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ABSTRACT: Some considerable damage to steel structures during the Hyogo-ken Nanbu 

Earthquake occurred. Among them, many exposed-type column bases failed in several 

consistent patterns, such as brittle base plate fracture, excessive bolt elongation, unexpected 

early bolt failure, and inferior construction work, etc. The lessons from these phenomena 

led to the need for improved understanding of column base behavior. Joint behavior must 

be modeled when analyzing semi-rigid frames, which is associated with a mathematical 

model of the moment–rotation curve. The most accurate model uses continuous nonlinear 

functions. This article presents three areas of steel joint research: (1) analysis methods of 

semi-rigid joints; (2) prediction methods for the mechanical behavior of joints; (3) 

mathematical representations of the moment–rotation curve. In the current study, a new 

exponential model to depict the moment–rotation relationship of column base connection is 

proposed. The proposed nonlinear model represents an approach to the prediction of M–θ 

curves, taking into account the possible failure modes and the deformation characteristics 

of the connection elements. The new model has three physical parameters, along with two 

curve-fitted factors. These physical parameters are generated from dimensional details of 

the connection, as well as the material properties. The M–θ curves obtained by the model 

are compared with published connection tests and 3D FEM research. The proposed 

mathematical model adequately comes close to characterizing M–θ behavior through the 

full range of loading/rotations. As a result, modeling of column base connections using the 

proposed mathematical model can give crucial beforehand information, and overcome the 

disadvantages of time consuming workmanship and cost of experimental studies. 

 

Keywords: Column-Base, Component Model, Mathematical Modeling, Moment-Rotation 

Curve. 

 

 

INTRODUCTION 

 

Column bases are one of the most important 

structural elements in steel frames, since 

their behavior strongly affects the overall 

behavior of the structure. The existing 

literature on this field includes theoretical 

and experimental research aiming to 

determine the real behavior of column bases 

and their influence in the whole structure. 

Nonlinear connection behavior is normally 

modeled by using a separate connection 
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element and restricts the nonlinear behavior 

to bending modes without considering 

nonlinear torsion behavior. Torsion is 

typically excluded since torsion-rotation data 

is scare. Most nonlinear connection behavior 

data is based on strong axis data. This 

section will limit the non-linear response of 

connections to bending deformation modes, 

i.e., torsion deformation will be assumed to 

remain linear. Nonlinear bending flexibility 

has been analyzed using both two and three 

dimensional models. Column base plates 

have been analyzed and designed 

traditionally on the assumptions that the 

plate is rigid and that the plate thickness can 

be determined from the cantilever action of 

the plate projections beyond the column 

face. Krishnamurthy et al. (1990) 

investigated the actual behavior of column 

base plates and quantify the differences 

between the real and assumed behavior by 

using finite element method.Benoit et al. 

(2011) identified the contributions to the 

deformations of base plate assemblies, 

including the deformations of the supporting 

floor, the base plate assembly itself and the 

upright, and proposes simple expressions for 

calculating the stiffness associated with each 

contributing deformation where applicable. 

In the case of failure modes, at the lowest 

eccentricity, failure occurred by cracking of 

the concrete, while at other eccentricities the 

primary mode of failure was by yielding of 

the base plate. Form the experimental point 

of view, Latour et al. (2014), Hoseok et al. 

(2012) and Jae-Hyouk et al. (2013) have 

performed a series of experiments for 

various cases of column bases, studying the 

parameters that influence their behavior. 

Design guides were created to assist 

engineers and fabricators in the design, 

detailing and specification of column-base-

plate and anchor-rod connections, in a 

manner that avoids common fabrication and 

erection problems. They include design 

guidance in accordance with both Load and 

Resistance Factor Design (LRFD) and 

Allowable Stress Design (ASD). 

The topics covered include material 

selection, fabrication, erection and repairs, 

guidance on base plate and anchorage design 

for compression, tension, and bending, 

guidance on the design of anchors for fatigue 

applications. The Ramberg–Osgood (1943) 

equation was created to describe the 

nonlinear relationship between stress and 

strain. That is, the stress-strain curve in 

materials near their yield points. It is 

especially useful for metals that harden with 

plastic deformation. Colson and Louveau 

(1983) introduced a three parameter power 

model function for beam to column 

connections. Kishi and Chen (1990) 

proposed a model for determination of initial 

stiffness and the ultimate moment capacity 

of connections. Hamizi et al. (2011) 

proposed a finite element approach to 

calculate the rising and the relative slip of 

steel base plate connections. 

