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ABSTRACT: A water distribution network is subjected to various abnormal conditions 

such as pipe breaks, pump failures, excessive demands etc. in the design period. Under such 

conditions, the network may not be able to meet required demands at desired pressures, and 

becomes deficient. Traditional network analysis assumes nodal demands to be satisfied and 

available nodal pressures are calculated. However, assumption that demands are satisfied at 

all nodes is not true under deficient conditions. Therefore, under deficient conditions nodal 

demands and pressures are considered simultaneously through head-flow relationships to 

calculate available nodal flows. This type of analysis that determines available flows is 

termed as node flow analysis or pressure-driven or dependent wherein, outflows are 

considered as function of available pressure. Various node head-flow relationships (NHFR) 

have been suggested by researchers to correlate available flow and available pressure based 

on required flow and required pressure. Methods using these NHFRs have been classified 

herein as direct and indirect approaches. Applications of these approaches have been shown 

with two illustrative examples and results are compared. 

 

Keywords: Node Flow Analysis, Pressure-Dependent Analysis, Water Distribution 

Networks. 

 

 

INTRODUCTION 

 

A water distribution network (WDN) is 

designed to service consumers over a long 

period of time. The network is subjected to 

various abnormal conditions such as pipe 

breaks, pump failures, excessive demands 

etc. in the design period. The network may 

not be able to meet required demands at 

desired pressures under these abnormal 

conditions and become deficient. Its 

performance at any point of time under these 

conditions can be obtained through its 

analysis. In traditional network analysis 

nodal demands are assumed to be satisfied 

and available nodal pressures are calculated. 

If the available pressures are more than 

desired ones the performance of a WDN is 

satisfactory; otherwise performance is 

unsatisfactory. However, assumption that 

demands are satisfied at all nodes is not true 

under deficient conditions. In such 

conditions, nodal demands may be satisfied 

fully, partially or not at all, depending upon 
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the available pressure. Therefore, under 

deficient conditions nodal demands and 

pressures are considered simultaneously 

through head-flow relationships to calculate 

available nodal flows. This type of analysis 

that determines available flows is termed as 

node flow analysis (NFA) in contrast to 

traditional analysis which determines nodal 

heads and termed as node head analysis 

(NHA) (Bhave, 1981, 1991). Such type of 

analysis is also termed as pressure-

dependent or pressure-driven analysis as 

outflows are considered as function of 

pressure. In this paper, methodologies for 

pressure-deficient analysis have been 

categorized as direct and indirect approaches 

based on the methodology used to tackle 

node-flow relationship in solving the 

problem. Both types of approaches have 

been applied to a common problem and 

results are compared.  

 

NODE HEAD-FLOW RELATIONSHIPS 

 

Available flow at a node under a deficient 

condition depends on available pressure. 

Hence, a relationship between flow and 

pressure at a node exists and is herein 

termed as node head-flow relationship 

(NHFR). In the analysis of network NHFR 

at different nodes must be satisfied along 

with usual node-flow continuity 

relationships and loop-head loss 

relationships. 

Bhave (1981, 1991) was the first to 

propose a NHFR as shown in Figure 1. He 

considered only one hydraulic gradient level 

(HGL) to develop a NHFR. In obtaining the 

performance of network in which every 

outlet is considered, this HGL was taken as 

outlet level itself and referred as H
min

 

(Figure 1). Since velocity heads were 

neglected (as in NHA also), HGL at a node 

more than H
min

 provided adequate flow 

(available flow, q
avl

 = required flow, q
req

); 

HGL value less than H
min

 provided no flow 

(q
avl

 = 0); and HGL value equal to H
min

 

provided partial flow ranging between no-

flow and adequate-flow (0 < q
avl

 < q
req

). 

Gupta and Bhave (1996b) showed that for 

primary networks, in which demands at 

several outlets are lumped at a node, two 

HGL values are important in defining a 

NHFR. At some minimum HGL, H
min

, 

supply to the lowest outlet on secondary 

network would begin; and at some desirable 

HGL, H
des

, all the outlets on secondary 

network would have adequate flows. 

