
Civil Engineering Infrastructures Journal, 46(1): 27 – 50, June 2013 

ISSN: 2322 – 2093 

 

 

 

* Corresponding author E-mail: mrpajand@yahoo.com 

   27 

 

Determination of Stability Domains for Nonlinear Dynamical Systems 

Using the Weighted Residuals Method 
 

Rezaiee-Pajand, M.
1*

 and Moghaddasie, B.
2
 
        

 
1
 Professor, Department of Civil Engineering, Ferdowsi University of Mashhad, P.O.Box: 

91175-1111, Mashhad, Iran. 
2 PhD Candidate,

 
Department of Civil Engineering, Ferdowsi University of Mashhad, 

P.O.Box: 91175-1111, Mashhad, Iran.   

 
Received: 18 Sep. 2011;      Revised: 12 Jan. 2012;      Accepted: 10 Mar. 2012 

ABSTRACT: Finding a suitable estimation of stability domain around stable equilibrium 

points is an important issue in the study of nonlinear dynamical systems. This paper intends 

to apply a set of analytical-numerical methods to estimate the region of attraction for 

autonomous nonlinear systems. In mechanical and structural engineering, autonomous 

systems could be found in large deformation problems or control of structures. In order to 

have an appropriate estimation of stability domain, some suitable Lyapunov functions are 

calculated by satisfying the modified Zubov's partial differential equation in a finite area 

around the asymptotically stable equilibrium point. To achieve this, the techniques of 

Collocation, Galerkin, Least squares, Moments and Sub-domain are applied. Furthermore, a 

number of numerical examples are solved by the suggested techniques and Zubov's 

construction procedure. In most cases, the proposed approaches compared with Zubov’s 

scheme give a better estimation stability domain. 
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INTRODUCTION 

 

The investigation of stable equilibrium 

points could be helpful to interpret the 

characteristics of nonlinear dynamical 

systems. These points play an important role 

in many scientific and engineering problems. 

There are countless numerical methods 

which can analyze a system in the time 

domain. These techniques reveal the system 

behavior for a particular initial condition. In 

other words, they do not draw a general 

picture of properties for a nonlinear 

dynamical system with initial independent 

parameters. Therefore, an analytical method 

is needed to study the characteristics of 

stability problems. To do this, Lyapunov  

(1892) established a powerful concept of 

stability for ordinary differential equations 

(Khalil, 2002; Wiggins, 2003). Testifying 

the stability of an equilibrium point without 

solving the equations of motion is an 

advantage of Lyapunov’s theorem. In this 

context, many efforts have been made by 

researchers in aerospace, mechanical and 

structural engineering areas (see for 

example, Lewis, 2002 and 2009; 

Tylikowski, 2005 and Pavlović et al., 2007). 
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Having a suitable estimation of stability 

domain for asymptotically stable equilibrium 

points is a substantial issue in engineering 

problems. To have such estimations, several 

approaches have been proposed (Genesio et 

al., 1985). A subclass of these analytical 

techniques is known as Lyapunov methods. 

In these methods, an optimal Lyapunov 

function is computed to find a conservative 

region of attraction in some neighborhood of 

asymptotically stable equilibrium points 

(Tan, 2006; Tan and Packard, 2008; Chesi et 

al., 2005). Lyapunov methods are well 

addressed in the literature (see for instance, 

Chesi, 2007; Johansen, 2000; Kaslik et al., 

2005b and Giesl, 2007). 

Zubov’s studies showed that the 

Lyapunov function satisfying a certain 

partial differential equation obtains the entire 

stability domain (Kormanik and Li, 1972; 

Camilli et al., 2008). In most cases, it is 

hard, if not impossible; to find a closed form 

solution for Zubov’s Partial Differential 

Equation (PDE) (or modified Zubov’s PDE). 

Hence, a number of numerical methods can 

be applied to approximate the region of 

attraction. Using power series (Margolis and 

Vogt, 1963; Dubljević and Kazantzis, 2002; 

Fermín Guerrero-Sánchez et al., 2009), Lie 

series (Kormanik and Li, 1972), rational 

solution (Vannelli and Vidyasagar, 1985; 

Hachicho, 2007), sum-of-squares method 

(Peet, 2009) and other numerical techniques 

(Kaslik et al., 2005a; O’Shea, 1964; 

Rezaiee-Pajand and Moghaddasie, 2012; 

Giesl, 2008; Giesl and Wendland, 2011) 

could be helpful to achieve a conservative 

stability domain. Although Zubov’s PDE is 

formulated for some particular non-

autonomous systems (Aulbach, 1983a and 

1983b), most of the numerical methods are 

applicable to autonomous systems. It is 

noteworthy that in some engineering 

problems, the averaging technique can 

transform the non-autonomous system into 

the autonomous system with an acceptable 

level of accuracy (see, for example, Gilsinn, 

1975; Yang et al., 2010 and Hetzler et al., 

2007). 

In this paper, the modified Zubov’s 

partial differential equation is approximately 

solved using the weighted residuals method 

for autonomous systems including an 

asymptotically stable equilibrium point in 

the origin. As such, we introduce a class of 

Lyapunov functions, which is a linear 

combination of polynomial basis functions. 

The capability that the Lyapunov functions 

can be simulated in n-dimensional spaces is 

an advantage of the suggested basis 

functions. By using the techniques of 

Collocation, Galerkin, Least squares, 

Moments and Sub-domain, an error function 

is minimized in the vicinity of the 

equilibrium point to obtain the supposed 

Lyapunov function. Afterwards, a global 

optimization procedure is applied to estimate 

the boundary of stability domain. Since the 

proposed Lyapunov function is polynomial, 

the theory of moments is used to solve the 

optimization problem. Larger conservative 

estimation of stability domains with less 

polynomial terms is the superiority of the 

proposed method in comparison with 

Zubov’s construction procedure. 

