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ABSTRACT: The asymmetric problem of rocking rotation of a circular rigid disk 

embedded in a finite depth of a transversely isotropic half-space is analytically addressed. 

The rigid disk is assumed to be in frictionless contact with the elastic half-space. By virtue 

of appropriate Green's functions, the mixed boundary value problem is written as a dual 

integral equation. Employing further mathematical techniques, the integral equation is 

reduced to a well-known Fredholm integral equation of the second kind. The results related 

to the contact stress distribution across the disk region and the equivalent rocking stiffness 

of the system are expressed in terms of the solution of the obtained Fredholm  integral  

equation. When the rigid disk is located on the surface or at the remote boundary, the exact 

closed-form solutions are presented. For verification purposes, the limiting case of an 

isotropic half-space is considered and the results are verified with those available in the 

literature. The jump behavior in the results at the edge of the rigid disk for the case of an 

infinitesimal embedment is highlighted analytically for the first time. Selected numerical 

results are depicted for the contact stress distribution across the disk region, rocking 

stiffness of the system, normal stress, and displacement components along the radial axis. 

Moreover, effects of anisotropy on the rocking stiffness factor are discussed in detail. 

 

Keywords: Fredholm Integral Equation, Rigid Disk, Rocking Stiffness, Soil-Structure-

Interaction, Transversely Isotropic. 

 

 

INTRODUCTION 

 

The soil-foundation interaction problem is 

an attractive subject for many researchers in 

the fields of civil engineering, geotechnical 

engineering, seismology, and applied 

mechanics. The results of such studies are of 

practical importance for the design of 

various structural elements like piles, 

anchors, foundations, and etc. under static 

and dynamic loading conditions. Moreover, 

determination of the equivalent stiffness of 

the system can significantly simplify further 

numerical simulations of soil-structure 

interaction. 

For analytical treatment of soil-structure 

interaction problems, the foundation is 

usually modeled using a rigid or flexible 
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disk. Generally, a rigid disk in contact with 

an elastic medium can be subjected to four 

different types of load or deformation; (i) 

normal translation, (ii) lateral translation, 

(iii) rocking rotation, and (iv) torsional 

rotation.  Furthermore, the contact between 

the disk and medium is assumed to be either 

smooth (frictionless) (Selvadurai, 2009; 

Eskandari-Ghadi et al., 2010), or adhesive 

(perfectly bonded) (Fabrikant, 1997; 

Selvadurai, 1993) in the literature.  For the 

case of infinite embedment of the rigid disk 

in an elastic solid (Selvadurai, 1980a), the 

results corresponding to both contact models 

are identical. However, for the adhesive 

contact assumption, when the disk rests on 

the surface (Gladwell, 1969) or embedded in 

a finite depth of elastic half-space 

(Selvadurai et al., 1991), the lateral 

translation and rocking rotation are coupled 

together. In other words, the lateral 

deformation of the rigid disk, which is 

formed by a concentrated lateral load, 

accompanies some rocking rotation, and vice 

versa. However, in the case of the smooth 

contact between the rigid disk and the elastic 

half-space, four aforementioned loading 

types are decoupled. In this context, the 

interaction problems of rigid and flexible 

disks with isotropic media have been 

thoroughly studied in the literature (e.g. Pak 

and Gobert, 1990; Pak and Saphores, 1991). 

The reader is referred to the extensive list of 

references cited in Pak and Gobert (1990). 

The formation process of most kinds of 

rocks and soils under various environmental 

conditions like high multi-directional 

pressures, heat, cracking, and etc. results in 

their anisotropic behavior. Hence, 

geotechnical engineers are more interested in 

realistic analysis of these materials by 

considering anisotropic models.  Moreover, 

the application of anisotropic materials in 

advanced technologies necessitates the study 

of their responses under static and dynamic 

loads. In practical applications, anisotropic 

materials are often modeled as transversely 

isotropic or orthotropic media. 