However, Bhave’s NHFR can be still used 

for obtaining performance of primary 

networks by suitably changing the value of 

H
min

 (Gupta and Bhave, 1994; Ozger and 

Mays 2003; Ang and Jowitt, 2006). Gupta 

and Bhave (1994) suggested considering 

desirable heads at various nodes as H
min

; 

thus a lower bound on available partial 

flows. Ozger and Mays (2003) suggested to 

use maximum outlet level in the locality 

served by a node as the H
min

. Ang and Jowitt 

(2006) mentioned that actual relationship 

between source head and outflows at each 

demand node is a bi-product of the analysis 

and used elevation of demand node itself as 

H
min

. The available flow at any demand node 

j is given by the alternate equations:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Bhave’s NHFR. 
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minavlreqavl ifflow),(adequate jjjj HHqq   (1a) 

minavl

reqavl

ifflow), adequateor 

flow  partial flow, (no0

jj

jj

HH

qq




 (1b) 

minavlavl ifflow),(no0 jjj HHq   (1c) 

 

Germanopoulos (1985) in describing a 

NHFR considered no flow for HGL value 

less than H
min

; and exponential increase of 

available flow beyond H
min

 as shown in 

Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Germanopoulos’s NHFR. 
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It can be observed from Figure 2 that 

available flows are less than required flows 

even at HGL value more than H
des

 and the 

curve given by Eq. (2a) is asymptotic to q
req

 

line. For higher values of cj, the curve will 

reach q
req

 line rapidly. 

Wagner et al. (1988) and Chandapillai 

(1991) suggested parabolic NHFR for HGL 

values between H
min

 and H
des

 as shown in 

Figure 3.  
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Fig. 3. NHFR by Wagner et al. 

 

Fujiwara and Ganesharajah (1993) 

suggested a complex differentiable function 

of HGL to define NHFR as shown in Figure 

4. Fujiwara and Li (1998) suggested 

approximate solution to differentiable 

function. However, these relationships lack a 

good hydraulic justification. 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

Fig. 4. Fujiwara & Ganesharajah NHFR. 
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avl avl des0, if j j jq H H   (4c) 

 

Kalungi and Tanyimboh (2003) suggested a 

methodology in which a multiple-step type 

NHFR as shown in Figure 5 is generated 

internally. The number of steps and their sizes 

depended on number of sets of critical nodes and 

their HGL values. In this case, NHFR can be 

represented as (Bhave and Gupta, 2006).    

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 5. Kalungi and Tanyimboh NHFR. 
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It should be noted that in NHFRs given 

by Eqs. (2a)-(2b), (3a)-(3c), or (4a)-(4c) 

available flows can be obtained directly for 

any HGL value. Similar is the case with Eqs. 

(1a), (1c), (5a), and (5c). However, in 

NHFRs given by Eq. (1b) or Eq. (5b), 

available flows cannot be obtained directly 

and its maximum value is calculated either 

through optimization or through repeated 

analysis as described later. 

 

PROBLEM FORMULATION  

 

Analysis problem is usually formulated in 

terms of unknown pipe discharges (Q), 

unknown nodal heads (H), loop flow 

corrections (Q), or unknown pipe 

discharges and nodal heads (Q - H). Since 

NFA involves a head-flow relationship at 

each demand node, a problem formulation in 

terms of H or Q - H can be easily solved as 

compared to other types of formulations. A 

general formulation of H equations for NFA 

is as follows: 
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avl req avl ( ), for 1,  . . . , j j jq q H j J   (7) 

 

in which Hi and Hj = HGL values at the 

upstream node i and downstream node j of 

pipe x, respectively; Rx = resistance constant 

of pipe x; p = an exponent, the value of 

which depends on head loss formula; and 

( avl

jH ) is a function of available HGL, the 

value of which lies between 0 and 1. Eq. (6) 

is a node flow continuity equation at demand 

node j; and Eq. (7) is a set of NHFRs at 

demand nodes j, and one from this set would 

be applicable at node j. 