This paper is presented in nine sections. 

Section 2 presents some required definitions 

and reviews the Lyapunov stability theorem. 

In addition, a powerful procedure is 

described to obtain a conservative region of 

attraction. This consequently leads to 

introduce a useful global optimization 

method for polynomial nonlinear systems 

with a polynomial Lyapunov function in 

Section 3. Section 4 addresses the modified 

Zubov’s PDE for autonomous systems. This 

partial differential equation can lead to the 

exact stability domain in some particular 

cases. Furthermore, Zubov’s construction 

procedure, which is only applicable to 

polynomial nonlinear systems, is explained. 

Section 5 introduces the method of weighted 
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residuals and addresses the five most 

common subclasses of this technique. In 

Section 6, a suitable basis function is 

proposed for multiple scalar differential 

equations. Section 7 presents the numerical 

implementation of the suggested method. 

Some numerical examples are provided to 

prove the qualification of the proposed 

technique in Section 8. Although, the 

suggested method is applicable to any 

autonomous system with asymptotically 

stable equilibrium points, the most of 

examples are taken from large deformation 

problems in this research. In order to 

compare the results of the Zubov’s 

construction procedure and the proposed 

technique, all the examples are polynomial 

nonlinear. Finally, concluding remarks are 

given in Section 9.  

 

LYAPUNOV STABILITY THEOREM  

 

In this section, the stability of a nonlinear 

dynamical system is investigated by the 

stability theorem of Lyapunov (Khalil, 2002; 

Wiggins, 2003). To do this, the governing 

equations of a nonlinear system should be 

transformed into a finite number of coupled 

first-order ordinary differential equations:   

 

R,R, n

),(  txfx tx
  (1) 

 

where x  represents the time derivative of 

independent variables x . Since f  is a 

function of t , Eq. (1) is a non-autonomous 

system. Inhere, a subclass of Eq. (1) called 

an autonomous (or time invariant) system is 

studied: 

 

R,R, n

)(  txfx x
  (2) 

 

A noteworthy concept in stability theories 

is the equilibrium point. If the initial state, 

)( 0t
x , (or 0x ) starts at ex  and stays at this 

point for all future time, ex  is an equilibrium 

point of that dynamical system. According to 

this definition, the real roots of the following 

equations are the equilibrium points of the 

autonomous system (Eq.(2)): 

 

0)( xf  (3) 

 

The equilibrium point ex  is stable, if 

0 , there is a 0  such that: 

 

0),(0 ,
0

ttxxxx exte    (4) 

 

Similarly, the equilibrium point, ex , is 

called asymptotically stable, if it is stable 

and there exists a 0  such that: 
 

ext
t

e xxxx 


),(0 0
Lim  (5) 

 

Another beneficial concept in stability 

theories is the region of attraction or stability 

domain ( S ) which is defined as follows: 
 












ext
t

xxxS ),(

n

0 0
LimR  (6) 

 

It is important to highlight that by a 

simple change in variables, the supposed 

equilibrium point can be shifted to the 

origin. This paper studies autonomous 

systems including an asymptotically stable 

equilibrium point at the origin ( 0ex ) 

without loss of generality. In order to 

investigate the stability of the origin, a 

continuously differentiable function 

R: DV  is defined (Hachicho, 2007); 

where nRD . )( xV  is positive definite (or 

positive semi-definite) in D , if the condition 

(Eq. (7)) is held: 
 

 0,)0(or0and0 )()()0(  DxVVV xx
 

 (7) 



Rezaiee-Pajand, M. and Moghaddasie, B. 

30 

 

In the same way, if )(xV  is positive 

definite (or positive semi-definite), )( xV  is 

known as a negative definite (or negative 

semi-definite) function. The time derivative 

of this energy like function along the 

trajectories of Eq. (2) is as follows: 

 

)()(

)(

)( xx

x

x fVx
x

V
V 




   (8) 

 

According to Lyapunov's stability 

theorem, 0x  is a stable equilibrium point, 

if there exists a function )( xV  with the 

following conditions:  

1 - )( xV  is a positive definite function in D . 

2 - )( xV  is negative semi-definite in D . 

In addition, if )( xV  is negative definite in 

 0D , the origin is asymptotically stable. 

The continuously differentiable function, 

)( xV , which is satisfying the mentioned 

conditions, is called a Lyapunov function for 

the nonlinear dynamical system. 

A very beneficial theorem, which is 

immediately obtained from Lyapunov's 

stability theorem, is that if all the 

eigenvalues of matrix xf x  )(  at 0x  

have negative real parts, the origin is 

asymptotically stable. On the other hand, if 

one or more real parts of the eigenvalues are 

positive, the origin is unstable (Khalil, 

2002). Needless to say, for any dynamical 

system including a stable (or asymptotically 

stable) equilibrium point at 0x , a 

countless number of Lyapunov functions 

could be found. Each Lyapunov function and 

its time derivative can be helpful to find a 

conservative estimation of stability domain 

(Vannelli and Vidyasagar, 1985). To achieve 

this, domain   is defined: 

 

 0R )(

n  xVx   (9) 

Therefore, the estimation of a guaranteed 

region of stability is as follows: 

 

 *R )(

n cVxS x   (10) 

 

where *c  is the largest positive value 

keeping S  in the interior of  . As a result, 

finding *c  is an optimization problem and 

can be rewritten as a global constrained 

optimization problem (Hachicho, 2007): 

 















0

0

min*

)(

)(

x

V

Vc

x

x

  (11) 

 

Furthermore, the following equation 

displays the boundary of the attraction 

region: 

 

*)( cV x   (12) 

 

Obviously, a suitable Lyapunov function 

could give a less conservative estimation of 

stability domain. 