On the other hand, a lot of similar 

analytical studies have been carried out, 

leading to a better understanding of this 

behavior. In order to incorporate the 

moment-rotation curves more systematically 

and efficiently into a frame analysis 

computer program, the moment-rotation 

relationship is usually modeled by using 

mathematical functions. In the present study, 

the behavior of column base connections 

under monotonic loading is modeled and 

compared with experimental, analytical and 

finite element method that is proposed by 

Stamatopoulos et al. (2011). Eight 

experimental specimens of steel column 

bases were constructed, and their 3D FEM 

models were simulated as described by 

Stamatopoulos et al. (2011). Figure 1 shows 

the experimental set up. 

 

 

 

 

http://en.wikipedia.org/wiki/Stress_%28physics%29
http://en.wikipedia.org/wiki/Strain_%28materials_science%29
http://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve
http://en.wikipedia.org/wiki/Yield_%28engineering%29
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Fig. 1. (a) Test setup. (b) Geometry of the frame (Stamatopoulos et al., 2011). 

 

Evaluation of the ultimate strength 

capacity, the initial stiffness of the M–θ 

curve, and the ultimate rotation capacity of 

the connections can all straightforwardly be 

assessed directly from the M–θ curve. 

Studies in the literature have proposed 

parametric studies with various models to 

represent M–θ behavior for some different 

types of column-base connections. Only a 

few of these models adequately come close 

in characterizing some special M–θ behavior 

through the full range of loading/rotations. 

Due to the sensitivity of the connection 

performance, with respect to the different 

configuration and/or material properties, the 

results do not get well fitted into the 

experimental test curves. In addition, the 

procedures have been able to employ only 

one type of connection; therefore, the course 

of actions must be repeated for all different 

connection types. As it would be excessively 

expensive to store the M–θ relationships for 

all practical connection types and sizes, a 

feasible solution is needed to derive and 

store a single ‘‘standardized’’ M–θ function 

for each connection type. 

In this paper, an exponential model is 

developed to predict the standard M–θ curve 

of column-base by determining initial 

stiffness, strain hardening stiffness, the 

intercept constant moment and two curve-

fitness parameters. The presented 

exponential model is used to represent the 

entire M–θ behavior of the column-base. 

The major parameters of this ‘‘standard M–θ 

utility’’ will be obtained based on theoretical 

methods. 

Finally, a correlation is performed 

between the experimental, finite element, 

analytical formula proposed by 

Stamatopoulus et al. (2011) and this new 

mathematical model. The comparison and 

the results between these three procedures 

seem to be satisfactory from a practical point 

of view. 

 

TEST SETUP 

 

The main task of this research is to verify the 

analytical formula, proposed by the authors, 

that corresponds to the M–θ curve for the 

steel column base behavior (equation 9). For 

this reason, the experimental results for eight 

specimens were those prepared and tested by 

Stamatopoulus et al. (2011) for strong-axis 

bending column are used.The geometry of 
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the specimens is summarized in Table 1. The 

column is a typical HEB-120 section, while 

four specimens were constructed with base 

plate thickness equal to 12 mm and the rest 

with base plate thickness equal to 16 mm. 

The anchor rods were also varying with two 

different diameters of 12 and 16 mm.  

In order to calculate the base plate 

rotation θ regarding the concrete foundation, 

the vertical deformation at the points that are 

very close to the column flanges was 

measured. The first gauge was located close 

to the tension flange of the column and the 

second one on the compression flange 

(Figure 2). 

In this table     is the yield stress of the 

plate and     is the ultimate stress of the 

anchor bolt. They are obtained from 

experimental results. 

 

ANALYTICAL AND 3D FINITE 

ELEMENT MODELING 

 

This section is a short review of the 

analytical and finite element modeling of 

column-bases that was proposed by 

Stamatopoulus et al. (2011). 

The behavior of column bases subjected 

to monotonic loading can be expressed with 

the following analytical expression proposed 

by Stamatopoulus et al. (2011): 

 

       
 

    
 (1) 

 
 

Fig. 2. The position of gauges (a), top view of the column bade with the gauges (b) (Stamatopoulos et al., 2011). 