Problems concerning a disk embedded in 

a transversely isotropic full-space under four 

possible types of loading are presented by 

Flavin and Gallagher (1976), Selvadurai 

(1980a,b; 1982; 1984) and Eskandari-Ghadi 

et al. (2011). It seems that apart from the 

coupled lateral translation and rocking 

rotation of a rigid disk in the adhesive 

contact with the surface of a transversely 

isotropic half-space, other cases related to 

the disk-half-space surface interaction have 

been studied. Rahimian et al. (2006) 

considered the torsion of a rigid disk rested 

on the surface of a transversely isotropic 

half-space. Recently, Katebi et al. (2010) 

and Eskandari-Ghadi and Ardeshir-

Behrestaghi (2010) solved the axisymmetric 

interaction problem of a rigid circular disk 

embedded in a finite depth of a transversely 

isotropic half-space under normal static and 

time-harmonic loadings, respectively. To 

date, researches on the interaction of a rigid 

disk embedded in a finite depth of a 

transversely isotropic half-space are limited 

to simple axisymmetric loadings. Such 

problems related to the finite embedment of 

the rigid disk in a transversely isotropic half-

space is an appropriate model to investigate 

the behavior of anchorage systems subjected 

to various types of loading. 

In this paper, the analytical treatment of 

the asymmetric interaction of a rigid circular 

disk embedded in a finite depth of a 

transversely isotropic elastic half-space is 

addressed. The contact between the disk and 

the half-space is assumed to be smooth, and 

the rigid disk is subjected to a rocking 

moment. With the aid of appropriate Green's 

functions, the governing equations of the 

mixed boundary value problem are written 

as a dual integral equation. Employing 

Nobel's method (Nobel, 1963) and further 

mathematical techniques, the solution of the 

problem is given in terms of a well-known 
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Fredholm integral equation. The available 

results in the literature corresponding to the 

infinite embedment, surface contact, and 

isotropic half-space are exactly recovered as 

the limiting cases of the current study.  Some 

numerical results for the rocking stiffness, 

contact stress distribution, and displacement 

fields are depicted. The effects of anisotropy 

on the rocking stiffness are also highlighted. 

 

PROBLEM STATEMENT 

 

Let’s consider the relaxed treatment of a 

massless rigid disk of vanishingly small 

thickness and radius   embedded in a finite 

depth     of a homogeneous transversely 

isotropic linear elastic half-space under 

rocking rotation, see Figure 1. The rigid disk 

is located in the isotropy plane of the 

medium. The origin of the cylindrical 

coordinate system          is set on the 

surface in such a way that the  -axis points 

into the half-space and coincides with the 

axis of symmetry of the medium. The 

system is disturbed by a rigid-body rotation 

about the axis parallel to the medium   

imposed on the disk due to the application of 

a rocking moment applied to the rigid disk. 

It is assumed that the contact between the 

rigid disk and the medium is smooth. 

Therefore, the rigid disk is under pure 

rotation about the  -axis without any lateral 

translations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Rocking rotation of a rigid disk embedded in a finite depth of a transversely isotropic half-space. 
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The mixed boundary conditions of the 

problem under consideration in terms of the 

displacement vector   and the Cauchy stress 

tensor   can be written as: 
 

                                   (1) 

 

For the rigid-body rotation of the disk; 

 

        
           

              
 (2) 

        
           

              
 (3) 

        
           

              
 (4) 

 

For the continuity of displacement 

components across the plane      and: 
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(7) 

 

For the continuity and jump conditions of 

stress components across the disk plane 

   . Here, the unknown          is the 

normal component of traction acting on the 

disk region. Moreover, the traction free 

condition on the surface (   ,    ) 

implies that: 

 

                              
 (8) 

 

where         One must also satisfy 

the regularity conditions at infinity as: 

 

   
     

               
     

      (9) 

 

 

Governing Integral Equation 

All elastic fields of the problem can be 

expressed in the Fourier series expansion 

with respect to the angular coordinate  , for 

instance: 

 

       ∑          
 

    
   (10) 

 

with similar expressions for the 

displacement and stress components. 

Moreover, considering the m-th order 

Hankel transform for sufficiently regular 

function      with respect to the radial 

coordinate: 

 

 ̃       ∫              
 

 

    (11) 

 

where    is the transform parameter and    is 

the  th order Bessel function of the first 

kind, the following term is defined: 

 

    ̃ 
      (12) 

 

Now, according to the formulations used 

by Eskandari and Shodja (2010) as well as 

Katebi et al. (2010), the Fourier components 

of the displacement and stress fields for the 

buried lateral excitation in a finite depth 

    can be written as: 
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where the kernel functions            and 

          are given by Eskandari and 

Shodja (2010) as: 
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where          
        and    

   

   
      

   

   
      

       

   
      

   

   
. 

