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ABSTRACT: The momentum equation in the kinematic wave model is a power-law 

equation with two parameters. These parameters, which relate the discharge to the flow 

area, are commonly derived using Manning’s equation. In general, the values of these 

parameters depend on the flow depth except for some special cross sections. In this paper, 

improved estimates of the kinematic wave parameters for circular channels were developed 

using the kinematic sensitivity indicator. Using this indicator, the parameters were 

mathematically derived nearly independent of the flow depth for two cases: constant and 

variable Manning’s roughness coefficients. The proposed parameters were estimated for a 

practical range of water depth levels and were verified using an approximate method. The 

results showed that the proposed parameters are more accurate than existing parameters in 

estimating the discharge for circular channels. The proposed parameters also improved the 

estimate of travel time in circular channels, which is of significant importance in drainage 

design. 
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INTRODUCTION 

 

Flood routing is an important engineering 

practice as it deals with the modeling of flow 

movement along channels over time. 

Channel flow routing provides key 

information regarding the temporal and 

spatial distribution of flood wave, which is 

essential in flood warning and management 

studies. Mathematical models used in 

channel flood routing range from full two-

dimensional dynamic wave models to 

simplified one-dimensional models e.g. the 

Muskingum model (Chow et al., 1988).  

The kinematic wave model is frequently 

used for modeling open channel flows due to 

its simplicity and accuracy (Haltas and 

Kavvas, 2009). This model has two 

parameters that cannot be analytically 

estimated independently of the flow depth, 

except for some special cross-section 

geometries. For instance, in the case of a 

wide rectangular channel (overland flow) the 

kinematic wave parameters are independent 



Vatankhah, A. R. and Easa, S. M. 

96 

 

of the flow depth. For other cross-section 

geometries such as circular, trapezoidal, 

rectangular, and parabolic, approximate 

equations for the kinematic wave parameters 

that are independent of flow depth are 

developed.  

Various researchers have developed the 

kinematic wave parameters for a variety of 

channel shapes (MacArthur and DeVries,  

1993; Wong and Zhou, 2006). Wong and 

Zhou (2003) suggested a mathematical 

fitting method to find the kinematic wave 

parameters for circular channels 

independently of the flow depth. They 

presented new parameters providing a good 

agreement with the true discharge. The 

parameters estimated using this method were 

more accurate than those calculated using 

the method presented by Harley et al. 

(1970). 

This paper aims to improve the estimates 

of the kinematic wave parameters in circular 

channels using the kinematic wave celerity 

concept. According to the Klietz-Seddon 

law, one of the parameters (the exponent) 

can be expressed as the ratio of the 

kinematic wave celerity to the mean flow 

velocity (Jain, 2001). This parameter is 

considered as a point-sensitivity indicator in 

this paper. Using this indicator, the 

kinematic wave parameters for circular 

channels are obtained, independently of the 

flow depth. A key advantage of the proposed 

method is that the parameters have physical 

meaning and are developed for a practical 

stable range of flows, which enhances their 

accuracy and feasibility. The parameters 

were developed for constant and variable 

roughness coefficients. The proposed 

method was then verified using an 

approximate method. A comparison between 

the parameters obtained using the proposed 

and existing methods is also presented. 

This paper is presented in seven main 

sections. The following section presents a 

background on kinematic wave models; next 

the proposed method for estimating the 

kinematic wave model parameters is 

introduced; then the proposed method for 

estimating the parameters in circular 

channels is implemented. Furthermore the 

verification of the proposed method is 

addressed and the parameters estimated 

using the existing and proposed methods are 

compared. Finally conclusion remarks are 

presented.   

 

BACKGROUND  

 

Kinematic Wave Model 

Using the continuity and momentum 

equations, the kinematic wave model is 

given by Lighthill and Whitham (1955).  
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where A is the flow area, Q is discharge, q is 

the lateral inflow, t is time, x is distance,  

and  are the kinematic wave parameters.  

The Manning’s equation for uniform flow 

in an open channel with hydraulically rough 

surfaces is given by: 
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where S0 is the longitudinal slope of the 

channel bed, n is Manning’s roughness 

coefficient, and P is the wetted perimeter.  

It is worth noting that the channel surface 

roughness, ε, for establishing the 

hydraulically rough flow should be greater 

than 30 [Q(gS0)
2
]

-0.2
, where  is the 

kinematic viscosity (Hager, 1989). 