 
Table 1.Geometry and material properties of the specimens (Stamatopoulos et al., 2011). 

No. Column 

Base plate Anchor rods Concrete 

L×B×T(mm) 
    

   
   ⁄   

Type 
    

   
   ⁄   

   
(     

L×B×T 

(mm) 

 

SP1 HEB-120 240×140×16 41.60 M12 53.65 84.3 500×500×400 

SP2 HEB-120 240×140×12 32.00 M16 84.65 157 500×500×400 

SP3 HEB-120 240×140×16 27.67 M12 53.65 84.3 500×500×400 

SP4 HEB-120 240×140×12 42.95 M16 84.65 157 500×500×400 

SP5 HEB-120 240×140×16 27.67 M16 84.65 157 500×500×400 

SP6 HEB-120 240×140×16 41.60 M16 84.65 157 500×500×400 

SP7 HEB-120 240×140×12 32.00 M12 53.65 84.3 500×500×400 

SP8 HEB-120 240×140×12 42.95 M12 53.65 84.3 500×500×400 
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where    and   are the co-ordinates of the 

characteristic point in each curve as shown 

in Figure 3. They can be obtained by fitting 

a two linear curve to points that are results of 

the analysis. The intersection of two lines is 

the desired co-ordinates, α is the curve 

fitting coefficient depending on the 

particular column base configuration. 

Adopting tetrahedral, brick and wedge 

solid elements, the 3D F.E.M. models of the 

specimens were structured. The column was 

constructed using four nodes quadrilateral 

plate elements and the anchor rods were 

formed using bar elements (Figure 4).  

The contact area was simulated using 

appropriate elements (gap elements) which 

have different stiffness values (penalty 

parameters) in tension and compression. 

These penalty parameters are determined 

using an iterative procedure taking into 

account in each step the stiffness of nearby 

elements as required by the penalty method. 

The optimized values are obtained when 

there is no significant variation in the results 

for a small increasing of the penalty 

parameters. The models were solved using 

the finite element analysis program 

MSC/NASTRAN. The solution type was 

nonlinear static with an iterative procedure 

of five steps in each loading level. 

According to the standard coupon test EN 

10002, four tests for the column base plates 

and two tests for the anchor rods were 

performed. The results of the 

aforementioned tests are presented in Table 

2 and Table 3, respectively. The concrete of 

the foundation blocks was tested with the 

Schmidt hammer. The characteristics of the 

coupon tests are shown in Table 4. 

 
Fig. 3. Distinct points of the M-ϕ curve obtained through design procedure (Stamatopoulos et al., 2011). 

 

 
Fig. 4. (a)Finite element modeling, (b) Meshing of finite element model (Stamatopoulos et al., 2011). 
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Table 2. Characteristics of the plate coupons (Stamatopoulos et al., 2011). 

 

              b(mm) t(mm) 

Section 

area 

(     

               
Ultimate 

Strain 

      

Yield 

Stress 

   
  

     

Ultimate 

Stress 

40 57.1 25.3 10 253 113.14 70 42.75 27.67 44.71 

40 51.2 25 10 250 172.27 104 28 41.6 68.9 

40 59.1 25 10.5 262.5 118.24 84 47.75 32 45.04 

40 54.9 25 9.5 237.5 148.82 102 37.25 42.95 62.66 

 
Table 3. Characteristics of the anchor rod coupons (Stamatopoulos et al., 2011). 

 

              d(mm) 
Section 

area(     
               

Ultimate 

strain 

      

Yield 

stress 

   
  

     

Ultimate 

stress 

60 71.2 12 113.04 60.65 52 18.67 46 53.65 

60 64.9 11.75 108.37 91.74 67 8.16 61.82 84.65 

 
Table 4. Concrete strength (SCHMIDT hammer) (Stamatopoulos et al., 2011). 