Here,    ,    ,    ,    ,     and          
       are the elastic constants,    √  , 

and    and    are the roots of the following 

equation with positive real parts: 

 

   
     

                  
 (21) 

 

In view of the positive-definiteness of the 

strain energy,    and    are neither zero nor 

pure imaginary numbers. It is worth noting 

that Green’s functions obtained by Eskandari 

and Shodja (2010) and Katebi et al. (2010) 

are identical, however, the notations used 

here are taken directly from the former 

paper.   

The boundary condition (1) implies that: 

 

                    
 (22) 

 

and subsequently, the vertical component of 

the displacement field can be expressed as: 

 

                    (23) 

 

It is evident that the Eqs. (13-18) satisfy 

all the boundary conditions except Eqs. (1) 

and (7). By virtue of Sonine’s integral as in 

Nobel (1963), these two remained boundary 
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conditions can be reduced to a dual integral 

equation: 

 

∫
 

√ 
[ 
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(24) 

 

For   ; and 
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(26) 

 

and 

 

       
        

   
  (27) 

 

It is worth mentioning that the function 

        is indeterminate for identical values 

of    and   . Therefore, by taking the limit 

     the relations pertinent to the case 

      is given by: 
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 (28) 

 

The solution of dual integral Eqs. (23) 

and (24) yields the transformed contact 

stress distributions      acting on the disk. 

Subsequently, the unknown traction 

components          can be obtained by 

recourse to (26) and the inverse Hankel 

transform. It is clear that one can use this 

traction component in conjunction with 

Green's functions introduced by Eskandari 

and Shodja (2010) to easily determine all the 

elastic fields of the proposed problem. 

 

Further Reduction of the Dual Integral 

Equation 

Let’s define 

 

∫
 

√ 
                

 

 

 {√
 

  
                 

                                      

 

(29) 

 

where       is an unknown function. 

Employing the Hankel transform yields: 

 

       √
   

 
∫ √              

 

 

    

 (30) 

 

Substituting Eq. (31) into Eq. (25), the 

dual integral equation can be reduced to a 

Fredholm integral equation of the second 

kind as: 
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      ∫               
 

 

        

(31) 

 

in which         and       are: 
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The kernel function         is evaluated 

in closed form as: 
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By means of Eq. (29) and the identity of: 
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The contact stress distribution across the 

disk region becomes: 

 

        

  
        

 

 

  
∫

     

√     
  

 

 

  

 (37) 

 

which can be equivalently rewritten as: 
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(38) 

 

The rocking stiffness of the system under 

consideration is another important element 

to be obtained. The rocking stiffness is 

defined as the ratio of the total applied 

moment about the  -axis to the sustained 

rotation. The resultant moment applied to the 

disk can be obtained by: 

 

   ∫ ∫                   
  

 

 

 

  

 (39) 

 

By recourse to Eq. (40), the rocking 

moment is expressed as: 

 

       ∫         
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The dimensionless rocking stiffness 

(   ) is defined as: 
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Limiting Cases 

 

Rigid disk embedded in a transversely 

isotropic full-space 

By taking the limit    , one can obtain 

the closed-form solution pertinent to the 

rocking rotation of a rigid disk embedded in 

a transversely isotropic full-space. Taking 

the limits, one can find: 

 

      
          

        
    (42) 

 

By substituting Eq. (41) into Eqs. (38) 

and (41), the closed-form solutions of 

contact load distribution and the 

dimensionless rocking stiffness of the 

system are obtained: 

 

        

 
                 

        
(

  

√     
)  

(43) 

 

and 

 

   
  

           

           
  (44) 

 

These results are in same agreement with 

those presented by Selvadurai (1980a). 

 

Rigid disk resting on the surface of a 

transversely isotropic half-space 

Let’s take the limit      for the kernel 

function (36): 
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where      denotes Dirac delta function and 

                   By substituting 

Eq. (45) into Eq. (30), the solution of the 

Fredholm integral equation becomes: 
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which shows a finite jump at the edge of the 

rigid disk for the case of an infinitesimal 

embedment of the rigid disk. On the other 

hand, if one sets     and rearranges the 

related governing integral equation, the 

pertinent solution is given by: 

 

      
    

               
  (47) 

 

which is no longer discontinuous at the edge 

of the disk. Subsequently, one can find 
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Substitution of Eq. (47) into Eq. (41) 

yields the dimensionless rocking stiffness as: 
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Rigid disk embedded in isotropic half-

spaces 
For isotropic materials with shear 

modulus  , and Poisson's ratio , the 

following relations hold: 

 

        
       

    
 

       

 
   

    
 

           

(51) 

 

which subsequently yields: 

 

            (52) 

 

Using these relations, the obtained 

Fredholm integral equation is adapted to the 

problem concerning isotropic materials 

considered by Pak and Saphores (1991). For 

instance, the kernel function (34) for 

isotropic materials is reduced to: 
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(53) 

 

which is in exact agreement with the result 

presented by Pak and Saphores (1991). 