 

GLOBAL OPTIMIZATION OF 

POLYNOMIALS   

 

Finding the exact solution of the global 

constrained optimization problem, Eq. (11), 

would be impossible in most nonlinear 

problems. However, in the case of 

polynomial systems with a polynomial 

Lyapunov function the application of the 

theory of moments can be used to transform 

this global optimization into a sequence of 

convex linear matrix inequality (LMI) 

problems (Hachicho, 2007; Lasserre, 2001). 

Hence, the following optimization problem 

is considered: 
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





 rig

p

xi

x

,,1,0

min

)(

)(


 (13) 

 

where RR: n

)( xp  and RR: n

)(


xig  

are real-valued polynomials of degrees at 

most m  and iw , respectively. For more 

simplification, the following notation is used 

for polynomials: 

 

mxxxpp
n

j

j

n

j

jx
j  

 11

)( ,, 







 

 (14) 

 

In a similar way, 
)(xig  can be written as 

follows: 

 

riwxxxgg i

n

j

j

n

j

jxi
j ,,1,,,

11
)(

 










 

 (15) 
 

 

Now, vector  yy  , where y  is the 

 -order moment for some probability 

measure,  , is defined. Moreover, its first 

element ( 0,,0 y ) is equal to 1. For instance, 

Eq. (16) illustrates y  for a two-dimensional 

( 2n ) problem: 

 

, 1 2 1 2( ( , ))i j

i jy x x d x x   (16) 

 

After all elements of vector y  are 

computed, they establish the corresponding 

moment matrix )( ymM . In the case of a two-

dimensional problem, )( ymM  is a block 

matrix: 

 

 
mjiyjiym MM

2,0)(,)( 
  (17) 

 

where each block is a )1()1(  ji  matrix: 

 





























jiijij

jijiji

jijiji

yji

yyy

yyy

yyy

M

,01,1,

1,12,21,1

,1,10,

)(,









 

 (18) 

 

On the other hand, if the element ),( ji  of 

the matrix )( ymM  ( jiymM ,)( ) equals to Sy , 

where subscript S  is a function of i  and j , 

and the polynomial 



 xqq x)(  is given, 

then the elements of moment matrix )( yqmM  

are defined as follows: 

 

 


 Sjiyqm yqM ,)(  (19) 

 

Afterwards, the LMI optimization 

problem, Eq. (20), is considered: 

 





















riM

M

yp

ygwN

yN

y

ii
,,1,0

0

inf

)(

)(







 (20) 

 

where  2ii ww   is the smallest integer 

larger than 2iw , and N  should satisfy the 

following conditions: 

 





















riwN

m
N

i ,,1,

2



 (21) 

 

Lasserre’s work shows that the infimum 

value of 


 yp  in the LMI problem, Eq.  

(20), converges to the minimum value of 

)(xp  in the global constrained optimization 

problem, Eq. (13), by increasing the order of 

N  (Lasserre, 2001). Consequently, the 
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optimization problem, Eq. (11), can be 

transformed into a simple LMI optimization 

problem for polynomial systems with the 

polynomial Lyapunov function using the 

theory of moments (Hachicho, 2007). 

 

ZUBOV'S METHOD    

 

In section 2, the importance of Lyapunov 

functions in the analysis of the stability 

domain is described. Here, Zubov’s partial 

differential equation (PDE) for autonomous 

systems is introduced (Kormanik and Li, 

1972; Margolis and Vogt, 1963). 

Furthermore, a construction procedure for 

polynomial dynamical systems is presented. 

Zubov's method looks for the functions )(xu  

and )(x  such that satisfy the following 

equations (Camilli et al., 2008; Vannelli and 

Vidyasagar, 1985): 

 

0)0( u  (22) 

)()()()()()()( 1)1( xxxxxxx ffufuu    

 (23) 

 

where )(x  is a positive definite function. 

The exact solution of partial differential Eq. 

(23) with condition of Eq. (22) for 

autonomous systems obtains the whole of 

stability domain: 

 

 10R )(

n  xuxS  (24) 

 

Consequently, the boundary of stability 

domain has the following form: 

 

1)( xu  (25) 

 

It should be emphasized that Eq. (23) is 

complicated to solve. Hence, when )(xf  is 

continuously differentiable in the 

neighborhood of the origin, the following 

PDE can be used instead of Eq. (23): 

 

)1( )()()()()( xxxxx ufuu    (26) 

 

In a similar way, the stability domain and 

its boundary are derived from Eqs. (24) and 

(25), respectively (Margolis and Vogt, 1963; 

Vannelli and Vidyasagar, 1985). The 

transformation )1(ln )()( xx uV   can 

change Eq. (26) into a simpler form: 

 

)()()()( xxxx fVV   (27) 

 

Subsequently, the region of attraction and 

the equation of its boundary are as follows: 

 

  )(

n 0R xVxS  (28) 

)(xV  (29) 

 

Eq. (27) is called the modified Zubov's 

PDE. Although Eq. (27) is quite simpler than 

Eq. (23), in most cases, it is hard or 

impossible to find the exact solution of )( xV . 

Consequently, the approximate methods can 

be utilized to convince the modified Zubov's 

PDE in some neighborhood of the origin. It 

should be noted that the approximated 

Lyapunov function, )( xV , is applicable when 

x  satisfies the conditions given in Eqs. (9)  

and (10). 

In the case of polynomial nonlinear 

systems, the power series approximation of 

)( xV  could be useful to conservatively 

estimate the stability domain (Margolis and 

Vogt, 1963): 

 

 32)( VVV x  (30) 

 

where nV  is a homogenous polynomial 

relative to x  of the n
th

 power with unknown 

coefficients. After substituting Eq. (30) into 
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Eq. (27) and equating the coefficients of 

similar terms, one can obtain a set of linear 

equations, which can be solved successively. 

