the friction circle 

method (circle method) and presented his 

stability charts based on the friction angle of 

the soil () and the slope angle (). 

Michalowski (1995) also presented stability 

charts using upper bound limit analysis. 

Multiplying H/B to Eq. (9) and assuming Fs 

= 1, we obtain (Shiau et al., 2011): 
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Fig. 10. Effect of H/B on bearing capacity (a/B = 0,   = 0). 

 

To determine the stability of a slope 

merely (only under gravitational loading), 

we should follow these steps: 

1. Specify the stability number (N) having 

andand using stability charts 

(Taylor’s charts) by assuming Fs =1. 

2. Multiply H/B to N and get (c/B) crit by the 

use of Eq. (11). 

3. Calculate the ratio of c/B for the footing-

on-slope problem. 

4. If c/B > (c/B) crit then the slope is stable 

and the bearing capacity failure mode will 

dominate, but if c/B ≤ (c/B) crit the 

overall slope failure mode takes place. 

The results of the procedure suggested by 

Shiau et al. (2011) agree with charts 

presented in Figure 10. For example, for  = 

30˚ and c/B = 2.5, the critical ratio of H/B 

is about 13.5 according to Figure 8. Using 

the stability charts for  = 30˚ and the 

stability number is equal to 0.18. By 

applying Eq. (11), the critical value of H/B 

obtained is about 13.9 for c/B = 2.5 which 

is close to the diagram result. 
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The bearing capacity of the footing-on-

slope system increases when the footing 

goes far from the crest of the slope. This is 

because of the slope angle effect which is 

diminished and the so-called system 

approaches to the bearing capacity of a 

footing on level ground. Such a conclusion 

cane be derived from Figures 11 and 12 in 

which the bearing capacity increases as the 

ratio of a/B goes up. For example, for  = 

90˚, c/B =1 and  = 0 the dimensionless 

bearing capacity, p/B, increases from 0.99 

to 4.46 when the distance of the footing 

changes from 0 to 10 (Figure 11).   

Referring to Figures 11 and12, it can be 

found out that when the slope angle lessens, 

the ratio of a/B gets smaller when the 

bearing capacity remains constant. In other 

words, the effect of a/B is diminished more 

rapidly as the slope angle reduces. With 

reference to Figure 11, for = 0 and c/B 

=1, when the ratio of a/B reaches 2 (a/B≥ 2) 

the bearing capacity of a footing doesn’t 

change for a slope angle of  = 30˚. This 

ratio is 6 for  = 60˚ and 10 for  = 90˚. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 11. Effect of aand on bearing capacity ( 1Bc   ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12. Effect of aand on bearing capacity ( 5Bc   ). 
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The dimensionless strength parameter due 

to cohesion of the soil (c/B) plays an 

important role in the stability of footings 

near slopes. The comparison of Figure 11 

and Figure 12 indicates that the bearing 

capacity increases as the ratio of c/B 

increases.  

Design charts (Figures 16-20) show that 

the variation of dimensionless bearing 

capacity p/B with c/B is linear except for 

low ratios of c/B (≤0.5). For low values of  

c/B (≤0.5), the limit pressure drops to zero 

and the overall slope failure occurs, as it can 

be seen in the initial nonlinear dropping part 

of design charts (Shiau et al., 2011). 

The bearing capacity of footings on 

slopes lessens as the slope angle increases 

(Figure 13). It should be noted that the effect 

of the slope angle weakens when the footing 

gets far from the slope crest and when it 

reaches a definite distance from the crest; the 

limit pressure remains constant for all slope 

angles. This can be observed in Figures. 11, 

12 and design charts (Figures 16-20).  

The cohesive-frictional soil (drained 

condition) leads to a notably higher bearing 

capacity for the footing-on-slope system in 

comparison with purely cohesive soil 

(undrained condition). This is due to the 

effect of the soil friction angle on the 

stability of such a system by making the 

failure mechanisms deeper and harder to 

occur. This can be concluded from Figure 14 

where the charts of the bearing capacity of a 

slope with  = 30˚, c/B= 5 and various 

values of a/B are generated for , ˚, 

˚ and ˚. It is seen that the 

dimensionless limit pressure (p/B) 

increases by the increase of For example, 

for a/B = 4, the dimensionless bearing 

capacity rises from 23.45 to 56.98 as the 

friction angle increases from 0 to ˚. The 

enhancive effect of the soil friction angle can 

also be deduced by comparing Figures 16-

20. Another note is that by an increase of 

the bearing capacity diagrams for various 

slope angles join together at a higher ratio of 

a/B.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Variation of bearing capacity with slope angle ( = 10˚, 2,0  BcBa  ). 
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Fig. 14. Effect of  on bearing capacity (=30˚ , 5Bc  ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 15. Variation of bearing capacity  with friction angle of the soil (=60˚, a/B = 1). 