Moreover, Manning’s equation is valid for 

0.004 ≤ ε/R ≤ 0.04, where R is the hydraulic 

radius defined as the ratio of the flow area to 

the flow perimeter (Christensen, 1984). As 
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noted, R/ε should be less than 250 (i.e. D/ε 

should be less than 1000, where D is the 

channel diameter). Thus, the upper limit of 

the diameter will be 1000ε. Considering an 

average roughness of 2 mm (i.e. ε = 2 mm), 

the upper limit of the channel diameter will 

be 2 m (i.e. D = 2 m).  

Substituting Q from Eq. (2) into Eq. (3) 

yields 
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(4) 

 

in which A and P depend on the cross-

section geometry and the flow depth. The 

roughness coefficient, n, may be vertically 

uniform (constant) or non-uniform 

(variable). Due to the implicit nature of Eq. 

(4), it is not possible to find analytically 

formulas for  and .  

Substituting Q from Eq. (2) into Eq. (1) 

the kinematic wave equation becomes, 
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q
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t

A
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 (5) 

 

where  and  are dependent on the flow 

depth. However, using a partial differential 

with constant kinematic wave parameters, is 

much more convenient to work with. In this 

case, Eq. (5) takes the following form: 
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As noted, this partial differential equation 

is easily solved for the flow area. 

 

Existing Method for Estimation of the 

Parameters 
Using the method of Harley et al. (1970), 

who developed  and  for the constant n 

value, Wong and Zhou (2003) estimated 

these parameters for the constant and 

variable n values. Eq. (2) was made non-

dimensional using the maximum discharge 

and used as a basis for mathematical fitting. 

In the case of the constant n value, the 

following equations were proposed for 

estimating the kinematic wave parameters in 

circular channels: 

 

4

5
  (7) 

n

SD 2/1

0

6/1

501.0  (8) 

 

where D is the diameter of a circular 

channel.  

The proposed equations in the case of the 

variable n value are:  

 

7
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  (9) 

21/4
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0478.0
Dn

S

full
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where nfull = roughness coefficient under full 

flow conditions. The values of these 

parameters estimated using Eqs. (7) and (8) 

were found to be more precise than those 

obtained using the method of Harley et al. 

(1970). However, Wong and Zhou (2003) 

developed their parameters based on nearly 

the entire theoretical range of discharge, 

which adversely affected the accuracy of the 

estimated parameters, as will be shown later. 

In the present study, the kinematic wave 

parameters are estimated for the practical 

range of flow depth levels using the 

kinematic sensitivity indicator method. 

 

PROPOSED METHOD FOR 

PARAMETER ESTIMATION 

 

Differentiating Eq. (2) with respect to A, the 

parameter of  can be obtained as:  
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A

Q

Q

A




  (11) 

 

The term Q/A is called kinematic wave 

celerity. Eq. (11) is the basis for developing 

the parameters equation dealt with in this 

paper. According to Eq. (11),  can be 

defined as a relative point-sensitivity 

indicator. This indicator has a physical 

meaning and shows the relative variation of 

the discharge Q/Q with respect to the 

relative variation of the cross-section area 

A/A. In fact,  describes the ratio of the 

discharge response to the variation in the 

cross section area. This implies that in a 

channel with a given geometry,  can be 

estimated independently of the flow depth 

using Eq. (11). This means that by varying 

the flow depth, the relative discharge 

variation should be proportional to the 

relative cross-section variation.  

Once  is determined  can be estimated 

using Eq. (2) by: 

 
 QA  (12) 

 

As seen,  is a function of , implying 

the optimization procedure includes only one 

fitting parameter, . Introducing a 

proportionality coefficient, , into Eq. (12), 

it provides more degrees of freedom in 

determining the optimum parameters. Thus, 

 
  QA  (13) 

 

Note that the proposed kinematic 

sensitivity indicator method (i.e. Eqs. (11)  

and (13)) can be used for estimating the 

kinematic wave parameters for both circular 

and noncircular channels. 

 

 

 

PARAMETERS ESTIMATION FOR 

CIRCULAR CHANNELS 
 

Flow Characteristics 
 

In circular channels with the constant n 

value, the discharge based on the Manning’s 

equation for a partially full channel is given 

by Akgiray (2004): 
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where Q is the ‘true’ discharge and  is the 

water surface angle (Figure 1). In this 

respect, the corresponding flow area and 

water surface angle are given by: 
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where  is equal to y/D and y is the flow 

depth. In a circular channel under full flow 

conditions (i.e.  = 2), Eq. (14) reduces to: 
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Fig. 1. Cross section of a partially filled circular 

channel. 
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Eq. (18) is obtained from dividing Eq. 

