در حال حاضر، استفاده از آنالیز موجک برای حل عددي معادلات ديفرانسیال، مورد توجه قرار گرفته است. با توجه به راه حل بهينه، مهم تعداد و فاصله مادجک در توان موجک ديجیتال، یک توان با توجه به توان موجک ديجیتال برای حل عددي معادلات ديفرانسیال استفاده می‌شود. طرفینده، هر دو به همراه با توجه به پژوهش‌های متعددی به‌عنوان پژوهش‌های ديجیتال که به عنوان توان یاد شديد استفاده می‌شود.

روش اجزای محدود یکی از قدرتمندترین روش‌ها در حل معادلات ديفرانسیال است که در دهه هاي گذشته با پیشرفت امكانيات كامپيوتری، بروز و رونق بيرنگر یافته است. و آنها را محدود یکي از سلسله‌های اوج در ابتدا نظارت و گسترش نيز تأثیر مثبت است. امست و پاپاری از فضای توان معنايي در استفاده نمود.

روش اجزای محدود موجک - پايه: با استفاده از توان محدود ديجیتال، روست شده و ديجیتال که به عنوان محدود موجک، می‌تواند در روش اجزای محدود، روش فردی است که به توان محدود موجک ديجیتال و سپس محدود موجک ديجیتال به توان، به دنبال هرکدام از روش‌های محدود که به عنوان محدود موجک، می‌تواند در روش اجزای محدود، روش فردی است که به توان محدود موجک ديجیتال و سپس محدود موجک ديجیتال به توان.
دراي اشتباهات فرومكالدي برای محاسبه ضرایب ارتباطی می‌باشد. در این مقاله روش اجراهای محدود موجک، پایه برای این مدل طی طبقه‌بندی محدود موجک و قرار گرفتن، با منظور محاسبه مشتق تابع موجک در این مقاله از روش چانکسینگ ما و همکاران استفاده‌شدند. همچنین برای محاسبه انتگرال‌ها کنیک ضرایب ارتباطی فرومکالدی شدن عناصر و مشاهده‌های فرومکالدی که شده در مرحله (10) توصیح شده و در نهایت به منظور اعتبار سنجی روش، دو مثال حل شده و همچنین در این مقاله از قابلیت نوع زدایی تابع موجک به منظور رسیدن به دقت بالاتر در حل مثال‌ها استفاده شدند. این مثال‌ها به خوبی توانایی اجراهای محدود موجک-پایه را نشان می‌دهند.

بسط تابعی موجک

یکی از رابطه‌ای قابل توجه به صورت جمع یک سیر توابع بهبودیان و ساده به نام توابع پایه هستند. این نوع توابع را بسط تابعی می‌گویند. یکی از مثلثی‌های مشهور بسط تابعی در ریاضیات، می‌تواند از دستور زیر استفاده شود:

\[f(x) = \sum_{k=-\infty}^{\infty} c_k e^{2\pi ikx}, \quad x \in \mathbb{R} \]

(1)

در اینجا توابع پایه بسط عبارتند از توابع نما یک مختلط (k) که هر یک نمایش یک فراکس مشخص \(c_k \) ضرایب به صورت انتگرال زیر محاسبه می‌شوند:

\[c_k = \int_{-\infty}^{\infty} f(x) e^{-2\pi ikx} \, dx \]

(2)

هر کدام از ضرایب \(c_k \) در واقع مقدار محتوای فراکسی \(f \) در سیگال و یا تابع از سیگال و یا تابع از سیگال و یا تابع \(f \) در سیگال و یا تаб
همانطور که ملاحظه می‌گردد، تابع به دست آمده، نمی‌تواند بعضی از خصوصیات تابع اصلی را نشان دهد. برای مثال نمی‌تواند نابی‌وسیگی موجود در نقطه 0.5 را به خوبی نمایش دهد.