The general formulation for Q - H 

equations for NFA is as follows: 
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XxQRHH n

xxji ,...,1for,0   (9) 

JjHqq avl

j

req

j

avl

j ,...,1for),(    (10) 

 

in which Qx= discharge in pipe x. Eq. (8) is 

node flow continuity equation at demand 

node j; Eq. (9) is pipe head loss equation; 

and Eq. (10) is same as Eq. (7). 

 

NFA METHODS  

 

NFA methods are classified herein, into two 

categories: (1) indirect approaches in which 

NHFRs do not provide direct calculation of 

q
avl 

for any H
avl

; and (2) direct approaches in 

which NHFRs provide direct calculation of 

q
avl 

for any H
avl

. The NFA methods using 

NHFRs given by Eqs. (1a)-(1c) and (5a)-(5c) 

fall under indirect approaches and those 

using Eqs. (2a)-(2b), or (3a)-(3c), or (4a)-

(4c) fall under direct approaches. 

 

INDIRECT APPROACHES 

 

Since available flows cannot be obtained 

directly using NHFRs, the NFA problem is 

formulated and solved as an optimization 

problem (Bhave 1981, Tahar et al., 2002) to 

maximize total outflows. Alternatively, NFA 

problem is solved by repetitive use of 

traditional network solver (Bhave 1981; 

Ozger and Mays, 2003; Kalungi and 

Tanyimboh, 2003; Ang and Jowitt, 2006).   

 

Bhave’s Method 

Bhave’s iterative NFA method is based 

on NHFRs as given by Eqs. (1a)-(1c) and 

shown in Figure 1. The method begins with 

certain assumptions regarding availability of 

flows at nodes, i.e. either avl req

j jq q  (adequate 

flow node), or avl min

j jH H  (critical node), or 
avl 0jq   (no flow node). Bhave (1981) 

suggested assuming adequate flow at all the 

nodes to start the iterative method. The 

network analysis is carried out and the 

compatibility between assumed and obtained 

conditions at all the nodes is verified, i.e. 
avl

jH  should be more than min

jH for the 

assumed adequate flow nodes, avl

jq  should be 

between 0 and req

jq  for assumed critical 

nodes; and avl

jH  should be less than min

jH for 

assumed no flow nodes. If found compatible 

at all nodes, the NFA procedure is 

terminated; otherwise, these assumptions 

regarding availability of flows at different 

nodes are changed systematically [for 

details, refer Bhave (1981, 1991)] and 

network analysis is repeated. Thus, the 

method involves solving several NHA 

problems with different assumptions 

regarding availability of flow. 

 

Ozger and Mays Method 
Ozger and Mays (2003) also used NHFR 

as shown in Figure 1. Their NFA method 

also starts with traditional NHA. Next, nodes 

at which pressures are insufficient to fully 

supply their demands are identified. 

Demands at these nodes are set to zero and 

an artificial reservoir at each of the pressure 

deficient node, with elevation equal to 

maximum outlet level, is introduced and 

connected through an infinitesimally short 

pipe with check valve that allows the flow 

from node to reservoir. Hydraulic analysis is 

carried out. If one or more artificial 

reservoirs are found to receive more water 

than their demands, those artificial reservoirs 

are removed and demands are restored. The 

procedure continues till no artificial 

reservoirs are found to receive water more 

than its demand. In comparison to Bhave’s 

method, this method is slightly different in 

the sense that it allows only inflow to 

artificial reservoirs while Bhave’s method 

allows both inflow and outflow at critical 

nodes (nodes at which artificial reservoirs 

are assumed).  
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Kalungi and Tanyimboh’s Method 

Kalungi and Tanyimboh (2003) used 

multiple-step NHFR as shown in Figure 5 in 

their NFA method. Their method also starts 

with traditional NHA iteration. While in the 

methods of Bhave as well as Ozger and 

Mays (2003), pressures at all the pressure 

deficient nodes are increased to their 

minimum HGL values, in the method of 

Kalungi and Tanyimboh pressure-deficient 

nodes are grouped together with nodes of 

same pressure contours in a set and their 

HGL values are set to an average value 

between consecutive pressure values. Hence, 

at all nodes either outflows or HGL values 

are made known to carry out iteration. The 

method systematically identifies no-flow, 

partial flow and key-partial flow nodes and 

terminates when there could be no more key-

partial flow nodes. 