(14) by Eq. (17). 
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(For Constant n)  

(18) 

 

where Q* is the non-dimensional discharge. 

 This equation is particularly useful in 

determining the practical range of . A plot 

of Eq. (18) is shown in Figure 2. As seen, 

the discharge is not a single-valued function 

of depth beyond  = 0.82. This trend occurs 

because the channel has a closing top-width 

and is referred to as a channel of the second 

kind (Subramanya, 1997). In this range, a 

small disturbance in the water surface may 

cause it to seek alternate normal depths, thus 

contributing to the instability of the water 

surface. In practice, it is usual to restrict the 

flow depth to be below this range to avoid 

this double normal depth phenomenon. In 

circular channels with the constant n value, 

this range of instability occurs when the 

normal depth is greater than 82% of the 

channel diameter. Thus, in practice, it is 

sufficient to restrict the flow depth to be less 

than this ratio (  0.82). 

In circular channels with the variable n 

value, the variation of n as a function of the 

flow depth has been graphically presented 

by Camp (1946). The curve has been 

reproduced in many widely used text books 

and manuals, such as Chow (1959), 

Benefield et al. (1984), and ASCE (1992). 

This curve was described mathematically by 

Wong and Zhou (2003). 
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Substituting Eq. (19) into Eq. (14) yields: 
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Thus, Eq. (18) takes the following form:  
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Fig. 2. Illustration of the double depth phenomenon in circular channels.
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Based on Eq. (21), the double normal 

depth phenomenon occurs when  is greater 

than 0.9, as shown in Figure 2. Thus, the 

practical range in this case is  

  0.9. 

It should be noted that, in computer 

simulations, it is not necessary to compute 

the flow depth in very small water depths. 

Therefore, the minimum value of the 

dimensionless flow depth is considered as  

 = 0.1. 

 

Improved Kinematic Wave Parameters 

(In the Case of Constant n) 
Using the implicit differentiation of Q 

with respect to A,  in Eq. (11) can be 

written as: 
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Substituting the partial derivatives of Eqs. 

(14) and (15) into Eq. (22), then  
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As seen,  is a function of  (or flow 

depth) and constant  should be determined 

for a reference depth or angle. The reference 

coefficient, , is used in lieu of  to derive  

independently of the flow depth. It should be 

noted that  is not dependent on the flow 

depth while   is. Setting  =  in Eq. (23), 

then: 
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By setting this reference value  =  in 

Eq. (14),  in Eq. (13) becomes  
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In Eqs. (24) and (25),  and  are the 

fitting coefficients. Substituting  from Eq. 

(25) into Eq. (2), the approximate discharge, 

Qa , can be written as: 
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Eq. (26) is considered as an 

‘approximate’ discharge (power-law) 

equation. The ‘true’ discharge Q is given by 

Eq. (14). 

Dividing Eq. (26) by Eq. (17), then 
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Now, the optimal values of  and  are 

determined by minimizing an objective 

function, z, such that, 
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where the minimization procedure is 

performed over the practical range of flow 

depth (0.1     0.82). In this range, the 

optimal values of the fitting coefficients 

were found to be  = 2.73 rad (or  = 0.398) 

and  = 0.96. Substituting these values into 

Eqs. (24) and (25), the proposed kinematic 

wave parameters in circular channels with 

the constant n value are obtained: 
 

370.1  

(For Constant n, 0.1    0.82)   
(29) 
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Thus,  
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Improved Kinematic Wave Parameters 

(In the Case of Variable n) 
Using Eq. (22) and differentiating Eq. 

(20) with respect to A,  is expressed as: 
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Considering   is equal to  in Eq. (32).  
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Similarly, considering  is equal to  in 

Eq. (20) and using Eq. (13), then: 
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Substituting  from Eq. (34) into Eq. (2), 

then:  
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In Eqs. (34) and (35),  is calculated 

using Eq. (33). The ‘true’ discharge is given 

by Eq. (20).  

The approximate non-dimensional 

discharge takes the following form: 
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Now, the optimal values of  and  can 

be determined for the practical range of  

0.1     0.9, as previously explained. In 

this case, the optimal values occur at  

 = 2.45 rad ( = 0.331) and  =1.025. 