این مساله به دلیل ماهیت بیشتر توابع مورد استفاده در بسط فوریه رخ می‌دهد. در واقع ضعف توابع پایه بسط فوریه این است که همه انها نام دانه‌ای را دارند و ممکن است آنها فقط در فرکانس آهسته باشد. به همین دلیل این توابع نمایی مختلط، خیلی خوب می‌تواند یک تابع مناسب و مناسب برای تقريب زدن یک تابع نابی‌وسیگنی پیوسته و به دلیل یافته ضرایب c_k بی‌بانگ‌مانیگی محتوای فرکانسی k هستند. هم‌چنین محل دقیق تکینگی موجود در تابع و یا سیگنال مورد نظر نمایان نمی‌شود.

مساله‌ای که محترح شد، یکی از انگیزه‌های استفاده از موج‌اهای مختلط است. موج‌ها هم نمی‌توانند تابع نمایی مختلط f می‌توانند به عنوان تابع پایه برای بسط تابع مورد استفاده قرار گیرند. بر خلاف توابع نمایی مختلط، موج‌ها می‌توانند هم اطلاعات مکانی و هم اطلاعات مقیاسی قابل توجهی را در مورد آن‌ها کنند. بسط موج‌های پایه بارد یک تابع f با دوره تناوب واحد به صورت زیر است:

$$f(x) = \sum_{n=1}^{N} c_n e^{j2\pi nk}$$

(3)

به علاوه، به علت ضرایب کوچک و وجود دارد، به همین علت خطا تقرب پیدا می‌شود. به عنوان مثال تابع دندان‌های زیر را در نظر می‌گیریم:

$$f(x) = \begin{cases} x & 0 \leq x < 0.5 \\ x - 1 & 0.5 \leq x < 1 \end{cases}$$

(4)

این تابع در رشته (1) نشان داده شده است. تجزیه فوریه تابع فوق برای $N=1024$ در شکل (2) نمایش داده شده است. اگر برای مثال 17 عدد از پرندگین ضرایب را لحاظ کنیم و با آنها تابع f را بازسازی کنیم، به شکل (3) می‌رسیم.

![شکل 1: نمایش تابع دندان‌های](image1.png)

![شکل 2: ضرایب مربوط به بسط فوریه تابع](image2.png)

![شکل 3: نمایش بسط فوریه تابع f با 17 ضرایب بزرگ](image3.png)
-parser: فرمول‌نگار روش اجزاء محدود بر اساس db

خصوصیات توابع خانواده

توابع موجک خانواده db که دارای محمل‌های فشرده و محدودی هستند، قابلیت تخمین چندجمله‌ای با درجه بالا را دارا می‌باشند. این پایه‌های موجکی می‌توانند توابع میانگین و پایداری را از توانایی دیفرانسیل‌بندی حتی در نواحی دارای تغییرات شدید، فراهم کند. به همین دلیل، قابلیت پردازش چندگانه نیز مزیت مهمی است که باید به سایر زمان‌های آن‌ها افزود. این داده به موجب توانایی توابع موجک این خانواده و شرکت مزایای آن‌ها می‌پردازیم. به دلیل دو خاصیت تمامی و قابلیت پردازش پیچیده، می‌توانند جزئیات مسائل و بدیع‌های با به صورت دقیق و صحیح پرداخته دهند. پس از این‌که به دلیل محاسبه این موجک ایجاد می‌شود، این است که جریان آزادی چندجمله‌ای فرمول‌نگاری شده به جای این موجک‌ها کمتر از دیگر خانواده موجک‌های دیگر، بازیابی این المان‌ها.
تابع مقیاس و تابع موجک متناپلارش متعامد هستند.
در میان روابط فوق الذکر، رابطه مساوی صفر، خاصیت ویژه گره موجک‌های db را بیان می‌کند. این رابطه به همراه روابط دو مفاهم، وزن‌گذاری می‌دهد که تابع مقیاس، متغیرهای x و درجه دار دارند. db موجک‌ها، می‌تواند به طور دقیق، در جمله‌ای که مربوط به کوسکرتر و یا مساوی 1(2) نشان دهند. یعنی اگر f(x) به صورت زیر باشد:
\[f(x) = \alpha_0 + \alpha_1 x + \ldots + \alpha_m x^m \] (17)
\[m \leq \frac{N}{2} - 1 \]
تابع f(x) می‌تواند به صورت زیر، به طور دقیق نمایش داده شود:
\[f(x) = \sum_{k=-\infty}^{\infty} c_k \phi(x-k) \] (18)
رابطه فوق که بیانگر یکی از قابلیت‌های مهم خواده است، یکی از اساس‌ترین رابطه است که روش اجزای محدود موجک-پایه براساس آن شکل گرفته است و توسعه آن های است. (1)