 

Ang and Jowitt’s Method 

Ang and Jowitt (2006) also used NHFR 

as shown in Figure 1. They suggested 

performing hydraulic analysis of the network 

with all the demands set to zero (i.e. 

calculation of static head at all demand 

nodes for zero demands). Next, artificial 

reservoirs are added at all nodes having 

positive static head with the same elevation 

as the demand node through small link with 

arbitrarily small resistance coefficient. 

Hydraulic analysis is carried out, and if one 

or more artificial reservoirs are found 

supplying water to distribution network, 

these artificial reservoirs are removed, and 

become no flow node. Next, all artificial 

reservoirs that have inflow greater than their 

specific demand are replaced with demand 

node of the stated demand. Hydraulic 

analysis of the updated network is carried 

out. If at any demand node, available head is 

found to be less than minimum head, 

artificial reservoir is added at this node, or 

else if there is any demand node with an 

outflow greater than its demand, artificial 

reservoir is replaced by demand node with 

the stated demand. The analysis terminates 

when no such changes are required. 

 

DIRECT APPROACHES  

 

Direct NFA approaches solve Eqs. (6) and 

(7) simultaneously (Gupta and Bhave, 

1996a; Tabesh et al., 2002) or Eqs. (8) to 

(10), simultaneously (Gupta et al., 2005; Wu 

et al., 2009; Giustolsi and Laucelli, 2011). In 

direct approaches Eq. (7) or Eq. (10) is 

replaced by set of alternate equations Eqs. 

(2a)-(2b), or (3a)-(3c), or (4a-4c). Gupta and 

Bhave (1996b), and Bhave (2003) compared 

various NHFRs and recommended use of 

Eqs. (3a)-(3c). Further, they showed that the 

value of nj in Eq. (3b) lies between 1 and 2 

and primarily depends on relative elevations 

of various outlets and frictional head loss 

requirement in the secondary network, 

which consist of small diameter pipes off-

taking from the node of a primary network. 

Hence, a lot of field data is required to select 

the proper value of n at different nodes. In 

absence of such data, it was suggested to use 

an average value of n as 1.5 at all nodes. 

Further, in the absence of data for secondary 

network, the elevation of node itself was 

suggested as the value of min

jH . 

Gupta and Bhave (1996a) used Hardy 

Cross method for solving above formulation, 

while Tabesh et al. (2002) used Newton-

Raphson method. Initially trial HGL 

values, avl

jH , at all demand nodes are 

assumed and corresponding available nodal 

flows, avl

jq , are obtained using Eq. (7). Next, 

corrections to the assumed HGL values are 

obtained so as to satisfy Eq. (6). The 

iterative method is continued, each time 

modifying the avl

jq  values through Eq. (7) for 

the corrected avl

jH  values, till the corrections 

become negligible. Convergence is slow in 

both Hardy Cross and Newton-Raphson 
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methods as compared to other methods even 

in case of traditional NHA. There are several 

measures by which convergence can be 

enhanced. (Bhave, 1981). Gupta and Bhave 

(1996a) used modified Hardy Cross method 

(Bhave, 1985) in which effect of correction 

at other node is taken into account along 

with some convergence acceleration factors 

to enhance the convergence. Tabesh et al. 

(2002) ensured faster convergence through 

step-length adjacent parameters.  

Since NFA approaches are mainly used 

for predicting performance of a WDN under 

large number of conditions during its 

reliability analysis, direct approaches that 

require single NHA solution are more 

attractive than indirect approaches which 

require several NHA solutions (Gupta and 

Bhave, 2004).  