Specimen   Measurements R 
Average 

value R 

Cube 

Strength 

   

  
   ⁄   

Average 

Deviation 

  

  
   ⁄ ) 

     
  -  

  
   ⁄   

SP1 -90 29 28.4 35.8 30 30 29 30.36 29.20 6.46 22.74 

SP2 -90 28.2 26.2 31 28 32.3 33.4 29.85 28.10 6.38 21.72 

SP3 -90 29 28.2 26.4 32.2 30.6 27.8 29.03 27.00 6.34 20.66 

SP4 -90 34 31 36 33.6 31 34.2 33.30 34.00 6.70 27.3 

SP5 -90 33.8 32.4 29 33.8 34 29 32.00 32.00 6.60 25.4 

SP6 -90 30 30 32 29 34.2 34 31.53 31.00 6.50 24.5 

SP7 -90 29.8 29.4 29.8 29.2 30 34 30.36 29.20 6.46 22.74 

SP8 -90 28 25 28 39 29.4 27.8 29.53 28.00 6.37 21.63 
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MATHEMATICAL MODELING 

 

There are different studies that have 

proposed various models to represent the 

non-linear M–θ behavior of the connections. 

The functions of these different models are 

written in Table 5. Only a few of these 

models adequately come close to 

characterizing some special M–θ behavior 

through the full range of loading/rotations 

and are discussed as follow. 

Chen et al. (1993) show that due to the 

inherent oscillatory nature of the polynomial 

series, they may yield erratic tangent 

stiffness values. Furthermore, in these 

polynomial series of functions, the 

implicated parameters usually have very 

little physical meaning. Due to their nature, 

the simplest form of power model does not 

represent the connection behavior 

adequately. It is unsuitable if accurate results 

are desired. 

The M–θ curves of some connections, 

such as column-bases, do not flatten out near 

the state of ultimate strength of the 

connection. This means that the plastic 

stiffness (strain hardening stiffness) of these 

connections will not be zero. Thus, most 

functions of Table 5 are unsuitable for this 

type of connection. While the multi-

parameter exponential modelscan provide a 

good fit, they involve a large number of 

parameters. Therefore, a large number of 

data are required in their curve-fitting 

process; this fact makes their practical use 

difficult. 

In spite of the fact that the Chisala (1999) 

exponential function has all above 

mentioned required conditions, this model 

does not have a shape parameter. Therefore, 

this model does not represent the connection 

behavior adequately. The remaining models, 

including the Richard–Hisa (1998) power 

model and the Yee–Melcher (1986) 

exponential model, provide a proper fit and 

fulfill all previous mentioned required 

conditions. However, Richard–Hisa (1998) 

power model and the Yee–Melcher 

exponential model are not presented in 

normalized form and this is one of their 

disadvantages. In other words, their curve-

fitness parameter is related to the dimension 

of other parameters. This restriction has 

limited the application of the aforementioned 

models. Thus, the new M–θ model is derived 

in this paper. 

By considering the conditions of a rigid 

connection, the model function should 

satisfy the following boundary conditions: 

1. The M–θ curve should be passed through 

the origin:           

2. The M–θ curve should be passed through 

the ultimate point:       = Mu. 

3. The slope of the M–θ curve at the origin is 

equal to the initial stiffness:           

     
  

  
                

4. As the rotation becomes large, the M–θ 

curve tends to the straight line, represented 

by M =   + (  )θ, where    is defined as 

the normalizing moment or the intercept 

constant moment and    is the strain 

hardening stiffness of the M–θ curve in the 

plastic zone, as shown in Figure 5. 

In addition to above mentioned boundary 

conditions, the model function must have the 

ability to correlate with experimental results. 

Based on the current knowledge of 

connection behavior and modeling 

requirements, a proper model should be 

adopted. In this paper the following equation 

is proposed for predicting the nonlinear 

behavior of column-bases under monotonic 

loading: 

 

           (                ) 

     
(2) 
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Fig. 5.Moment-Rotation curve. 

 
Table 5. Different moment-rotation model.   

Type Name Function 

 

Polynomial model 

 

 

 

 

 

 

 

 

Power model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exponential model 

 

 

Frye-Morris function                           

Picard-Giroux Function                           

Simplest form of power model       

Ramberg-Osgood function   
 

  

        
⁄       

Ang-Morris function 
 

  

 
 

  

       
⁄       

Richard-Abbut function 
  

   

    
   

  
   

 
 ⁄

 

Colson-Louveau function 
  

 

  

 
 

   
 

  
  

 

Kishi-Chen function 
  

 

  

 
 

    
 

  
   

 
 ⁄
 

Richard-Hisa Function 
  

        

    
        

  
   

 
 ⁄

     

Lui-Chen function   ∑   (     (  
   ⁄ ))        

 

   

 

Kishi-chen function 

  ∑  (     (  
   ⁄ ))    

 

   

 ∑                

 

   

 

Yee-Melcher function     (     ( 
(        ) 

  

))      

Wu-Chen function 
 

  

     (  
   

  
⁄ )  

Chisala function                   
    

  
⁄   
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where   ,   ,   ,    and    are the model 

parameters, which can be obtained as 

follows : 

For all values of model parameters, the 

first boundary condition is satisfied. 