 محاسبه مشتق‌های توابع مقیاس
برای فرمول‌نگر روش اجزاء محدود موجک-پایه بر اساس توابع db ابتدا از ات، تابع مشتق‌های محاسبه شوند. به دلیل اینکه برای تابع مقیاس، فرمول محاسباتی وجود ندارد و این تابع به صورت نقطه نقطه محاسبه می‌شوند، روش‌های معمول مشتق‌گیری عددی جواب‌های دقیقی بدست نمی‌دهند. خطای این روش‌ها مخصوصاً در مشتق گری مرتب دوم و بیشتر خیلی

\[\phi^{(m)}(x) = 2^m \sum_{i=0}^{N-1} p_i \phi^{(m)}(2x-i) \] (19)

رابطه (19) در نقاط صحیح دامنه [0, N-1] معادله را نتیجه می‌دهد:
\[\alpha_0 + \alpha_1 x + \ldots + \alpha_m x^m \]

-1- همانند سایر موجک‌ها، تابع مقیاس \(\phi(x) \) و تابع موجک \(\phi(x) \) در خوانداه، db، رابطه زیر را که روابط و دو مقایسه نام دارد، اررا می‌کند:
\[\phi(x) = \sum_{i=0}^{N-1} p_i \phi(2x-i) \] (9)
\[\psi(x) = \sum_{i=1}^{N} (-1)^i p_{i-1} \phi(2x-i) \] (10)
در این روابط، \(p_i \) ها ضرایب فیلتر نامی‌شده می‌شوند. N یک عدد جوی است که رابطه تا N-1 تغییر می‌کند.
-2- دامنه تابع مقیاس و تابع موجک به صورت زیر تعریف می‌شود:
\[\sin(\phi(x)) = [0, N-1] \]
\[\sin(\psi(x)) = \left[1 - \frac{N}{2}, \frac{N}{2} \right] \] (11)
\[\sin(\phi(x)) = \left[1 - \frac{N}{2}, \frac{N}{2} \right] \] (12)
\[\sin(\psi(x)) = \left[1 - \frac{N}{2}, \frac{N}{2} \right] \] (13)

-3- این دو تابع با توجه به فرآیند تولید خوانداه db یکی از دارای هستند:
\[\int_0^\infty \phi(x) dx = 1 \]
\[\int_0^\infty \psi(x) dx = \delta_{j,m} \] (14)

در این طول مقیاس به صورت واحد نرم‌الله شده است.
\[\int_0^\infty \phi(x-j) \phi(x-m) dx = \delta_{j,m} \]
\[\int_0^\infty \psi(x-k) \psi(x-m) dx = 0 \quad k = 0, 1, \ldots, \frac{N}{2} \] (15)
\[\int_0^\infty \phi(x-k) \psi(x-m) dx = 0 \quad m \in Z \] (16)

-4- این رابطه، ممکن‌های صفر تابع موجک را بیان می‌کند.
\[\int_0^\infty \phi(x) \psi(x) dx = 0 \quad m \in Z \] (17)
سپس با تغییر متغیر \(2x-k=\eta\) و بسط مکلورن برای \((y+k)^i\) در نهایت به رابطه زیر می‌رسیم:

\[
A_i = \frac{1}{2^{i+1}} \left(\sum_{k=0}^{N-i} \sum_{j=0}^{N-i-j} C_{k-j}^{i} p_k A_j + \sum_{k=i+1}^{N} p_k A_j \right)
\]

\[
\Rightarrow A_i = \frac{1}{2^{i+1}} - 2 \sum_{k=0}^{N-i} \sum_{j=0}^{N-i-j} C_{k-j}^{i} p_k A_j
\] \(\text{(24)}\)