Gupta et al. (2005) used gradient method 

with modified formulation to include 

alternate Eqs. (3a-3c). Wu et al. (2009) 

suggested extended global-gradient 

algorithm which can model fire demand as a 

volume-based demand as in node head 

analysis (demand dependent analysis). 

Giustolisi and Laucelli (2011) suggested 

enhanced global gradient algorithm to model 

network, for leakages and demands in 

pressure deficient conditions. Recently, 

Jinesh Babu and Mohan (2012) proposed an 

algorithm using artificial reservoirs (ARs) 

and artificial flow control valves (AFCVs) 

for solving NHFR shown in Figure 1. 

Artificial flow control valve restricts the 

outflows at node to their demand and 

prevents any back flow. The procedure is 

non-iterative and internally applies the 

NHFR and obtains the result in a single 

iteration. 

Software based on Hardy Cross method 

prepared by Gupta and Bhave for NFA is 

used to obtain performance of a network 

using direct NFA approach and check 

convergence of problem for all-pipes-

working condition and one-pipe-failure 

conditions. Results so obtained are 

compared with those obtained by indirect 

approaches (Bhave 1981, Ozger and Mays 

2003).  

 

ILLUSTRATIVE EXAMPLE I  

 

A serial WDN consists of source node 0 and 

four demand nodes 1, 2, 3 and 4 as shown in 

Figure 6. The available HGL value at source 

node is 100 m, while the minimum required 

HGL values at nodes 1 through 4 are 90, 88, 

90 and 85 m, respectively. The demand at 

nodes 1, 2, 3 and 4 are 2, 2, 3 and 4 m
3
/min 

respectively (including fire demand of 3 

m
3
/min at node 4). The pipe numbers, 

length, diameter and Hazen-Williams 

coefficients are given in Table 1 in columns 

1 through 4, respectively. EPANET is used 

to solve the problem using different methods 

by converting flows to L/min. 

 
Table 1.  Pipe data for illustrative example I. 

Pipe 

number 
Length Diameter 

HW 

coefficient 

 m mm  

(1) (2) (3) (4) 

1 1000 400 130 

2 1000 350 130 

3 1000 300 130 

4 1000 300 130 

 

Initially by assuming that demands are 

satisfied at all nodes (adequate-flow nodes), 

we carry out analysis and get HGL values at 

nodes 1 through 4 as 95.14, 88.71, 80.16 and 

77.13 m, respectively. Since H
avl

 values are 

less than the corresponding H
min

 values at 

nodes 3 and 4 for the assumed adequate flow 

conditions NHFR (Eq. (1a)) are not satisfied. 

Hence, in the second NFA iteration nodes 1 

and 2 are considered as adequate flow and 

nodes 3 and 4 are considered as critical 

nodes. Considering available flow at nodes 1 

and 2 as 2 m
3
/min and HGL values at nodes 
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3 and 4 as 90 and 85 m, respectively, we get 

H
avl

 at nodes 1 and 2 as 97.05 and 93.62 m, 

respectively and q
avl

 at nodes 3 and 4 as -

0.84, and 5.24 m
3
/min, respectively. Since 

H
avl

 at nodes 1 and 2 is more than 

corresponding H
min

 value, NHFR Eq. (1a) is 

satisfied at nodes 1 and 2. However, q
avl

 at 

node 3 is negative and at node 4 is more than 

q
req

 (surplus-flow) and therefore NHFR (Eq. 

(1b)) is not satisfied at these nodes. In the 

third iteration, node 3 is assumed as no-flow 

node and node 4 as adequate-flow node. 

After analysis, we get H
avl

 at nodes 1 

through 4 as 97.30, 94.27, 91.24 and 88.21 

m respectively. Since, H
avl

  at nodes 1, 2 and 

4 is above the corresponding HGL, NHFR 

Eq. (1a) is  satisfied at nodes 1, 2 and 4. 