Therefore, the series approximation of 

Lyapunov function, )( xV , up to the n
th

 power 

will be available. This technique is called 

Zubov's construction procedure. Figure 1 

displays the required terms for a Lyapunov 

function with two independent variables 1x  

and 2x  up to the 3
rd

 power. 

 

 

 
 

 

 

 

 

Fig. 1. The required terms for approximate V  with 

two independent variables 1x  and 2x . 

 

As previously mentioned, Zubov's 

construction procedure can be utilized for 

polynomial nonlinear systems. This method 

basically satisfies Eq. (27) up to the n
th

 

power and neglects the higher terms. Hence, 

the approximation error will increase when 

x  goes away from the origin. In the next 

section, a number of homogenous 

techniques, which are able to approximately 

satisfy the modified Zubov's PDE (27) in 

some neighborhood of the stable equilibrium 

points for non-polynomial dynamical 

systems, are proposed. 

 

METHOD OF WEIGHTED RESIDUALS     

 

In the previous section, it is demonstrated 

that if there is a Lyapunov function )( xV  

satisfying the modified Zubov's PDE for an 

autonomous system, the exact solution of 

stability domain will be achieved when 

 )(0 xV . On the other hand, it is 

impossible to find the exact solution of 

stability domain in most cases. 

Consequently, the approximate techniques 

can be utilized to have a conservative 

estimation of stability domain. To do this, 

the method of weighted residuals is 

introduced. 

Unlike Zubov's construction procedure, 

the weighted residuals approach minimizes 

the approximation error all over the domain 

of integration. This means that the 

approximation error is uniformly distributed 

in some neighborhood of the origin. 

Furthermore, the weighted residual 

technique is applicable to non-polynomial 

systems. Inhere; the five most common sub-

methods of this technique are reviewed. The 

sub-methods dealt with in this research 

include Collocation, Galerkin, Least 

Squares, Moments and Sub-domain. In 

addition, a suitable basis function is also 

introduced in order to to solve the partial 

differential equations with several 

independent variables. 

The method of weighted residuals 

assumes that the Lyapunov function )( xV  is a 

linear combination of basis functions )(xiN  

which are linearly independent (Akin, 2005). 

This can be written as follows: 

 





m

i

ixix VNV
1

)()(  (31) 

 

where iV  represents the value of )( xV  at the 

particular point ix . Eqs. (32) and (33) show 

the conditions that basis functions should 

satisfy: 

 











jixi

jixi

xxN

xxN

j

j

,0

,1

)(

)(

 (32) 





m

i

xiN
1

)( 1 (33) 
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By substituting the approximate 

Lyapunov function, Eq. (31), into the 

modified Zubov's PDE, Eq. (27), a residual 

function )(xR  is generated: 

 

)()()(

1

)( xxx

m

j

jxj RfVN 
















  (34) 

 

In order to minimize the residual function 

in a supposed domain  , a set of weighted 

integrals of )(xR  is presumed to be equal to 

zero: 

 

midRw xxi ,,1,0)()(   (35) 

 

where )(xiw  denotes the i
th

 weighting 

function. Since there are m unknown values 

of jV  in )(xR , m weighted integrals are 

needed to have m equations. The matrix 

form of Eq. (35) is derived by substituting 

Eq. (34) into Eq. (35): 

 

      11   mmmm BVA  (36) 

 

where 

 

  mjidfNwa xxjxiij ,,1,,)()()(    

 (37) 

midwb xxii ,,1,)()(     (38) 

 

It is noteworthy that the integration 

domain   should be contained in the 

stability domain and the stable equilibrium 

point is required to be included. Another 

point is that the linear Eq. (36) is not 

independent. Therefore, the boundary 

condition, Eq. (7), at the origin should be 

added to the Eq. (36): 

 

0
1

)0()0( 


m

i

ii VNV  (39) 

 

Eq. (39) and condition of Eq. (32) 

demonstrate that if one node is placed at the 

origin (for example, the o
th

 node), oV  is 

equal to zero. When the values of the 

computed Lyapunov function at ix  are 

achieved )( xV  will be obtained using Eq. 

(31). Subsequently, the stability domain will 

be estimated by Eqs. (9) and (10). 

The choice of weighting function is the 

main difference between the sub-methods of 

the weighted residuals. 

 

Collocation Method 

In this technique, the weights are 

assumed to be a Dirac Delta function: 

 

miw
ixxxi ,,1,)()(    (40) 

 

The properties of the Dirac Delta function 

are as follows: 

 















ixx

ixx

xx

xx

i

i

,0

,

)(

)(




 (41) 

  ixxxx xQdQ
ii

,)()()(  (42) 

 

It can be concluded from Eqs. (35) and 

(42) that the residual error vanishes at the 

particular points ix  in the Collocation 

method: 

 

miR
ix ,,1,0)(   (43) 

 

Galerkin Method 

The weighting functions are presumed to 

be the basis functions, )(xiN , in this 

approach. More clearly, the residual error is 

forced to be orthogonal to the basis functions 
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in the Galerkin technique. As a result, the 

following condition is held: 

 

midRN xxi ,,1,0)()(   (44) 

 

Least Squares Method 

The residual error, )(xR , exists throughout 

the integration domain,  . A criterion that 

could denote the total error, totale , is the sum 

of 2

)(xR  all over  : 

 

  dRe x

2

)(total  (45) 

 

In order to find the minimum value of the 

total error, the derivative of totale  with 

respect to iV  should be equal to zero. This 

leads to the following relation: 