 

Figure 15 also shows the important role 

of the soil friction angle in improving the 

bearing capacity of a footing near a slope. It 

is seen that when the ratio of c/B increases, 

the effect of  becomes more significant and 

the bearing capacity increases more steeply 

with the increase of  . 

 

Design Charts   

In this section, the design charts for lower 

bound estimation of the bearing capacity of 

strip footings near slopes are presented. 

These charts cover various slope angles ( = 

30˚, 60˚, 90˚), various footing distances (a/B 

= 0, 1, 2, 4, 6, 10) and different friction 

angles of the soil (0˚, 10˚, 20˚, 30˚, 40˚). 

Using the procedure suggested by Shiau et 

al. (2011) and checking the stability of the 

slope by calculating (c/B) crit, if the slope is 

stable Figures 16-20 can be used for 

determining the bearing capacity of the 

footing-on-slope problem. 



Civil Engineering Infrastructures Journal, 47(1): 89 – 109, June 2014 

103 

 

 

 

  

  

Fig. 16. Bearing capacity charts for various slope angles and footing distances (= 0). 
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Fig. 17. Bearing capacity charts for various slope angles and footing distances (= 10˚). 
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Fig. 18. Bearing capacity charts for various slope angles and footing distances (= 20˚). 
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Fig. 19. Bearing capacity charts for various slope angles and footing distances (= 30˚). 
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Fig. 20. Bearing capacity charts for various slope angles and footing distances (= 40˚). 
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EXAMPLE OF APPLICATION   

 

To illustrate the utilization of the design 

charts presented in the current study, the 

following problem will be solved. 

A smooth strip footing with a width of 

1.0 m is to be built 4.0 m far from the crest 

of a slope with a height of 4.0 m and an 

angle of 60˚. The soil has the unit weight of 

= 20 kN/m
3
, c = 60 kPa and = 20˚. In this 

problem, the ultimate bearing capacity of the 

footing should be determined. 

1. For a slope with  = 60˚ and  = 20˚, using 

Taylor’s stability charts, a value of 0.095 

is obtained for N. 

2. Using Eq. (11), we have 

38.0)
1

4
(095.0)( 

B

H
N

B

c
crit


 

3. 3
)1(20

60


B

c


 

4. crit
B

c

B

c
)(


 , therefore the slope is 

stable and we can use the design charts 

for lower bound estimation of the bearing 

capacity. 

5. With  = 20˚, we use Figure 18 for 

3
B

c


, a/B = 4 and  = 60˚ which leads 

to the dimensionless bearing capacity of 

32
B

p


. Thus, the ultimate load is 

640)1)(20(32 P  kPa. 

 

CONCLUSIONS 

 

The bearing capacity of strip footings 

adjacent to slopes is investigated using the 

finite element-lower bound method. The 

normalized bearing capacity is considered as 

the ratio of (p/B) where p is the average 

limit pressure under the footing base. The 

effect of various parameters on the bearing 

capacity of a footing-on-slope system are 

studied. It is seen that the friction angle of 

the soil ( has a great effect on the bearing 

capacity of the so-called system. The 

combination of two dominant failure modes 

(overall slope failure mode and bearing 

capacity failure mode) makes the footing-on-

slope problem complex. It is observed that 

for low values of c/B the global slope 

failure occurs. Moreover, for a definite value 

of c/B, there is a critical ratio of H/B by 

which the global slope failure occurs and the 

slope becomes unstable merely under 

gravitational loading. The stability of the 

mere slope (without footing) can be 

distinguished by the procedure suggested by 

Shiau et al. (2011). When the slope is stable 

itself, then the linear part of the design charts 

(Figures 16-20) can be used for lower bound 

estimation of the bearing capacity of strip 

footings on slopes. 
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