Differentiating Eq. (2) and substituting for θ 

= 0 yields: 

 

                  
  

  
            (3) 

 

For satisfying the third boundary 

condition, it can be written: 

 

   
   

  

  
           (4) 

 

when rotation (θ) becomes large, the M–θ 

curve tends to the straight line, therefore: 

 
   
   

             

           
(5) 

 

Therefore, parameter    represents the 

intercept constant moment,   . If 

parameters,    and   , are replaced by β and 

α*  , the other parameters are yielded and 

the function of the model is expressed as 

follows: 

 

       (           )   

(   
(
                

  
)
) 

(6) 

 

where    is the intercept constant moment, 

   is the initial stiffness,    is the strain 

hardening stiffness and finally α and β are 

the shape parameters obtained from 

calibration with the experimental data. The 

parameter, β, is introduced to manage the 

rate of decay of the slope of the curve. 

Moreover,    can be substituted as follows: 

 

  =           
     

  
 (7) 

Then, substituting Eq. (7) into Eq. (6), the 

following form of the function can be 

obtained: 

 

          
 

  
 (  

        

  
)      

     
 

  
 

 

   )    

(8) 

 

where m* is defined as (
  

  
  )  

It is worth to note that, when shape 

parameters are assumed to be zero, the 

Chisala exponential function is obtained. 

The authors, through a parametric study, 

obtained the appropriate values of α and β 

for column-bases as zero and 0.25, 

respectively. Then, the function for column-

base is expressed as follows: 

 

    (  (
  

  
  )

 

  
) 

(   
 (      

 

  
)

 

  ) 

(9) 

 

So:                     
      

  
  

                                

 

In order to utilize this model for any 

connections, the corresponding parameters 

must be calculated. The three physical 

parameters can be derived through analytical 

procedures, as well as numerical parametric 

studies.  

In spite of the fact that there are two 

shape parameters in the presented function, 

the accuracy of the predicted curve is 

extremely affected by the precision of 

prediction of the physical parameters, which 

are evaluated as described in next sections. 

Figure 6 shows the base plate geometry that 

was investigated in this study. 
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EVALUATION OF THE MODEL 

PARAMETERS 

 

In order to demonstrate the capability of the 

proposed model in representing the M–θ 

behavior of column-bases, the presented 

model was fitted to some connection test 

data. A typical column-base, which is shown 

in Figure 6, is selected and analytical 

expressions for evaluating the presented 

model parameters,   ,    and   , are 

derived in the sections to follow. It should be 

noted that the stress–strain relationship for 

the plate, column and foundation is taken as 

an elastic perfectly plastic model, as shown 

in Figure 7. 

In this figure     is the yield stress,     is 

the yield strain and      is the ultimate strain 

of materials. These values can be obtained 

from experimental investigations.These 

properties are unique for each material. 

 
Fig. 6. Base plate geometry (Stamatopoulos et al., 2011). 

 

 
 

Fig. 7. Idealized stress-strain curve.
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Evaluation of Initial Stiffness,    

For evaluating stiffness properties, such 

as initial stiffness, most of these analytical 

studies have used component methods. In 

the context of the component method, 

whereby a joint is modeled as an assembly 

of springs (components) and rigid links, 

using an elastic post-buckling analogy to the 

bilinear elastic–plastic behavior of the each 

component. A general analytical model is 

proposed that yields the initial stiffness and 

the strain hardening stiffness of the 

connection. Consequently, the rotational 

stiffness of a connection is directly related to 

the deformation of the individual connection 

elements. 

Generally, the behavior of the connection 

to a great extend depends on the component 

behavior of the tension zone, the 

compression zone and the shear zone. The 

basic components, which contribute to the 

deformation of the common column-base, 

are identified as: (1) the compression side - 

the concrete in compression and the flexure 

of the base plate, (2) the column member, 

(3) the tension side - the anchor rods and the 

flexure of the base plate. Table 6 shows 

Stiffness coefficients for basic joint 

components. 