 

midR
V

R

V

e
x

i

x

i

,,1,02 )(

)(total











  

 (46) 

 

The comparison between Eqs. (46) and  

(35) reveals the value of the weights in the 

Least Squares method: 

 

mi
V

R
w

i

x

xi ,,1,2
)(

)( 



  (47) 

 

It should be noted that the coefficient 

matrix   mmA   in Eq. (36) is symmetric in the 

Least Squares technique: 

 

   mjidfNfNa xxjxxiij ,,1,,2 )()()()(    

 (48) 

 

Method of Moments 

In this approach, the weighting functions 

are chosen from the terms of the 

polynomials: 

mixw
n

q

qxi
q ,,1,

1

)( 



 (49) 

 

where qx  represents the q
th

 component of 

variable vector x  and q  is a non-negative 

scalar number. The maximum value of q  

depends on the number of nodes laying on 

the direction of the q
th

 coordinate. 

 

Sub-Domain Method 

The weights in this technique are defined 

as follows: 
 

mi
x

x
w

i

i

xi ,,1,
,0

,1
)( 








  (50) 

 

The sub-domains i  are non-overlapping 

and completely fill the integration domain 
 : 

 

mjijiji ,,1,,,    (51) 


m

i

i

1

  (52) 

 

Consequently, Eq. (35) can be rewritten 

in the following form: 
 

midR
i

x ,,1,0)(   (53) 

 

The most important point is that the 

method of weighted residuals works 

properly when a set of basis functions 

compatible with the nature of the dynamical 

system is applied. A suitable basis function 

which can be used for multiple scalar 

differential equations is introduced in the 

next section. 

 

BASIS FUNCTIONS IN  

N-DIMENSIONAL PROBLEMS      

 

As previously mentioned, the method of 

weighted residuals minimizes the residual 
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error over the integration domain,  . 

Depending on the number of independent 

variables n, the integration domain is defined 

in an n-dimensional space including the 

origin. An n-dimensional cuboid could be an 

appropriate suggestion for   for solving the 

modified Zubov's PDE with n independent 

variables: 

 

 nqLxxx qqq ,,1,R 0

n   

 (54) 
 

 

where 0qx  is the q
th

 component of the cuboid 

center 0x  and qL2  represents the length of 

the side dealing with the direction qx . The 

following transformation changes the 

integration domain into a simpler form: 

 

nq
L

xx

q

qq

q ,,1,
0




  (55) 

 nqq ,,1,1R n    (56) 

 

Eq. (56) represents an n-dimensional cube 

in space   with the center at the origin. If 

this cube is divided into n-dimensional cubic 

subspaces using a regular grid, the vertices 

of these subspaces could be a set of suitable 

locations for internal and external nodes. An 

example of node arrangement is given in 

Figure 2 for the two-dimensional space  . 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. An example of node arrangement for 2D 

space. 

 If the number of nodes in each principal 

direction is an odd number, there exists a 

node in the origin. Consequently, the 

boundary condition, Eq. (39), becomes 

simpler. Furthermore, the total number of 

nodes, m , is a product of the number of 

nodes in each axis. In order to generate the 

basis functions in n-dimensional spaces, the 

following product of polynomials in 

principal directions could be helpful to find a 

systematic method (Zienkiewicz and Taylor, 

2000): 

 

miNN
n

q

i

q

i

q
,,1,

1

)()( 


  (57) 

 

where the superscript i  indicates that the 

supposed basis function belongs to the i
th

 

node. If each i

q q
N )(  satisfies the conditions 

of Eqs. (32) and (33) in axis q , the obtained 

basis functions iN )(  in Eq. (57) also satisfies 

these conditions in n-dimensional spaces  . 

For this purpose, the Lagrange polynomials 

for i

q q
N )(  are suggested (Ralston and 

Rabinowitz, 1978): 

 














nq

mi
N

k
k

q

i

q

k

qqi

q q ,,1

,,1
,)(








  (58) 

 

where k  represents a set of points in the 

direction of axis q , except point i . In 

addition, k

q  denotes the value of q  at the 

k
th point. Figure 3 displays the basis function 

of point i  shown in Figure 2 and its first 

component: 
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Fig. 3. (a) The basis function of the point i  (b) The first component of the basis function. 

 

It should be noted that the terms used in 

Zubov's construction procedure are different 

from the terms applied by the proposed basis 

function. The maximum power of q  in 

i

q q
N )(  is equal to the number of nodes 

laying on the q
th

 axis minus one. On the 

other hand, the product of these components 

generates some higher terms. Figure 4 shows 

the required terms for a 2D problem with 
44  nodes. 

The comparison between Figure 1 and 

Figure 4 reveals that some additional terms 

are needed to build the basis functions. The 

integration process in n-dimensional space 

  for polynomial dynamical systems is quite 

simple: 

 
















1

1 evenisif,
1

2

oddisif,0






  d  (59) 

 

Another important issue regarding the 

suggested method is that the linear change of 

variables causing shift, rotation, scaling and 

so on in the integration domain,  , can 

affect the final result. Therefore, the union of 

the estimated stability domains is the largest 

conservative region of attraction. 

Conversely, the linear change of variables 

has no effect on the final result of Zubov's 

construction procedure. 

 

 

 

 

 

 

 

 

 
 

Fig. 4. The required terms for a 2D problem with 

44  nodes. 

 

COMPUTATIONAL STEPS       

 

As suggested in this paper, the modified 

Zubov's partial differential equation is 

approximately solved using the method of 

weighted residuals. The same strategy is 

applied for all sub-methods. Therefore, the 

same basis functions are proposed for all 

weighted residuals methods. The only 

difference is in the selection of weighting 

functions. The steps needed to be taken for 

the application of the suggested method are 

described below. 
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Step 1 

The estimation of integration domain,  , 

is the first step to be taken in the proposed 

technique. Since the modified Zubov’s PDE 

is defined in the region of attraction, the 

integration domain should be contained in it. 