Substituting these values into Eqs. (33) and 

(34), the proposed kinematic wave 

parameters in circular channels with the 

variable n value are obtained as: 
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VERIFICATION OF PROPOSED 

METHOD 
 

The proposed method was verified using 

another approximate method for determining 

the kinematic wave parameters. This 

method, called effective sensitivity indicator, 

can be derived using Eq. (11) as follows 

(Vatankhah et al., 2008): 
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Q

AA

QQ

ln

ln

/

/




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
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This equation can be written in the 

following finite difference form: 
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where the subscript ‘1’ and ‘2’ refer to the 

low and high flow conditions (limits of the 

most probable operation depth range),  

    .  Then,  is given by Eq. (12). 

The derivation of the kinematic wave 

parameters for the constant and variable n 

values using this approximate method is 

presented in Appendix. 

In the case of the constant n value, 

applying the parameter equations of the 

Appendix for the range of  between 0.1 and 

0.82 ( = 0.1 and  = 0.82),  is calculated 

as 1.370. The coefficient of  in Eq. (30) is 

calculated as its average value for the 

preceding two points as 0.519, compared 

with 0.540. If one more point ( = 0.46) is 

used, the three points will result in a 

coefficient equal to 0.534. As seen, a more 

accurate value of the  coefficient can be 

obtained using more points. In the case of 

the variable n value, the application of the 

parameter equations, as described in the 

Appendix, within the range of  between 0.1 

and 0.9 ( = 0.1 and  = 0.9),  is 

estimated to be 1.407. The approximate 

coefficient of  is similarly calculated using 

two and three points and the corresponding 

values are 0.475 and 0.472, respectively. 

These values are well matched with the 

value of 0.470 obtained using Eq. (38). 

Clearly, the results of the effective 

sensitivity method, verifies those of the 

proposed method. 

 

COMPARISON OF ESTIMATED 

PARAMTERS WITH EXISTING 

METHOD 
 

Estimated Discharge Comparison 
The accuracy of the proposed kinematic 

parameter equations using the accurate 

point-sensitivity indicator method is 

compared with the one proposed by Wong 

and Zhou (2003). The error in estimating the 

discharge is defined as: 

 











Q

Q
e a1100(%)  (42) 

 

The true discharge, Q, is given by Eq. 

(14) for the constant n value and by Eq. (20) 

for the variable n value.  The approximate 

discharge, Qa, using the proposed method is 

given by Eq. (31) for the constant n value 

and by Eq. (39) for the variable n value. In 

the method of Wong and Zhou (2003) (WZ), 

Qa is calculated by substituting kinematic 

wave parameters of Eqs. (7) and (8) into Eq. 

(2) for the constant n value and the 

parameters of Eqs. (9) and (10) into Eq. (2) 

for the variable n value. 

The error percentage of Eq. (42) is 

calculated for both the proposed and WZ 

methods for the constant n value cases, as 

shown in Figure 3. As noted, the error 

associated with the proposed method ranges 

from –4% to 4%, while the error of the WZ 

method ranges from –40% to 1.5%. What is 

interesting is that the proposed method 

generally overestimates the discharge, while 

the WZ method generally underestimates it. 
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Thus, estimates obtained using the proposed 

method are generally conservative. In the 

case of the variable n value, the comparison 

between the results is shown in Figure 4. As 

seen, the error of the proposed method 

ranges from –1.4% to 1.4%, while the error 

associated with the WZ method ranges from 

–0.4% to 6%. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3. Comparison of the errors in the estimated 

discharge of proposed and existing kinematic 

parameters for constant n value. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. Comparison of the errors in the estimated 

discharge of proposed and existing kinematic 

parameters for variable n value. 
 

Travel Time Comparison 
The travel time, tt,  in a channel is given 

by (Wong and Zhou, 2003): 

 


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/1
 (43) 

where L is the  length of the channel 

segment, Qu is the upstream inflow, and Qd 

is the downstream outflow of the channel 

segment. The inflow and downstream 

outflow are related together by: 

 

Qd = Qu + Lq  (44) 

 

where q is the uniform lateral inflow.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Comparison of the travel time of proposed and 

existing methods for constant n value. 
 