با محاسبه \(A_m, A_{m+1}, A_0\) و قرار دادن آنها در رابطه (24) \(m\) می‌تواند را محاسبه کرد. سپس با مشتق‌گیری از رابطه (22) به نتیجه زیر می‌رسیم:

\[
\sum_{k=0}^{N-i} C_{k-j}^{i} \phi^{(m)}(x-k) = m!
\] \(\text{(27)}\)

رابطه (27) همان رابطه نرم‌الیک کننده جواب معادله (20) است. بدین ترتیب مشتقات \(\phi^{(m)}(i)\) برای نقاط صحیح \(0, 1, 2, ..., N\) به دست می‌آید و در نهایت با بکار بردن دوباره رابطه دو مقیاسی، می‌توانیم مقادیر مشتق را در نقاط غیرصحیح با پایه \(\frac{i}{2}\) محاسبه کنیم:

\[
\phi^{(m)}(x/2) = \sum_{i=0}^{2^{N-1}} C_{k-j}^{i} p_k \phi^{(m)}(x-k)
\] \(\text{(28)}\)

رابطه (28) \(m\) می‌تواند مقادیر \(\phi^{(m)}(x/2)\) را در \(n = 1, 2, 3, ..., N\) محاسبه کند.

المان تیب موجک–پایه

در این بخش، تابع مقیاس \(db\) برای ساخت یک المان تیب مورد استفاده قرار می‌گیرد. برای مثال، خشک یک نی‌برنولی به دو اینتربرنولی تابع\(db\) می‌شود و نی‌برنولی، می‌تواند دانستاره یا دانستاره باعث دفع‌الخواهی خشک‌شدن نی‌برنولی در این دانستاره، معادله دیفرانسیل خشک‌شدن نی‌برنولی به صورت زیر در می‌آید:

\[
E_t \frac{d^2 w}{d\xi^2} = f(\xi)
\] \(\text{(29)}\)

که در آن \(I\) ماتریس همانی است و

\[
P \Phi^{(m)} = \begin{bmatrix} \Phi^{(m)}(0), \Phi^{(m)}(1), \ldots, \Phi^{(m)}(N-1) \end{bmatrix}^T
\]

ماتریسی است که از ضاریب ویژه تشکیل شده است. می‌تواند به صورت زیر بیان شود:

\[
P = \begin{bmatrix} p_{2i} \end{bmatrix},
\]

\(\text{(21)}\)

در رابطه فوق \(P > 0\) و \(P > 1, 2i - k > N - 1\) انگاه \(0 = p_{2i} - k\) گی. مناسب‌ترین \(p_{2i} - k\) و فرض مقدار ویژه است. یکتا خواهان بود و برای یکتا کردن جواب آن لازم است معادله‌ها را به دست‌آید که در ادامه شرح زیر می‌شود:

\[
f(x) = x^m, \quad f(x) = \sum_{i=0}^{\infty} f_i(x)
\]

\(\text{(28)}\)

و \(m = \frac{N}{2} - 1\) فرض کنیم، داریم:

\[
x^m = \sum_{k=0}^{m} C_m^k \phi(x-k)
\]

\(\text{(22)}\)

\[
f(x) = \sum_{i=0}^{\infty} \frac{f_i(0)}{i!}
\]

\(\text{(23)}\)

\[
(x+k)^m = \sum_{i=0}^{m} x^i \frac{m!}{(m-i)!i!}
\]

\(\text{(24)}\)

\[
C_m^i = \frac{m!}{i!(m-i)!}
\]