In this way, an initial   is assumed. If it is 

located in the unknown exact stability 

domain, the estimated region of attraction 

could help choosing a new and, of course, a 

larger integration domain. Otherwise, we 

think that the computed stability domain will 

be quite smaller than  . To explain this, it 

should be noted that the method of weighted 

residuals attempts to find a suitable 

Lyapunov function, )( xV , which its time 

derivative with respect to the time (V ) is 

approximately equal to the negative definite 

function )(x  over  . On the other hand, 

according to Eqs. (9) and (10), there is at 

least one point in the boundary of the 

computed stability domain at which V  is 

equal to zero. Consequently, there should be 

a huge jump in the time derivative of 

Lyapunov function around this point. This 

phenomenon can cause an inappropriate 

impression on the weighted residuals 

method. 

 

Step 2 

As previously mentioned, the Lyapunov 

function, )( xV , is replaced by a linear 

combination of the basis function, )(xiN . 

Depending on the nature of the dynamical 

system, a set of suitable basis functions is 

chosen. These functions should convince the 

conditions of Eqs. (32) and (33). In addition, 

according to the modified Zubov’s partial 

differential equation, )(xiN  should be 

continuously differentiable all over the 

integration domain,  . An example of basis 

functions applied to n-dimensional space x  

is proposed in the previous section. 

Step 3 

After constructing the approximate 

Lyapunov function, the residual error can be 

minimized using the method of weighted 

residual. To do this, the weighting functions 

are chosen. Consequently, the coefficients of 

the linear Eq. (36) are obtained using Eqs. 

(37) and (38). As previously mentioned, the 

Eq. (36) is not linearly independent. In order 

to achieve the value of the Lyapunov 

function at particular point ix , the boundary 

condition (39) is added to (36). As a result, 

the approximation of )( xV  will be derived 

using Eq. (31). 

 

Step 4 

At the final step, domain   is obtained. 

In this domain, the time derivative of the 

Lyapunov function, )( xV , is negative semi-

definite. Afterward, the region of attraction 

will be in hand by finding the maximum 

value of *c  which keeps S  in   (Eq. (10)). 

In this way, the theory of moments 

transforms the global optimization problem, 

Eq. (11), into a sequence of the convex LMI 

problem, Eq. (20). 

 

 

NUMERICAL EXAMPLES 
 

In this section, some problems are 

numerically solved to show the 

qualifications of the suggested method. 

Hence, the stability of five multiple scalar 

differential equations including an 

asymptotically stable equilibrium point at 

the origin are investigated. Most of the 

examples are large deformation problems in 

mechanical and structural engineering. Since 

Zubov’s construction procedure is only 

applicable to polynomial nonlinear systems, 

non-polynomial differential equations are 

not concerned in this paper. Furthermore, in 

order to have a better comparison between 

various methods, the same format is 
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assumed for function )(x  in the modified 

Zubov’s PDE: 

 





n

q

qx x
1

2

)(  (60) 

 

It is needless to say that all approaches 

mentioned in this survey obtain the region of 

attraction conservatively. Therefore, the 

largest estimated stability domain is closer to 

the exact solution compared to the other 

estimations. In diagrams presented here, 

solid and dashed lines indicate the boundary 

of stability domains given by the suggested 

method and Zubov’s construction procedure, 

respectively. In all examples, the number of 

terms used in Zubov’s method is greater than 

the number of terms constituting the 

Lyapunov functions. 

 

Example 1 

A simple example of the nonlinear 

dynamical system with one degree of 

freedom is shown in Figure 5 (Thompson 

and Hunt, 1984). In this system, a rigid body 

under vertical loading is supported by a truss 

bar. Large deformation in this member 

makes the equation of motion nonlinear. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 5. A rigid body supported by a truss bar. 

All mechanical properties of the 

dynamical system are specified in Figure 5. 

If   is assumed to be the only degree of 

freedom, the energy terms are as follows: 

 

2)(
2

1
LmT   (61) 

2sin
8

2
LEAU   (62) 

)cos1(  LPWe  (63) 





0

)( dcWnc
  (64) 

 

where T  and U  are the kinetic and strain 

energies, respectively. In Eq. (62), it is 

presumed that the displacement along the 

truss bar varies linearly. Hence, U  is a 

function of the Green strain   (Crisfield, 

1991):  

 

2

0

1

2
eU EAL   (65) 

 

 

Where 

 
2 2

0

2

0

sin

2 2

e e

e

L L

L





   (66) 

 

In addition, the existence of the external 

work, eW , and the non-conservative work, 

ncW , are due to the external load, P , and the 

rotational damper, c , respectively. The 

Lagrange equation of motion is as follows 

(Wiggins, 2003): 

 

0sin2sin
8

22   LPLEAcLm   

 (67) 

 

This equation shows that rad0  is an 

asymptotically stable equilibrium point for 

crPP   ( EAPcr 35355.0 ). In order to 
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convert differential Eq. (67) to an 

autonomous system, the following change of 

variables is required: 

 














2

1

x

x
 (68) 

 

By substituting the values of m , c , EA , 

L  and P  into Eq. (67) and considering Eq. 

(68), an autonomous system including an 

asymptotically stable equilibrium point at 

the origin will be at hand: 

 









1122

21

2sin7678.1sin10 xxxx

xx




 (69) 

 

Eq. (69) is not polynomial nonlinear. 

