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ABSTRACT: Multistage stochastic programming is a key technology for making 

decisions over time in an uncertain environment. One of the promising areas in which this 

technology is implementable, is medium term planning of electricity production and trading 

where decision makers are typically faced with uncertain parameters (such as future 

demands and market prices) that can be described by stochastic processes in discrete time. 

We apply this methodology to hydrosystem operation assuming random electricity prices 

and random inflows to the reservoir system. After describing the multistage stochastic 

model a simple case study is presented. In particular we use the model for pricing an 

electricity delivery contract in the framework of indifference pricing. 

 

Keywords: Hydroelectric Operation, Multistage Stochastic Programming, Risk  

Management. 

 

 

INTRODUCTION 

 

In the last decade under a deregulated 

market framework, in many countries 

electricity companies are confronted with the 

need for detailed operation planning tools in 

which more uncertainties need to be taken 

into consideration, e.g. because of the rise of 

renewable energy resources. Among this 

family, hydroelectricity plays an important 

role due to its flexibility and complementary 

use. Hydroelectric operation planning 

models consider multiple interconnected 

cascading hydro plants either exclusively or 

simultaneously with multiple thermal plants, 

which lead to hydrothermal coordination.  

In this study we propose a planning 

method for hydro unit production under 

market and weather risks. It is assumed that 

a production company tries to maximize its 

risk adjusted expected profit within this 

environment. The uncertainties considered 

are the random behaviour of electricity spot 

prices and of inflows to reservoirs. The 

company is able to take decisions on the 

energy production for each hydro unit at 

discrete points in time              . 

Decisions are taken before knowing the 

prices at which the produced energy can be 

sold.  

Throughout this paper we will use 

multistage stochastic optimization as the 

basic method. This approach is applied in 
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various fields such as multistage portfolio 

optimization, energy production models, 

transportation and telecommunication where 

decisions must take into account realizations 

of outcomes that are not known in advance. 

To be more precise, in medium term 

planning (1-3 years) of electricity production 

and trading, uncertain parameters such as 

fuel prices, electricity spot prices and 

demand might be described as stochastic 

processes in discrete time. In this context 

information plays a crucial role. When time 

passes, the initially unknown uncertain 

parameters can gradually be observed. 

Stage-by-stage, the amount of information 

increases and planning decisions have to be 

made at each time stage based on the 

information available. This fact is called 

non-anticipativity (Pflug and Römisch, 

2007). The idea of two-stage stochastic 

programing with recourse dates back to the 

pioneering work of Beale and Dantzig 

(1955). In a multi-stage setting decisions are 

taken at times              with 

typically different levels of information. We 

denote the random process of risk factors by 

          and the pertaining multistage 

decision process by               . The 

indices of the random process and the 

decision process differ by one, since at time 

t, a decision is to be made but the realization 

of the random process will be observable 

only at time      . We should emphasize 

here, that modelling the scenario process is 

not within the scope of this research. 

However, before generating scenario trees, it 

is necessary to identify a distribution for ξ 

that can be considered as a highly accurate 

approximation of the true distribution of the 

parameters. In energy optimization, such a 

distribution has to be related to the historical 

data. 

For a broad technical presentation of 

stochastic programming refer to 

Ruszczynski and Shapiro (2003) and for 

applications to the energy market to 

Eichhorn, et al. (2005). We also mention a 

state of the art review of optimal operation 

of multi-reservoir systems by Labadie 

(2004) in which several solution strategies 

including implicit and explicit stochastic 

optimization, real-time optimal control with 

forecasting and heuristic methods are 

explored. See also Giacometti et al. (2001) 

for decision models with deterministic 

inflows and forward electricity prices.   

Compared to Giacometti et al. (2001), we 

describe a model with stochastic inflows and 

the possibility to sell electricity at a spot 

market. This also leads to some effort in 

estimating suitable econometric models. 

Moreover, applying this approach for a 

hydroelectric structure with a cascade 

topology which consists of several decision 

possibilities allows us to capture a more 

extent overview on hydroelectric production 

portfolios in multistage stochastic 

optimization framework and observe the 

correlation between price and production 

levels in presence of seasonal inflows and 

price spikes. In addition we apply the overall 

approach to indifference pricing, i.e. pricing 

delivery contracts with respect to the 

possible profit from selling the whole 

production at the spot market. This valuation 

approach goes back to insurance 

mathematics (Bühlmann, 1972) but can be 

applied to energy production in a natural 

way. 