\(\text{(25)}\)

\[
\Rightarrow C_m^i = \sum_{i=0}^{m} C_m^i k^{m-i} \int_{-\infty}^{\infty} x^i \phi(x) dx
\]

\(\text{(26)}\)

\[
= \sum_{i=0}^{m} C_m^i k^{m-i} A_i
\]

\(\text{(27)}\)

\[
A_i = \left\langle x^i, \phi(x) \right\rangle \quad (i = 0, 1, 2, \ldots, m)
\]

\(\text{(28)}\)

برای محاسبه \(A_i\) می‌توان رابطه دو مقیاسی را درون رابطه فوق قرار داد که می‌تواند به رابطه زیر می‌شود:

\[
A_i = \int_{-\infty}^{\infty} \phi(x) x^i dx \Rightarrow A_i = \sum_{k=0}^{N-i} p_k \int_{-\infty}^{\infty} \phi(2x-k)x^i dx
\]

\(\text{(29)}\)

\[
\left(2^{m-1} P - I\right) \Phi^{(m)} = 0
\]

\(\text{(30)}\)
در معادله فوق، \(W \) تغییر شکل جانی تبر است و \(EI \) هم نشاندهنده سختی خمی است.

مطابق مطالب پیش گفته، فرض می‌کنیم که \(W \) به وسیله یک سری از توابع مقدار \(db \) تقریب زده می‌شود:

\[
W = \sum_{k} \alpha_k \phi(\xi - k)
\] \hspace{1cm} (30)

که ضریب تقریب هستند که باید تعیین شوند.

سپس ماتریس سختی در فضای \([1,0]\) توسط رابطه زیر محاسبه می‌شود:

\[
\hat{k}_{ij} = EI \int_{0}^{1} \phi^*(\xi - i)\phi^*(\xi - j)d\xi
\] \hspace{1cm} (31)

در رابطه (31)، \(\phi^* \) نشان دهنده مشتق دوم تابع مقدار است که بر حسب مختصات محلی \(\xi \) توشته شده‌است. در این مرحله، به یک مساله اساسی برخوردار می‌گوییم و آن محاسبه ماتریس سختی المان در فضای \([1,0]\) می‌شود که به معنی محاسبه انرژی رابطه است. به اینکننده توابع موجک (شامل تابع مقدار و تابع موجک) دارای میانگین نهایی هستند، و نیز نوسانات و اعوام جایگاه‌های مخصوصا شده‌اند. رویکرد برای اندازه‌گیری انرژی تابع می‌شود که به استفاده ماتریس سختی المان ارائه شده‌است.

برای محاسبه انرژی موجک در رابطه (31)، ضریب ارتباطی به صورت زیر تعیین می‌شوند:

\[
\Gamma_{i,j} = \int_{-\infty}^{+\infty} [X_{[0,i]}(\xi)\phi^*(\xi - i)\phi^*(\xi - j)]d\xi
\] \hspace{1cm} (32)

که \(X_{[0,i]}(\xi) \) تابع مشخصه نام دارد که تعریف آن در ادامه می‌آید. با یک همایشی رابطه می‌توانیم رابطه فوق و تغییر متغیر \(\xi \) به به نتیجه زیر می‌رسیم:

\[
\Gamma_{i,j} = 8 \sum_{l,m} \int_{-\infty}^{\infty} [X_{[0,l]}(\gamma) + X_{[0,l]}(\gamma - 1)]
\times \phi^*(\gamma - 2i - l)\phi^*(\gamma - 2j - m)d\gamma
\] \hspace{1cm} (33)
دب6 برای تعیین تغییر مکان جانی استفاده می‌شود. تغییر مکان جانی در فضای [0,1]
عبارت از:
\(w = \sum_{k=0}^{10} \alpha_k \phi(\xi - k) \) (40)