Therefore, the expansion of Taylor series 

around the origin up to the 5
th

 power could 

be helpful: 

 









5

1

3

1212

21

46307.01904.2105355.2 xxxxx

xx




 

 (70) 

 

Figure 6 displays stability domains 

estimated using the proposed methods and 

Zubov’s construction procedure. As seen, 

the Collocation technique provides the 

largest region of attraction. On the other 

hand, there is not a solution for Eq. (35) and 

boundary condition, Eq. (39), when the 

method of Moments is applied. The 

estimation of Zubov’s construction 

procedure is contained in all other computed 

stability domains. The application of 

Galerkin and Sub-domain methods provide 

similar results. Finally, the region of 

attraction obtained using Least Squares has 

an area between estimations resulted from 

Galerkin technique and Zubov’s method. 

Here, the integration domain   is 

assumed to be a square which sides have 

length 2 with the center at the origin. In this 

example, 3 × 3 nodes are considered over the 

integration domain for the method of 

weighted residuals. Consequently, the 

Lyapunov functions computed using the 

suggested techniques include 9 terms. 

Hence, the maximum power of qx  is equal 

to 2. Furthermore, the modified Zubov’s 

PDE in Zubov’s construction procedure is 

satisfied up to the 3
rd

 power. This means that 

the Lyapunov function calculated using 

Zubov’s method includes 10 terms. Figure 7 

shows the computed terms in Lyapunov 

functions and the largest possible value of 
c . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Stability domain computed by the suggested techniques (solid) and Zubov’s method (dashed). 
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Fig. 7. Lyapunov function terms and 
c  for (a) Collocation (b) Galerkin (c) Least Squares (d) Moments (e) Sub-

domain (f) Zubov. 

 

Example 2 

The nonlinear spring-mass system in 

Figure 8 is an example of autonomous 

systems (Khalil, 2002). This system is 

composed of a mass m  connected to the 

support using a nonlinear spring, k , and a 

linear damper, c . 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 8. A spring-mass system. 
 

This dynamical system has one degree of 

freedom, u . Therefore, the equation of 

motion is as follows: 

 

0 ukucum   (71) 

 

The equation of motion becomes simpler 

by substituting the values of m , c  and k  in 

(Eq. (71)): 

 

031.0 32  uuuuu   (72) 

 

Similar to Eq. (68), the change of 

variables obtains two scalar differential 

equations: 

 


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31.0 xxxxx
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where 
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The stability domains estimated using the 

suggested techniques and Zubov’s 

construction procedure are displayed in 

Figure 9. Although the method of Moments 

gives a Lyapunov function, it concludes the 

null area (similar to the previous example). 

The result of Zubov’s method is contained in 

the estimated domain using the Least 

Squares technique. In addition, Galerkin and 

sub-domain yield a similar region of 

attraction, which is located in Collocation 

stability domain. 

For this system, the Lyapunov function in 

Zubov’s construction procedure is calculated 

up to the 3
rd

 power. In the method of 

weighted residuals, the integration domain is 

a square which sides have length 0.5 and 

includes 3 × 3 nodes. Consequently, the 

number of terms used in the suggested 

techniques and Zubov’s method are 9 and 

10, respectively. As mentioned in Section 6, 

a linear change of variables could make a 

suitable impression on the weighted 

residuals techniques. Here,   is assumed to 

be rotated by an angle  45  around the 

origin: 
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2

1
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x


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 (75) 

 

Therefore, Eq. (73) is transformed into 

the following form: 

 
2 2
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3 2 2 3
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y y y y y y
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
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

  

 

 (76) 

 

Figure 10 shows the applied terms in 

Lyapunov functions obtained and the 

maximum value of c . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Stability domain computed by the suggested techniques (solid) and Zubov’s method (dashed). 
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Fig. 10. Lyapunov function terms and 
c  for (a) Collocation (b) Galerkin (c) Least Squares (d) Moments (e)  

Sub-domain (f) Zubov. 
 

After calculating the Lyapunov functions in 

space y , one can achieve the stability domains 

in space x  by using Eq. (75) (see Figure 9). 

 

Example 3 

The differential equation of Vander Pol 

oscillator includes an asymptotically stable 

equilibrium point at the origin confined by 

an unstable limit circle as below (Grosman 

and Lewin, 2009): 

 
2( 1) 0u u u u     (77) 

 

where,   is equal to 1. This equation can 

change into a set of two scalar differential 

equations as follows: 
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Similar to the previous example, the 

change of variables, Eq. (75), can be 

performed to have a rotation in the 

integration domain,  , for weighted 

residuals techniques: 
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

 

 (79) 

 

The angle of rotation,  , is presumed to 

be 45 degrees. In this example,   is a square 

which sides have length 2 and contains 7 × 7 

nodes. Furthermore, Zubov’s construction 

procedure is calculated up to the 9
th

 power 

implying the related Lyapunov function 

includes 55 terms (6 terms greater than the 

Lyapunov functions in suggested methods). 

Figure 11 displays the estimated regions of 

attraction. 
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Fig. 11. Stability domain computed by the suggested 

techniques (solid) and Zubov’s method (dashed). 
 

As Figure 11 shows, Least Squares and 

Moments give the largest and the smallest 

stability domain, respectively. Here, the 

result of Collocation and Sub-domain are 

close to each other and contain the region of 

attraction achieved using Galerkin and 

Zubov’s method. 

 

Example 4 

A two-bar non-shallow arch in Figure 12 

includes a symmetric bifurcation point in its 

equilibrium path (Wu, 2000). This structure 

is subjected to a vertical load, P , at the top 

node. While the value of P  is less than the 

critical load, crP , the equilibrium path is 

composed of asymptotically stable 

equilibrium points. All mechanical 

characteristics are specified in this figure. In 

the state of static loading, while the vertical 

load is not reaching the critical load, 

NPcr 15018.0 , the value of 1u  is equal to 

zero. For NP 05.0 , the vertical 

displacement of the top node, 2u , is 

m002529.0 . In this example, it is assumed 

that the Green strain is constant along the 

bar axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 12. A two-bar non-shallow arch. 
 