The rotational stiffness of a column-base 

joint, for a moment       less than the 

design moment resistance       of the joint, 

may be obtained with sufficient accuracy 

from: 

 

   
   

 ∑   
 
 

 (10) 

 

where    is the stiffness coefficient for basic 

joint of  component i, z is the lever arm and 

μ is the stiffness ratio 
      

  
. 

 

Table 6. Stiffness coefficients for basic joint components (Eurocode3, 2003). 

Component Stiffness coefficient    

Concrete in compression 

    
  √        

      
 

     is the effective width of the T-stub flange 

     is the effective length of the T-stub flange 

Base plate in bending under tension 

(for a single rod row in tension) 

With prying forces              Without prying forces 

        
      

 

  
                          

      
 

  
 

     is the effective length of the T-stub flange 

   is the thickness of the base plate 

m is the distance according to Figure 6.8 EN 1993-1-8 

Anchor rods in tension 

With prying forces                       Without prying forces 

       
  

  

                                             
  

  

 

Lb is the anchor rod elongation length, taken as equal to the sum of 8 times 

the nominal bolt diameter, the grout layer, the plate thickness, the washer 

and half of the height of the nut. 
 

Table 7. Value of the coefficient φ (Eurocode3, 2003). 

Type of Connection Welded Bolted End-Plate Bolted Angle Flange Cleats Base Plate Connections 

  2.7 2.7 3.1 2.7 
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The stiffness ratio μ should be determined 

from the following: 

If       
 

 
                

If 
 

 
                               

     

      
   

in which the coefficient    is obtained from 

Table 7 and the basic components    are 

defined in Table 6. 

 

Evaluation of Intercept Constant Moment 

The intercept constant moment,   , is 

selected as the moment corresponding to the 

intersection of the moment axis and the 

strain hardening tangent stiffness line, which 

passes through the ultimate point, as shown 

in Figure 5. Therefore, the intercept constant 

moment is highly dependent on the 

connection ultimate moment. For 

determination of the intercept constant in 

this paper, the ultimate moment is firstly 

evaluated. For evaluating the ultimate 

moment (   , the different components 

contributing to the overall response of 

general column-base are recognized as 

follows: 

1. The tension zone deformation consists of 

the deformation of base plate and bolt 

elongation. 

2. For the compression zone, deformation of 

base plate in bending and concrete in 

compression. 

On the basis of these assumptions, the 

ultimate moment of column-base depends on 

the strength of the individual connection 

elements. The literature on column base 

connections offers no unified 

acknowledgment of what a preferred 

progression of damage is in a base plate 

connection or what parameters could help in 

the selection of the progression of damage, 

or how to design a column base in order to 

produce a specific mechanism that is sought. 

Capacity design principles consistent with 

the AISC Seismic Provisions (2002) 

provides one means of controlling the 

progression of damage in the concrete, 

anchor rods, steel base and steel column. 

The lowest ultimate component force value 

will present the amount of connection 

ultimate moment. Some possible options for 

the progression of failure are: 

1. The base of the column is designed to fail 

first. 

2. The column base connection is designed 

to fail first 

3. Combined mechanisms 

According to experimental findings (Sato 

1987; Burda and Itani, 1999; Fahmy, 1999; 

Lee and Goel, 2001), the most common 

source of brittle behavior in column bases 

may be found in a poor performance of the 

welds, anchor rods, or concrete. However, 

after the Northridge Earthquake, the 

Northridge Reconnaissance Team (1996) 

reported an additional type of brittle 

behavior not reproduced in experiments, 

namely fracture of a thick base plate. Even 

though premature buckling of the column 

flanges was found to be another possible 

failure mode with low energy dissipation, 

the use of columns with compact sections 

eliminates the probability of this type of 

failure. The moment resistance of column 

bases (       is obtained from Table 8. The 

intercept-constant,   , can approximately be 

evaluated as a portion of the connection 

component ultimate moment. The equation 

that is used to evaluate   for column-base 

is: 

 
                       (11) 

 

Evaluation of Strain Hardening Stiffness 

Although there are different well-accurate 

methods for determination of the initial 

stiffness and strength of column-base joints, 

there are no generally accepted analytical 

procedures for determination of the strain 

hardening stiffness,   . Indicatively, it is 

assumed that the relevant Eurocode, as well 

as the AISC, do not propose any methods to 
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determine the strain hardening stiffness. 