However, NHFR (Eq. (1c)) is not satisfied at 

node 3, for the next iteration, node 3 is 

assumed as critical node. The q
avl

 at nodes 3 

is 0.40 m
3
/min. The H

avl
 at nodes 1, 2 and 4 

after four iterations is 97.05, 93.62, and 

86.97 respectively. Since H
avl

 at nodes 1, 2 

and 4 are more than corresponding H
min

 

value, and q
avl

 at node 3 is in between 0 and 

q
req

, NHFRs (Eq. (1a)) is satisfied at nodes 

1, 2 and 4, and Eq. (1b) is satisfied at node 3. 

Thus, NHFRs are satisfied at all nodes and 

the NFA is completed.  

When Ozger and Mays method is used 

for the above network, first step is 

identically carried out by considering all 

nodes as adequate flow nodes. The available 

pressure (H
avl

 – H
min

) at nodes 1 through 4 is 

5.14, 0.71, -9.84 and -7.87 m respectively. 

The pressure at nodes 3 and 4 are found to 

be negative and hence an artificial reservoir 

is connected at these nodes with check valve 

of negligible resistance. The augmented 

network is analyzed. The q
avl

 at nodes 3 and 

4 is 0.0 and 4.69 m
3
/min. The outflow at 

node 4 is more than the desired one; hence 

the artificial reservoir is removed from node 

4 and normal demand is replaced. In third 

iteration, the H
avl

 at nodes 1, 2 and 4 is 

97.05, 93.62, and 86.97 m, q
avl

 at node 3 is 

0.40 m
3
/min. The NHFRs for indirect 

method is satisfied at all nodes, and the NFA 

solutions are reached. 

Using Ang and Jowitt’s method, initially 

analysis is carried out by assuming all nodal 

demands to be zero. The static head at nodes 

1 through 4 are 10, 12, 10 and 15 m, 

respectively. Since head at all nodes are 

positive, artificial reservoirs are connected to 

each node with head same as respective node 

elevation using a pipe of negligible 

resistance. The second iteration is carried 

out, and the outflows at node 1 through 4 are 

found as 11.44, 7.99, -8.43 and 5.24 m
3
/min, 

respectively. As the outflow is negative at 

node 3, the artificial reservoir is removed 

from node 3 and demand is considered as 

zero. In the third iteration the available head 

at node 3 is found to be -3.5 m and zero at 

other nodes, q
avl

 at nodes 1 through 4 are 

11.44, 2.06, 0 and 2.74 m
3
/min, respectively. 

Since the outflows at nodes 1 and 2 are more 

than the demand, the artificial reservoirs are 

removed from these nodes and full demand 

is restored. In the fourth iteration, q
avl

 at 

node 1 through 4 are 2, 2, 0, and 4.69 

m
3
/min and available heads are 6.86, 5.15, -

0.93 and 0. Thus, q
avl

 at node 4 is more than 

q
req

. Therefore, artificial reservoir from node 

4 is also removed and full demand is 

restored. In the fifth iteration, the available 

flows at nodes 1 through 4 are 2, 2, 0, and 4 

m
3
/min, respectively. The available heads at 

nodes 1 through 4 are 7.30, 6.27, 1.24, and 

3.21 m, respectively. The pressure is positive 

at node 3 where outflow is considered as 

zero, and hence node 3 is connected again to 

the artificial reservoir. In the sixth iteration 

the q
avl

 at node 3 is 0.40 m
3
/min, and H

avl
 at 

nodes 1 through 4 are 97.05, 93.62, 90 and 

86.97 m, respectively. The above results are 

similar to the one obtained using Bhave’s 

and Ozger and Mays method, described 

above and are compared iteration wise in 

Table 2. 
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Fig. 6. A serial network for illustrative example I. 

 

Table 2.  Comparison of results of indirect approaches for illustrative example I. 