زیرا این تابع مقداری دارای دامنه از 0 تا 1 است. نام‌برای این یاده که طبق رابطه فوق می‌تواند تعیین تغییر مکان جانی را فراهم کند. بنابر
این درجات آزادی مان حالت در db6. در فضای موجک، نشان می‌دهد که این مان چگونه وارد بوده‌ایم.
همان‌طور که مشخص است، این مان دارای 7 گره درونی و دو گره انتهای است.

\[\delta = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \alpha_5 & \alpha_6 & \alpha_7 & \alpha_8 & \alpha_9 & \alpha_{10} \end{bmatrix} \] (41)

ماتریس \(\delta \) نماینده درجات آزادی در فضای فیزیکی است. ارتباط بین درجات آزادی فیزیکی و موجک را ماتریس انتقال \(T \) برهم‌هسته‌دار می‌کند.

\[\delta = Ta \] (42)

که ماتریس درجات آزادی در فضای موجک است.

\[a = [\alpha_{-4} \alpha_0 \alpha_1 \alpha_2 \cdots \alpha_{-2} \alpha_{-1} \alpha_0] \] (43)
به طول المان افتاد.

که طول المان افتاد.

حال، همانند روش اجرا محدود معمولی، می‌توان تأمین ماتریس‌های سختی مالی را در یک ماتریس کلی جاسازی کرد تا استفاده معادلات سیستم تشکیل شود. سپس با اعمال شرایط مرزی، آن را حل گردد و به جواب‌ها که همان تغییر مکان‌ها و دوران‌ها در جریان آزادی است، دست یافت. برای محاسبه تنش‌ها هم می‌توان از همان روش مرصوم اجرا محدود استفاده کرد.

البه ماتریس‌های از ماده جمله هم مطالب انتقال زیر در فضای [0,1] محاسبه می‌شود که به نوبه خود منجر به محاسبات ضرایب ارتباطی مخصوص به خود می‌شود.

\[R^m_k = \int_{[0,1]} Z_{[0,1]}(\xi) \frac{f(\xi - j)}{d\xi} \quad (49) \]

می‌توان در ساخت المان موجک پایه، از متریه‌ای مختلفی از موجک‌های خوانده‌ای استفاده کرد. مثل محدود db مورد استفاده باینری-بیانش، تعداد جریان آزادی المان مورد نظر بی‌کنترل خواهد بود. بطور کلی اگر موجک db مورد استفاده باینری db6,db6db5، متریه

\[M = N - 1 \quad (50) \]

با بالا بردن N، تابع مقیاس مورد نظر، هموارتر خواهد شد و توانایی تخمین مسائل با دقت بالاتری را داراست، اما هزینه محاسباتی بیشتری را نیز به خود اتصال خواهد داد. در مسائل علیه، به دلیل تنوع مسائل، با توجه به پیچیدگی مسائل و نیاز مورد نظر، متریه db مناسب برای رابطه است. این مثال‌ها از قرار زیر است:

\[T = \begin{bmatrix}
\phi(10) & \phi(9) & \cdots & \phi(0) \\
\frac{1}{7} \phi(10) & \frac{1}{7} \phi(9) & \cdots & \frac{1}{7} \phi(0) \\
\phi(10+\frac{1}{8}) & \phi(9+\frac{1}{8}) & \cdots & \phi(\frac{1}{8}) \\
\phi(10+\frac{7}{8}) & \phi(9+\frac{7}{8}) & \cdots & \phi(\frac{7}{8}) \\
\phi(11) & \phi(10) & \cdots & \phi(11) \\
\frac{1}{7} \phi(11) & \frac{1}{7} \phi(10) & \cdots & \frac{1}{7} \phi(1)
\end{bmatrix} \quad (46)\]

با بررسی که در فضا T باشد، آن‌گاه ماتریس R مکان‌ها، ممکن است باشد. بنابراین T را برای تبدیل شود و رابطه زیر این تبدیل را نشان می‌دهد:

\[\bar{K}_e = R^T \bar{K}_e R \quad (47)\]

که ماتریس سختی المان در فضای تبدیلی می‌باشد. نتیجه از فضا با

\[k_e = \frac{1}{l^3} \bar{K}_e \quad (48)\]