Likewise, there is no exact applicable 

analytical method for calculation of the 

strain hardening stiffness of the connections 

and usually test results are used to estimate 

its value. 

Empirically, after formation of plastic 

hinges in the connection components, the 

connection deformation can be calculated 

using the tangent modulus of elements. Yee 

and Melchers (1986) suggested that as strain 

hardening occurs subsequent to yielding, the 

shear modulus of the column web may be 

assumed to be approximated by4% of the 

elastic shear modulus of the column, and 

also the strain hardening modulus can be 

adopted by 2% of the elastic modulus. Shi et 

al. (1996) recommended that if the bolt 

tension stress reaches its yield stress, the 

tangent modulus of the bolt can be taken as 

5% of the elastic modulus of the bolt. In this 

study the ratio of     ⁄ is approximated by 

5%. 

 

Table 8. Moment resistance of column bases (Stamatopoulos et al., 2011). 

Loading Lever Arm z Design Moment Resistance       

Left side in tension 

Right side in compression 

            
    > 0 and e >                                     

The smaller of 
         
    

   ⁄
 and 

         
    

   ⁄
 

Left side in tension 

Right side in tension 

            

1)     > 0 and                 
                       

1) The smaller of 
         
    

   ⁄
 and 

         
    

   ⁄
 

2) The smaller of
         

 
    

   ⁄
 and 

        
    

   ⁄
 

Left side in compression 

Right side in tension 

            
    > 0 and e                                            

The smaller of 
          
    

   ⁄
 and 

         
    

   ⁄
 

Left side in compression 

and Right side in 

compression 

            
     0 and 0 < e <                          

The smaller of 
          
    

   ⁄
   and  

           
    

   ⁄
 

   >0 is clockwise,    >0 is tension 
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VERIFICATIONS 

 

In order to evaluate the reliability of the 

presented model, the results of two 

experimental and FEM studies are used for 

direct comparison. 

First, the Stamatopoulos et al. (2011) 

experimental program is used for 

comparison with the results obtained. Based 

upon this experimental program, a column-

base which is described in section 2 with 

different thicknesses of 12 through 16 mm is 

considered. The corresponding parameters of 

the presented model are calculated 

accordingly and are shown in Table 9. 

The obtained M–θ curves corresponding 

to each experiment are shown in Figures 8 

and 9. These specimens are different in some 

aspects, for example: the value of axial 

force, the plate thickness, the value of yield 

and ultimate stress and the type of anchor 

rods varies in specimen no.1 to 8. Test sp.1 

(16 mm thick base plate, four M12 anchor 

rods) was loaded monotonically without any 

axial load. The specimen investigated in test 

sp.2 (12 mm thick base plate, four M16 

anchor rods) was loaded monotonically with 

99.26 kN axial load. Test sp.3 is similar to 

that of test sp.1, except that the value of 

axial load is 198.52 kN. Test sp.4 is similar 

to that of test sp.2, with the exception that 

the value of axial load is 297.78 kN. Test 

sp.5 (16 mm thick base plate, four M16 

anchor rods) was loaded monotonically 

without any axial load.  Test sp.6 is similar 

to that of test sp.5, with the exception that 

the value of axial load is 99.26 kN. Test sp.7 

(12 mm thick base plate, four M12 anchor 

rods) was loaded monotonically with 198.52 

kN axial load. Test sp.8 is similar to that of 

test sp.7, except that the value of axial load 

is 297.78 kN. From the material property 

point of view there are some differences 

between specimens that are mentioned in 

table 1. So the proposed model has the 

capability to demonstrate the moment-

rotation relation in column-base connections 

with different characteristics. To 

demonstrate the ability of the proposed 

model, the corresponding curves, based upon 

the proposed model, have been achieved. In 

addition, a comprehensive comparison of the 

modeling results with the experimental 

results, FEM model and Stamatopoulos 

model is carried out. 

 
Table 9. Calculated parameters for model. 