Iteration 
 

 Bhave's Method 
 

Ozger and Mays Method 
 

Ang and Jowitt's Method 

No. Nodes→  1 2 3 4 
 

1 2 3 4 
 

1 2 3 4 

 
q

req
  2 2 3 4 

 
2 2 3 4 

 
2 2 3 4 

 
Hmin  90 88 90 85 

 
90 88 90 85 

 
90 88 90 85 

1 
q

avl
  2 2 3 4 

 
2 2 3 4 

 
0 0 0 0 

H
avl

  95.14 88.71 80.16 77.13 
 

95.14 88.71 80.16 77.13 
 

100 100 100 100 

2 
q

avl
  2 2 -0.84 5.24 

 
2 2 0 4.69 

 
11.44 7.99 -8.43 5.24 

H
avl

  97.05 93.62 90 85 
 

96.86 93.15 89.07 85 
 

90 88 90 85 

3 
q

avl
  2 2 0 4 

 
2 2 0.4 4 

 
11.44 2.06 0 2.74 

H
avl

  97.3 94.27 91.24 88.21 
 

97.05 93.62 90 86.97 
 

90 88 86.5 85 

4 
q

avl
  2 2 0.4 4 

      
2 2 0 4.69 

H
avl

  97.05 93.62 90 86.97 
      

96.86 93.15 89.07 85 

5 
q

avl
  

          
2 2 0 4 

H
avl

  
          

97.3 94.27 91.24 88.21 

6 
q

avl
  

          
2 2 0.4 4 

H
avl

  
          

97.05 93.62 90 86.97 

 

ILLUSTRATIVE EXAMPLE II (Ozger 

and Mays, 2003) 

 

A WDN shown in Figure 7 has two 

reservoirs RES1 and RES2 and 13 nodes 1 

through 13. Pipe and node characteristics are 

given in Tables 3 and 4, respectively. Pipe 

numbers, length, diameter and Hazen-

Williams coefficients are given in Table 3 in 

columns 1 through 4, respectively. Node 

numbers, elevation, and nodal demands are 

given in Table 4 in columns 1 through 3, 

respectively. The minimum HGL at a node 

is equal to node elevation below which no 

water is available. A minimum pressure 

threshold of 15 m is considered to satisfy the 

full supply. Thus, Head loss is obtained by 

Hazen-Williams formula: 

 

  ( / ) ( / )p rh K Q C L D  (8) 

 

in which h is head loss in pipe; L, D and C 

are length, diameter and Hazen-Williams 

coefficient; Q is discharge in pipe; and K , p 

and r are constants. For h and L in meters, Q 

in m
3
/h and D in mm, the value of K is 

1.1466  10
9
. Value of p in the literature is 

considered as 1.85 or 1.852 (Savic and 

Walters, 1997) and that of r is 4.87. Herein, 

the value of p is taken as 1.85 in obtaining 

the performance of the network. 

4 3 1 2 
Pipe 1   2   3   4  

0 
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Ozger and Mays (2003) obtained the 

performance of system using NHFR of 

Figure 1 and given by Eqs. (1a-1c). Since a 

single HGL value is used in defining NHFR 

of Eqs. (1a-1c), they considered this HGL 

value as desirable HGL. Herein, H
min 

is 

considered in Eqs. (1a-1c) as 15 m above 

elevation and performance of network under 

failure of pipe 3 is obtained using Bhave’s 

method. The available flow and available 

heads are given in columns 4 and 5 (Table 

4), respectively. The deficient flows are 

shown by boldfaced. 

 

Table 3.  Pipe data for illustrative example II. 

Pipe number Length Diameter HW coefficient 

 (m) (mm)  

(1) (2) (3) (4) 

1 609.60 762 130 

2 243.80 762 128 

3 1524.00 609 126 

4 1127.76 609 124 

5 1188.72 406 122 

6 640.08 406 120 

7 762.00 254 118 

8 944.88 254 116 

9 1676.40 381 114 

10 883.92 305 112 

11 883.92 305 110 

12 1371.60 381 108 

13 762.00 254 106 

14 822.96 254 104 

15 944.88 305 102 

16 579.00 305 100 

17 487.68 203 98 

18 457.20 152 96 

19 502.92 203 94 

20 883.92 203 92 

21 944.88 305 90 
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Table 4.  Node data and NFA results for failure of Pipe 3. 