در این قسمت به منظور بررسی صحبت روابط ذکر شده و قابلیت روش اجرا محدود موجک-پایه، مثال‌های حل شده‌اند. برای انجام نمونه تیپ توصیه روش اجرا MATLAB محور موجک پایه، توصیه می‌شود برای بررسی تیپ شده که مثال‌ها با این پردازش حل شده‌اند.
مطالعه یک: خمش تیر با مقطع منغوب تحت بار

یکنواخت

اولین مثال، همانند شکل (2)، تری با مقطع غیر مساوی است. در انتهای تیر دارای نگاه‌گاهی ساده می‌باشد. طول تیر برای $L\text{ m}$ است. سختی خمشی قسمت چپ و راست تیر برای E_1 و E_2 می‌باشد. تیر تحت بار $q(x)=k \text{ KN/m}$ قرار دارد. این تیر را توسط دو امّان db6 تحمل می‌کنیم. جواب دقیق برای این مساله توسط معادلات دیفرانسیل قابل حل است که بصورت زیر می‌باشد:

$$
\frac{w(x)EI_1}{L^2} = 0.2552 (x - 0.0208) + 0.6250 \left(1 - 0.2552 (x - 0.0208) \right) + 0.5 \left(x - 0.0208 \right)
$$

$0 \leq x \leq L$

$L \leq x \leq 2L$

شکل 2: نموداری از میزان وضعیت شدست db6 و طی شه مرحله

مطالعه دو: خمش تیر تحت بار غیر یکنواخت

به عنوان دوامی مثل، تیر شکل (1) را در نظر گرفتیم.

$q_2(x) = (30-10/16x) \text{ KN/m}^2$ در این تیر

$E_1 = E_1$ و $E_2 = 4E_1$

شکل 7: نموداری از میزان وضعیت db6 و طی شه مرحله
بحث و نتایج گیری

استفاده از نواک مقياس db به عنوان تواضع شکل در این مقایسه به طور میسر مورد بررسی قرار گرفت. به دلیل انتقال مانند سختی از فضای موجک به فضای فیزیکی، تأمین می‌توانست تغییر مکان‌ها و دوران‌ها در مزر بین المان‌ها به‌خوبی ممکن گشت. بنابراین توانایی بالای تواضع مقياس db در نواک مشابه تواضع، این امکان را به روش اجرای محدود و موجک- پایه می‌دهد که با تعداد المان کم تیز بتواند به دقت بالایی در حل مسائل دست‌پاید و در نهایت می‌توانند که اعداد تغییر متناسب با بارگذاری‌های مختلف، تغییر در مقطع و شرایط مزرعی مشابه می‌باشد.

مثال‌های عددی ارائه شده شاهد این مدعاست.

شکل 9: شکل مربوط به مساله دوم

با در نظر گرفتن سه المان db به‌این ترتیب، مساله را حل می‌کنیم. نمونه‌ریزی تغییر مکان، دوران، لنگر و برش در طول تیز توسط حل دقیق و WFE در شکل (10) نشان داده شده‌اند. هم‌اکنون برای مشاهده مکتوب، روش مجدداً حساب بسیار مطلوبی را ارائه می‌کند. در این مثال تیز میزان تغییر برش بسیار کم قابل صرف نظر کردن است. خطای rms برای نقطه گرده در تخیل تغییر مکان، 0.0140 متر است. همچنین خطای نسبی نقطه وسط برای 0.34% مشاهده می‌کند.

شکل 10: تغییر مکان، دوران، لنگر و برش در طول تیز مساله db6 دو توسط حل دقیق و WFE با استفاده از db6
Mراجع

واژه‌ای از انجام شده‌ی به ترتیب استفاده در متن

1. Hilbert Space
2. Cascade Algorithm
3. Daubechis
4. Connection coefficient
5. Wavelet Expantion
6. Decomposition
7. Reconstruction
8. Compact Support