Specimen                                       N(kN)    
   

   
     

   

   
  

SP.1 17.48 14.03 14.86 0.0033 0 5052.15 252.6075 

SP.2 22.80 18.30 19.38 0.0036 99.26 6038.26 301.913 

SP.3 21.62 17.35 18.38 0.0038 198.52 5461.53 273.0765 

SP.4 29.25 23.47 24.86 0.0044 297.78 6270.41 313.5205 

SP.5 23.06 18.51 19.60 0.0032 0 6767.24 338.362 

SP.6 31.72 25.46 26.96 0.0042 99.26 7185.33 359.2665 

SP.7 18.74 15.04 15.93 0.0035 198.52 5023.91 251.1955 
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Fig. 8. M–θ curves (a) sp1, without axial force (b) sp2, with 99 kN axial force (c) sp3, with 198 kN axial force (d) 

sp4, with 298 kN axial force. 

 

In these figures the results of the analysis 

with the proposed model are compared with 

3 curves. The most important one is the 

experiment results that show the actual 

behavior of the specimens. The two other 

curves are the results of finite element 

method and the model that was proposed by 

Stamatopoulos et al. (2011). The comparison 

shows that the proposed model predicts the 

real behavior of column base connection 

with adequate accuracy. In the model that 

was proposed by Stamatopoulos et al. (2011) 

first some analysis should be run to 

determine specific points in the moment-

rotation curve to obtain the parameters that 

are necessary for the model. But in the new 

method that is proposed in this paper all the 

parameters can be obtained from the 

equations that are given in Eurocode3 and 

the basis of this new method is component 

method. The component-based approach 

uses the combination of rigid and 

deformable elements (springs) that can 

represent a deformation source of a single 

component. The components are generally 

modeled mechanically with material and 
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geometric properties. The modeling of the 

column base with the base plate using 

component method gives simple and 

accurate predictions of the behavior. 

Traditionally, column bases are modeled as 

either pinned or as fixed, whilst 

acknowledging that the reality lies 

somewhere within the two extremes. The 

opportunity to either calculate or to model 

the base stiffness in analysis was not 

available. Some national application 

standards recommend that the base fixity to 

be allowed for the design. The base fixity 

has an important effect on the calculated 

frame behavior, particularly on frame 

deflections. 

For comparing experimental data with the 

results of the proposed model, correlation 

coefficient is calculated. Table 10 shows the 

correlation coefficient for each specimen. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 9. M–θ curves (a) sp5, without axial force (b) sp6, with 99 kN axial force (c) sp7, with 198 kN axial force (d) 

sp8, with 298 kN axial force. 

 
Table 10. Correlation coefficient for each specimen. 

Specimen Sp.1 Sp.2 Sp.3 Sp.4 Sp.5 Sp.6 Sp.7 Sp.8 

Correlationcoefficient 0.970 0.977 0.942 0.930 0.961 0.980 0.910 0.915 
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CONCLUSIONS 

 

In this paper, a practical model is proposed 

to represent the moment–rotation 

relationship of semi-rigid connection. The 

proposed model is simple to use and 

accurately describes the moment–rotation 

behavior of nearly all column-base 

connections. The proposed nonlinear model 

represents an approach to the prediction of 

M–θ curves, taking into account the possible 

failure models and the deformation 

characteristics of the connection elements. A 

component-based mechanical model is used 

where each deformation source is 

represented with only material and 

geometric properties. The values of the 

connection initial stiffness, ultimate moment 

capacity, ultimate rotation capacity, and 

failure mode are also presented.  The effect 

of strain hardening during the connection 

response was taken into account in the 

proposed method by applying the 

  parameter. 

The proposed parameters were 

analytically predicted from the geometry of 

the connection. These major parameters are 

employed in a presented mathematical 

model for predicting the M–θ behavior of 

the column-base. The applicability of the 

presented method was evaluated, and it was 

shown that the model has the potential to 

estimate connection moment-rotation 

behavior under combined axial force and 

moment loading. A comparison of the results 

of the proposed model with experimental 

data, as well as finite element models, 

reveals very good agreement between them. 

For comparing the results of the proposed 

mathematical model and experimental data, 

the correlation coefficient is calculated. The 

average of correlation coefficient (0.948) 

shows the capability of the proposed model 

to predict the connection behavior. 

Introducing this formula into equilibrium 

equations of frames and using the 

appropriate moment-rotation curves, a more 

accurate analysis of the frames can be 

carried out, with a better approximation for 

the support conditions, regarding the 

assumption of fully pinned or fixed support. 
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