 

THE MODEL 

 

Basic Model Structure 

A multi reservoir hydro generation 

system consists of a cascade of 

interconnected reservoirs along with 

corresponding turbines, pumps and 

spillways. Such a system can be represented 

by a directed graph, as it is shown in Figure 

1, where the nodes represent the reservoirs 

and the arcs represent water flows. Water 

flows can be either related to power 
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generation by turbines, to pumped water for 

increasing reservoir storages, or to spillage. 

Let J denote the set of reservoirs and I 

denote the set of arcs, then the arc-node 

incidence matrix, whose ij-entry denoted by 

Ai,j represents the interconnections among 

reservoirs and arcs as follows: 

     {

        r f o   in o r   r oir o  r  r  
         r f o   o   of r   r oir o  r  r  
         r  i  no   onn     in o r   r oir 

 

The potential decisions are given by the 

water flows over arcs (resulting in electric 

energy sold at a spot market) and the amount 

of water stored in reservoirs, in order to 

maximize risk adjusted expected terminal 

revenue. This is done by using a mixture of 

expectation and the conditional value at risk 

        -a risk sensitive acceptability 

measure- as the objective function.  

The average value at risk at level   for a 

random variable   is defined as: 

 

         
 

 
∫        

 

 

 (1) 

 

where G is the distribution function of Y. 

This is the simplest version independent 

acceptability functional and can be 

accounted as the basis of many other 

acceptability functions. For further technical 

details refer to Pflug and Römisch (2007) 

and also see Eichhorn and Römisch (2005) 

for an overview on the broader class of 

polyhedral risk measures in stochastic 

programming. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Hydro system topology. 
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All decisions on the amount of water 

flows and related energy production are 

made at discrete periods in time   
         .This leads to a multistage 

stochastic nonlinear programing problem, 

where the produced energy within time 

period of length    depends on the elevation 

difference between headwater and tailwater. 

For small systems this problem can be 

solved by dynamic programing, but for large 

systems with many reservoirs (state 

variables) dynamic programming is not 

applicable. Often this problem is simplified 

by keeping the height (difference between 

head and tail) constant. This way the model 

turns to be a large scale but linear multistage 

stochastic optimization problem. Throughout 

this paper we will apply this simplification. 

 

Time Based Model Formulation 

In this section we aim to formulate the 

decision problem of a generator using a 

hydrosystem with prespecified topology in a 

multistage stochastic optimization setting. 

Notations are described in (Appendix 5.1). 

The sources of stochasticity are given by 

• Th       ri i y pri     
  at which electricity 

is sold. In a model with weekly decisions 

this will usually be an average over hourly 

spot prices, using a typical production 

schedule. 

• Th  p mping pri     
 
 i.e., price it costs to 

pump up the water into the upper reservoir. 

With weekly decisions we use an average 

over off-peak electricity prices. 

• Inf o    o r   r oir   
 
. 

In the stochastic model,    
 
 and prices 

  
 ,  

 
 are random processes while flows 

through the arcs    
    form the decision 

process. Energy produced   
   , accumulated 

cash   
  and reservoir's storage level   

 
  are 

implied by the decision process and  inflows, 

therefore are named decision expressions.  

We assume that the stochastic process  

   
    

    
 
 describes the observable 

information at all stages        . Hence, 

the information available at time   is related 

to the history process              Notice 

that,  is deterministic and does not contain 

probabilistic information.   is the   
        generated by    and the sequence  

         
  of increasing            is 

the corresponding filtration. To express that 

the function      is    measurable we shall 

write       for all    . The value 

process       
    

     
    

 
  which 

describes the decision variables is also 

measurable with respect to the filtration 

 and we write      .The objective 

function is given by a weighted sum of the 

expected terminal revenue and the end-of-

period average value at risk. 