Node Elevation Demand Using NHFRs (1a-1c) Using NHFRs (3a-3c) 

number   Available flow Available HGL Available flow Available HGL 

 (m) (m
3
/h) (m

3
/h) (m) (m

3
/h) (m) 

(1) (2) (3) (4) (5) (6) (7) 

RES1 60.96 0.00 1165.70 60.960 1293.64 60.960 

RES2 60.96 0.00 1214.49 60.960 1404.87 60.960 

1 27.43 0.00 0.00 60.587 0.00 60.508 

2 33.53 212.40 212.40 60.433 212.40 60.322 

3 28.96 212.40 212.40 46.861 192.44 41.895 

4 32.00 640.80 161.95 47.000 486.84 41.933 

5 30.48 212.40 212.40 50.446 212.40 47.195 

6 31.39 684.00 492.59 46.390 545.32 41.938 

7 29.56 640.80 640.80 46.550 587.70 42.655 

8 31.39 327.60 270.11 46.390 270.23 42.628 

9 32.61 0.00 0.00 53.451 0.00 51.547 

10 34.14 0.00 0.00 54.871 0.00 53.433 

11 35.05 108.00 108.00 51.582 103.44 49.108 

12 36.58 108.00 69.50 51.580 94.59 48.874 

13 33.53 0.00 0.00 48.360 0.00 44.693 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 7. Network for illustrative example II. 
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Next, performance of this network is 

obtained using direct approach under failure 

of pipe 3 by considering NHFR as given by 

Eqs. (3a-3c). Value of exponent n is taken as 

1.5. The H
min

 value is taken as node 

elevation and H
des

 value is taken as 15 m 

above node elevation. Available nodal flows 

and HGL values are given in columns 6 and 

7 (Table 4), respectively. The deficient flows 

are shown by boldface. 

Following can be observed from Table 4.  

1. There are no no-flow nodes and number 

of partial flow nodes obtained using NHFRs 

(1a-1c) are four; while that using NHFRs 

(3a-3c) are seven. 

2. Total supply to network under failure of 

pipe 3 for NHFRs (1a-1c) and NHFRs (3a-

3c) are 2380.19 m
3
/h and 2698.51 m

3
/h, 

respectively. Thus, available flows obtained 

by using NHFRs (1a-1c) are less as 

compared to that obtained by using NHFRs 

(3a-3c).  This is because while using NHFRs 

(1a-1c) minimum HGL is taken as 15 m 

above node elevation to allow any flow. 

However, NHFRs (3a-3c) allowed outflows 

at pressure more than node elevation and at 

desirable head full demand is considered to 

be satisfied.  

It should however be remembered that 

when nodal demands are lumped at the 

nodes of WDNs, the prediction of deficient-

condition performance is rather approximate. 

While NHFRs (1a-1c) with minimum head 

at a node as desirable head provides lower 

bound on predicted flows, NHFRs (1a-1c) 

with minimum head equal to node elevation 

will provide upper bound on predicted flows. 

NHFRs that consider two heads predict 

performance in a better way and the direct 

method of solving requires less 

computational time and effort. 

 

SUMMARY AND CONCLUSIONS  

 

NFA is a basic tool for obtaining 

performance of WDNs under deficient 

conditions during reliability analysis. In 

NFA, node head-flow relationship is 

additionally satisfied along with usual node-

flow continuity relationships and loop head 

loss relationships. Indirect approaches 

handle NHFRs externally and make use of 

traditional network solver. However, in the 

direct approaches NHFRs are considered 

simultaneously with node-flow continuity 

relationships and pipe-head loss 

relationships. Formulation of problem with 

unknown nodal heads (H equations) or 

unknown pipe discharges and nodal heads 

(Q-H equations) is best suited for direct 

approaches.    
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