By substituting the parameters of  and  

obtained from the proposed and WZ 

methods in Eq. (43), the travel time for both 

methods can be calculated. Consider the 

following example used by Wong and Zhou 

(2003): n = nfull = 0.013, S = 0.0027 m/m, L 

= 1000 m, and D = 2 m, q = 0.001 m
2
/s, and 

Qu = 0–5 m
3
/s. Figure 5 shows the travel 

time estimates produced by the proposed and 

WZ methods when the n value is constant. 

For low flows (Qu = 0 m
3
/s), the travel time 

of both methods differ substantially (i.e. 9.9 

min compared with 8.7 min). The 

underestimation of travel time using the WZ 

method in low flows (or overestimation in 

high flows) is affected by the accuracy of 

their parameters. 

 

 



Vatankhah, A. R. and Easa, S. M. 

104 

 

CONCLUDING REMARKS 
 

 

This paper presented improved equations for 

estimating the kinematic wave parameters 

using two types of sensitivity indicators. 

Based on the results of this study, the 

following comments are offered: 

1. The kinematic wave parameters were 

mathematically obtained for circular cross 

sections in two different cases with constant 

and variable Manning’s roughness 

coefficients. In the case of the constant n 

value, the new estimated parameters were 

more accurate than the existing parameters. 

In the case with the variable n value, the 

estimated parameters using the proposed 

method yielded more accurate parameters 

than the parameters obtained using the 

existing method. Therefore, the new 

proposed method is recommended to 

estimate the parameters for the 

implementation in practice.  

2. The point-sensitivity method was used to 

develop depth-independent kinematic wave 

parameters. This method, which adopts 

optimization, produced accurate parameters 

that are applicable to the full practical range 

of flow depth. These parameters are useful 

when specific information about flow depth 

is not available or not reliable. The results 

showed that the error associated with 

estimating the discharge was less than 4% in 

the case of the constant n value, compared to 

up to 40% when the existing method was 

used. 

3. The proposed (point-sensitivity) method 

for estimating kinematic wave parameters 

was verified using another method based on 

effective sensitivity. This method is 

approximate, but simple, and can be used to 

produce kinematic wave parameters for 

system-specific conditions, such as a desired 

range of flow depth especially when such a 

range is small. In fact, in such conditions, 

the effective-sensitivity method would be 

preferable as it would produce local, perhaps 

more relevant parameters. 

4. The travel time in circular channels, 

which is an essential element in drainage 

design, is a function of the kinematic wave 

parameters. The kinematic wave parameters 

presented in this paper can be used to 

accurately estimate the travel time in circular 

channels. 

5. This study showed that the kinematic 

wave celerity concept is a powerful tool to 

estimate kinematic wave parameters. This 

approach can be also applied to other cross 

sections for which the kinematic wave 

parameters cannot be expressed 

mathematically independent of the flow 

depth, such as trapezoidal, rectangular, 

parabolic, and power-law. The method is not 

likely to be applicable to compound 

channels. This research area is currently 

being explored by the authors.  

 

APPENDIX 
 

Effective Sensitivity Method for 

Kinematic Parameter Estimation 

For the Manning's formula with constant 

n, Eq. (41) is written as: 
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which for a circular channel reduces to: 
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Also using Eq. (12) one obtains: 
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Then, an approximate coefficient of Eq. 

(A3) is calculated as the average at three 

different values of  as  

[ () +  [() / 2] +  ()] / 3. 

For Manning formula with variable n 

value, Eq. (41) is written as: 
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For a circular channel, Eq. (A4) is: 
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Also using Eq. (12) one obtains: 
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(A6) 

 

Then, the approximate coefficient of  is 

calculated as previously described. 

 

NOTATION 

 

A = flow area, 

D = diameter of the circular channel, 

e = percentage error of discharge, 

L = length of the channel segment, 

n = Manning's roughness coefficient, 

nfull = Manning's roughness coefficient 

under the full flow condition, 

P = wetted perimeter, 

Q = discharge, 

Q = lateral inflow, 

Qa = approximate discharge, 

Qfull = discharge in channel under full flow 

condition, 

Qt = true discharge, 

Qu = upstream inflow, 

R  = hydraulic radius 

S0 = bed slope of the channel, 

T = time, 

Tt = time of travel, 

x = distance, 

y = flow depth, 

 = water surface angle, 

 = relative flow depth y/D, 

 = a fitting value, 

 and = kinematic wave parameters, 

  = channel surface roughness, 

  =  kinematic viscosity. 
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