For a hydropower producer seeking to 

maximize the risk adjusted expected 

terminal revenue, the time-oriented form is 

formulated as follows, where all the 

constraints hold for           and all 

equations and inequalities are considered to 

hold almost-surely: 

           [  
 ]            [  

 ] 
Subject to: 
 

    
   

 
 (1a) 

     
 
  

 
 (2a) 

    
 

   
 
 (3a) 

  
 
     

 
   

 
 ∑                  

    
 +∑                    

  
(4a) 

  
       

             (5a) 

  
      

               
∑     

  
           

  
 +∑     

  
             

 
 

(6a) 
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Constraints (1a) and (2a) put lower and 

upper bounds on the flow over arc   and 

storage level of reservoir  , respectively. In 

addition, as stated in (3a) a minimum 

content for each reservoir at the final stage 

needs to be fulfilled. In (4a) we calculate the 

water balance for all reservoirs: At each 

stage the water level at the end of the period 

depends on the water level at the beginning, 

and the inflows and discharges during the 

period based on the system topology. In (5a) 

the energy produced is calculated, while (6a) 

is an accounting equation for the cash 

position over time. It considers the interest 

rate  , and depends on the gain from selling 

electricity and the cost of pumping water to 

the upstream reservoirs. Note that the usage 

of     
          

    
   in this equation reflects 

the fact that decisions have to be made 

before knowing the actual spot prices, at 

which electricity is bought and sold.  

 

Tree Based Approximation 

In this section, we use finite scenario 

trees as the basic structure for application of 

the above model to real world problems. A 

directed graph   is called a layered tree of 

height  , if: 

 Its node set   is the disjoint union of 

      subsets       ,...,      , called 

layers. The layers are sometimes referred as 

stages.  

 There is exactly one node in       , the 

root node. 

 Arcs do only exist between nodes of 

subsequent layers. 

 All nodes in layers        have at 

least one direct successor. 

 All nodes in layers       have exactly 

one direct predecessor. 

The node set in layer   is denoted by   . 

The nodes in the last layer  , are called the 

terminal nodes   . A probabilistic tree is a 

tree of height   for which the terminal node 

set is a finite probability space. The terminal 

node set is called the scenario set and its 

probabilities are called the scenario 

probabilities. The nodes of   are numbered 

successively beginning with the root node 

     . The predecessor of node      is 

denoted by   . Given a tree   , the 

pertaining tree process    takes the values 

      with probabilities   . The node 

probabilities are calculated from scenario 

probabilities by coarsening: 

   ∑                                   

There are many ways of representing  

     , but (Rockafellar and Uryasev, 

2000) showed that       can be defined as 

the solution of the following linear 

optimization problem: 

 

            
   

    
 

 
  [   ]   (2) 

 

Here   represents the value at risk. Recall 

that every real-valued function   can be 

written as     [ ]  [ ] . We apply this 

convention for terminal cash   
    

 [  
 ]  [  

 ]  and finally replace       in 

(a) by the objective of (2) within our model 

(b). This leads to the desired linear program 

as follows: 

   imi    ∑     
        

                                ∑
     

  

 
  

Subject to: 
 

    
   

 
 (1b) 

     
 
  

 
 (2b) 

    
 

   
 
 

     
(3b) 

  
 
    

 
   

 
 ∑                  

   
 +∑                    

  
(4b) 

  
      

         
 (5b) 

  
     

            

∑    
  

             
 +∑    

  
           

  
 
 

(6b) 
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(7b) 

         

                    
   

       

 

In the tree based formulation non-

anticipativity is enforced by the tree 

structure, which represents the relevant 

filtration. To summarize, our model is a 

specification of the medium term 

hydropower scheduling problem, based on 

simulated spot price, pumping price and 

inflow scenarios and leads to a large scale 

multistage linear stochastic optimization 

problem, which can be solved by available 

standard software. 

 

CASE STUDY 

 

We applied our approach to a hypothetical 

production topology based on a generating 

system of a European electric utility. The 

hydro chain is considered to be participating 

in the market for a midterm period of one 

year with specification shown in Figure 1. 

The scenario tree represents the information 

on weekly spot prices and pumping prices in 

addition to the weekly inflows to the 

reservoirs, where each path from the root to 

the terminal node of the tree corresponds to 

one scenario. Before setting up the stochastic 

optimization model, it is necessary to 

identify the random input data   ,…,   to 

represent it by suitable statistical models and 

to yield a scenario tree using appropriate 

sampling techniques. In the following 

sections construction methods of stochastic 

inflow and price scenarios based on history 

data is presented.  

In the present study, as in (Papamichail 

and Georgiou, 2001) a SARIMA model is 

selected to simulate the time series of 

historical weekly data of natural inflows into 

a chain of reservoirs over a one year period. 