 

 

 

NUMERICAL RESULTS AND 

DESCUSSION 

 

To the best of the authors’ knowledge, the 

obtained Fredholm integral Eq. (32) cannot 

be treated analytically for the case of general 

embedment depths. However, the obtained 

integral equation can be solved numerically 

by the conventional methods (Atkinson, 

1997). Introducing the dimensionless 

parameters  ̅     ⁄  and  ̅    ⁄   and 

dividing the interval  ̅  [     into   equal 

segments, the Fredholm integral equation is 

reduced to a system of linear algebraic 

equations as: 

 

[ ]{ }  { }  (54) 

 

where 

 

   
      

 
    

    

  
 

               

        
 

 
  (       ̅)    

   
          

        
    

(55) 

 

in which     is the Kronecker delta. 

 

With the aid of the introduced numerical 

scheme, the solution of the problem can be 

obtained for any type of transversely 

isotropic materials. Table 1 lists the 

properties of some transversely isotropic 

materials (Ding et al., 2006).  
 

Table 1. Properties of tested specimens. 

Material     (GPa)     (GPa)     (GPa)     (GPa)     (GPa) 

Barium titanate 168 78 71 189 5.46 

Beryl rock 41.3 14.7 10.1 36.2 10.0 

Composite 13.6 7 5.47 144 6.01 

Graphite/epoxy 13.92 6.92 6.44 160.7 7.07 

NbSe2 106 14 31 54 19.5 
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In order to illustrate the effects of 

material anisotropy, the dimensionless 

rocking stiffness versus the dimensionless 

depth parameter       is plotted in Figure 2. 

The gray zone in this figure is pertinent to 

the results corresponding to the isotropic 

materials. By looking at this figure it is 

evident that for some transversely isotropic 

materials neglecting the real anisotropic 

behavior may lead to unrealistic predictions. 

In other words, simplified isotropic models 

may lead to results completely different 

from the real behavior of transversely 

isotropic media. 

The contact stress distribution        

across the disk embedded in a Beryl rock 

half-space is depicted in Figure 3. The stress 

magnitude tends to infinity near the disk 

edge and it has a singular behavior of order 

   √   ⁄  .   

The normal stress and displacement 

components along the radial axis at different 

depths of a Beryl rock half-space for the 

same depth       are illustrated in 

Figures 4 and 5, respectively. 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Rocking stiffness vs. the rigid disk embedment depth for some transversely isotropic materials. 
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Fig. 3. Contact stress distribution R(r,θ) along the radius of a rigid disk embedded in a Beryl rock half-space. 
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Fig. 4. Normal stress distribution along the radial axis at different depths of a Beryl rock half-space (s/a=1).  

(a) z>s, (b) z<s. 
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(b) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Normal displacement profile along the radial axis at different depths of a Beryl rock half-space (s/a=1).  

(a) z s, (b) z s. 

 

CONCLUSIONS 

 

The asymmetric problem of a rigid disk 

embedded in a transversely isotropic half-

space under the action of a rocking rotation 

is analytically addressed. By virtue of 

appropriate Green’s functions and Nobel’s 

method, the mixed boundary value problem 

is reduced to a Fredholm integral equation of 

the second kind. The contact stress 

distribution under the disk region and the 

rocking stiffness is expressed as the solution 

of the obtained Fredholm integral equation. 

Some limiting cases pertinent to infinite 

embedment, surface loading, and isotropic 

half-spaces are obtained and verified using 

those available in the literature. The 

numerical scheme for the solution of the 

obtained Fredholm integral equation is 

presented. The rocking stiffness, the normal 

contact distribution across the disk region, 

the normal stress distribution, and the 

vertical displacement are depicted in some 

dimensionless plots for various transversely 

isotropic materials.  
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