In the model selection stage, both the 

autocorrelation function and the partial 

autocorrelation function of the 

logarithmically transformed time series of 

inflows are considered. This transformation 

is done to stabilize the variance, similar to 

Ledolter (1978) approach. By implementing 

 h  “Hyndm n-Kh nd k r”   gorithm and 

by minimizing the AIC (Akaike's 

Information Criterion (Akaike, 1974),  

                      seems to be the 

appropriate candidate model. In Table 2, the 

details of the model coefficients are shown. 

We used hourly spot prices from EEX 

(European Energy Exchange) as the basis for 

the models weekly electricity and pumping 

prices. In particular we used an estimation 

approach described in (Kovacevic and 

Paraschiv, 2013). Both the estimated inflow 

and price models were used to simulate price 

and inflow scenario paths. However, such 

bunch of sample paths (scenario fan) does 

not reflect the information structure in 

multistage stochastic optimization and 

neglects the fact that information is revealed 

gradually over time. For this reason various 

scenario tree generation algorithms for 

multistage stochastic programs have been 

developed. We used an algorithm described 

in (Heitsch and Römisch, 2005) which 

consists of recursive scenario reduction and 

bundling steps. The study horizon was split 

into 52 stages, each representing one week, 

and for the following numerical example we 

considered 152 scenarios. 

Finally we used AIMMS 3.12 for 

formulating and solving the linear multistage 

stochastic problem (b) for a chain of 6 

reservoirs with 17 arcs. In the following we 

discuss the numerical results obtained. 

 

Numerical Results: The Basic Model 

In Figures 2-4 the scenario trees of 

stochastic inflows are depicted for three 

corresponding reservoirs. Clearly, reservoirs 

3, 4 and 5 are downstream reservoirs i.e. 
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there are no natural inflows. Also it can be 

seen from the graph that the inflows follow a 

pattern, which depends on the seasons of the 

year. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Scenario tree of annual stochastic inflows to reservoir 1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Scenario tree of annual stochastic inflows to reservoir 2. 
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Fig. 4. Scenario tree of annual stochastic inflows to reservoir 6. 
 

In addition the spot price scenario tree is 

depicted in Figure 5. As it was mentioned, 

weekly spot prices are calculated as an 

average over hourly spot prices, using a 

typical production schedule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Scenario tree of electricity spot prices. 
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The following results were calculated 

with a parameter value        and a 

mixing factor of        . In Figure 6, the 

stage-wise cash gain and loss scenarios (gray 

shade) are shown, moreover the mean of all 

scenarios (black line) is also added to the 

figure. 

Figure 7, depicts the probability density 

of accumulated cash over time for the last 10 

weeks of the decision horizon i.e. weeks 42-

52. The density plot exhibits a clearly 

increasing trend over time. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6. Cash gain and loss scenarios. 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Accumulated cash density (weeks 42-52).



Analui, B. and Kovacevic, R.M. 

148 

 

Finally, in Figure 8 the reservoir storage 

level scenarios for reservoirs1, 2 and 3 are 

shown. Thicker lines depict the means of 

storage levels in the corresponding 

reservoirs. It should be noted that the storage 

levels are in    per week. The 

interconnection of reservoirs 2 and 3 can be 

observed from the storage level patterns, 

when e.g. pumping up decisions show a 

decrease in storage level of lower reservoir, 

simultaneously the storage level in the upper 

reservoir is showing an increase. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Reservoir storage level scenarios and decision sensitivity. 
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Indifference Pricing 

Consider now electricity delivery 

contracts with given contract size         
deliverable at a constant load during the 

whole planning horizon at a fixed price 

 (
    

   
)  The contracted energy has to be 

delivered regardless of the actual inflows 

and electricity prices. Only excess 

production capacity can be traded at the spot 

market, whereas shortage in production 

(denoted by     ) can be compensated at 

the market. We use indifference pricing as 

an approach to find a price at which the 

producer will sell the contract: According to 

the indifference principle, the seller of a 

product compares his optimal value with and 

without the contract and requests a price 

such that he is at least not worse off after 

closing the contract. This idea goes back to 

insurance mathematics (Bühlmann, 1972) 

and has been used for pricing financial 

contracts later on. See (Carmona, 2009) for 

an overview. Further applications in energy 

can be found e.g. in (Kovacevic and 

Paraschiv, 2013), (Kovacevic and Pflug, 

2013). Within this framework and choosing 

value        and       as above, we 

solve the original planning problem in order 

to find the optimal value    without the 

delivery contract i.e. selling all produced 

electricity on the market. Then a modified 

optimization problem, searching for the 

minimum bid price is formulated. The 

producer should be indifferent between 

closing the contract and refusing the 

contract, hence the most important constraint 

is given by   [  
 ]            [  

 ]  
   . In addition the contract has to be 

fulfilled. i.e. ∑   
          . Finally, the 

cash position has to be corrected because 

parts of the electricity are sold at the 

contracted price  . The minimum bid price 

for contract sizes between 1000 and 28000 

     is shown in Figure 9. Small contract 

sizes are comparably expensive, but due to 

economy of scales the indifference price 

decreases fast. While the mean electricity 

price lies at                 the 

indifference price goes down to 

                 , which reflects the 

efficiencies of the turbines in the system. 

Note also that the calculated indifference 

price does not reflect fixed operating costs. 

For large contract sizes, starting near the 

maximum weekly production of 

             (not shown in Figure 9),  

more and more electricity has to be bought 

at the spot market, which results in a slight 

increase of the indifference price, tending 

more and more to the mean spot price. 

 

CONCLUSIONS 

 

In this paper we have presented a medium 

term multistage stochastic optimization 

model for multi-reservoir hydroelectric 

systems. In particular we considered the 

stochasticity of electricity prices and natural 

inflows. A case study for a cascading system 

with a one year planning horizon and weekly 

decisions has been implemented, and the 

results were presented and discussed. In 

particular we applied indifference pricing to 

a delivery contract and obtained minimal 

production prices for different contract sizes. 

 

APPENDIX 

 

Nomenclature  

Let    denote the set of reservoirs (nodes) 

and    denote the set of water flows (arcs). In 

the following, in Table 1, list of symbols and 

the corresponding units used to represent the 

data, random processes, decision and 

expression variables are presented. 
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Fig. 9. Indifference prices for different contract sizes. 

 
Table 1. Nomenclature. 

Data 

  [         ] Energy coefficient 

     - arc   represents generation; 

     - arc   represents pumping; 

     - arc   represents spillage. 

 ̅ [        ] Maximum water flow in arc  . 

 ̅ [     ] Maximum storage volume in reservoir   . 

 ̅   
 

[     ] Minimum storage volume required in reservoir    at the end of panning horizon. 

  [     ] Minimum storage volume in reservoir   . 

Random Process 

  
 
[        ] Natural inflow into reservoir  . 

  
 [        ] Electricity spot price. 

  
 
[        ] Electricity pumping price. 

Decision Variables 

  
 [        ] 

The water flow in arc   

- turbined volume if arc   represents generation; 

- pumped volume if arc   represents pumping; 

- spilled volume if arc   represents spillage. 

Decision Expressions 

  
 
[     ] Storage volume in reservoir  . 

  
  [   ] Energy produced during the next stage for each arc  . 

  
 [    ] Cash 

 [    ] Value at risk 
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Incidence Matrix  

Below the incidence matrix of the 

implemented topology is shown. Rows 

represent the arcs and columns the 

reservoirs. 

 
-1 0 1 0 0 0 

-1 1 0 0 0 0 

0 -1 1 0 0 0 

0 1 -1 0 0 0 

0 -1 1 0 0 0 

0 0 -1 1 0 0 

0 0 1 -1 0 0 

0 0 1 -1 0 0 

0 0 -1 1 0 0 

0 0 0 -1 1 0 

0 0 0 -1 1 0 

0 0 0 1 -1 0 

0 0 0 -1 1 0 

0 0 0 0 -1 1 

0 0 0 0 -1 1 

0 0 0 0 0 -1 

0 0 0 0 0 -1 

 

Parameter Estimates 

 
Table 2. Parameter Estimates. 

Parameter Estimate Standard Error 

   0.8521 0.0386 

   0.1701 0.1824 

   0.8296 0.1827 

   -0.2893 0.0561 

   -0.2478 0.0432 

   -0.1608 0.1693 

   -0.8074 -0.8074 

Seasonal ARIMA model is formed by 

including additional seasonal terms in the 

ARIMA models and is written as follows: 

             ⏟    
            

       ⏟    
        

 

where   is the number of periods per 

season. The seasonal part of the model 

consists of terms that are very similar to the 

non-seasonal components of the model, but 

they involve backshifts of the seasonal 

period. Denoting the backshift operator with 

 , the corresponding 

                      which is without 

the constant terms is written in the following 

closed form: 

             
     

     

           
    

    
     

      

P r m   r ’    im      r   ho n inTable 2. 
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