Similar to example 1, the same procedure 

can be applied to obtain the equations of 

motion:  
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(80) 

 

where 

 

1

2

cos 85

sin 85

q L

q L

 


 
 (81) 

 

In order to investigate the stability of the 

truss under the particular loading, 

NP 05.0 , Eq. (80) should be changed 

into first-order ordinary differential 

equations:  
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where the variables qx  are defined as 

follows: 
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Fig. 13. Four cross sections of 4D stability domain computed by the suggested techniques (solid) and Zubov’s 

method (dashed) (a) 043  xx  (b) 042  xx  (c) 031  xx  (d) 021  xx . 
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Here, the integration domain,  , for the 

method of weighted residuals is presumed to 

be a four-dimensional cube which sides have 

length 0.25 and includes 3 × 3 × 3 × 3 nodes. 

This means that there are 81 terms in the 

Lyapunov functions which are computed 

using weighted residuals techniques. In this 

stare, the maximum power of each variable, 

qx , equals 2. On the other hand, the 

Lyapunov function calculated using Zubov’s 

construction procedure satisfies the modified 

Zubov’s PDE up to the 5
th

 power. 

Consequently, this function is composed of 

126 terms (45 terms greater than the 

Lyapunov functions in the suggested 

methods). Figure 13 shows some cross 

sections of four-dimensional stability 

domains provided by the proposed 

techniques and Zubov’s construction 

procedure. 

Figures 13(a) and 13(d) display the 

regions of attraction without initial velocity 

smxx /043   and initial displacement 

mxx 021  , respectively. If there are not 

initial velocity and displacement in one 

degree of freedom, the stability domains in 

the other direction are drawn in Figures 

13(b) and 13(c). As seen, Galerkin and Sub-

domain techniques take the largest area 

compared with the other techniques. The 

Collocation technique approximates the 

region of attraction close to these methods. 

Unlike the previous examples, the estimation 

of Least Squares is contained in the stability 

domain provided by Zubov’s construction 

procedure. Finally, the Moments technique 

results in an inappropriate area. 

 

Example 5 

Figure 14 shows a two-bar truss with two 

degrees of freedom. All mechanical 

properties of the nonlinear dynamical system 

are displayed in this figure. Large 

deformation in bars makes the equations of 

motion nonlinear. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. A two-bar truss. 
 

Similar to example 1, the same procedure 

can obtain the equations of motion: 
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 (84) 

 

By substituting the values of m , c , L , 

1EA  and 2EA  into Eq. (84), the equations of 

motion can be rewritten in the form of first-

order ordinary differential equations: 
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where 
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In this example, for the suggested 

method, the integration domain,  , is a four-

dimensional cube which sides have length 

0.5 and includes 3 × 3 × 3 × 3 nodes. In 

addition, Zubov’s construction procedure is 

calculated up to the 5
th

 power. Therefore, the 

number of applied terms in both techniques 

is similar to the previous example. Figure 15 

illustrates four cross sections of four-

dimensional stability domains given by the 

proposed and Zubov’s method. In this 

figure, the estimated stability domains for 

each degree of freedom, initial velocity and 

initial displacement are drawn. According to 

Figure 15, Galerkin and Sub-domain 

techniques take the largest region of 

attraction. Furthermore, Collocation gives a 

suitable area compared to Galerkin. Least 

Squares and Zubov’s construction procedure 

obtain a similar result and are contained in 

Collocation. The smallest estimation belongs 

to the method of Moments. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 15. Four cross sections of 4D stability domain computed by the suggested techniques (solid) and Zubov’s 

method (dashed) (a) 043  xx  (b) 042  xx  (c) 031  xx  (d) 021  xx . 
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CONCLUSIONS 

 

In this paper, an analytical procedure is 

proposed to estimate a conservative stability 

domain around the asymptotically stable 

equilibrium point in autonomous nonlinear 

systems. To do this, the method of weighted 

residuals is suggested to solve the modified 

Zubov’s partial differential equation in some 

neighborhood of the origin. For this purpose, 

the Lyapunov function is approximated 

using a linear combination of basis 

functions. For nonlinear systems including n 

independent variables, a set of suitable basis 

functions is defined, which can be used for 

all subclasses of the weighted residuals 

technique. To extend the investigation, 

strategies such as Collocation, Galerkin, 

Least squares, Moments and Sub-domain are 

utilized in the proposed algorithm. Finally, 

the residual function is minimized by a 

number of weighted integrals over the 

integration domain. Unlike Zubov’s 

construction procedure, the suggested 

method is also applicable to non-polynomial 

dynamical systems. 

Numerical examples show that 

Collocation has an appropriate and stable 

procedure for the estimation of stability 

domains compared with the other 

techniques, while Moments is not a reliable 

method for the approximation of the 

Lyapunov function. Considering this, it can 

be concluded that Lyapunov functions 

(especially in structural and mechanical 

engineering problems) are smooth functions 

and do not need weighting functions such 

that extremely vary all over the integration 

domain. Least Squares and Zubov’s 

construction procedure obtain a similar 

region of attraction. In most cases, the 

estimation of Zubov’s method is contained 

in the stability domain given by Least 

Squares. The final results of Galerkin and 

Sub-domain are strongly close to each other. 

In some cases, they take a larger region of 

attraction compared to Collocation. 

Finally, the number of terms used in 

Zubov’s construction procedure is greater 

than the number of terms constituting the 

Lyapunov functions in the proposed 

techniques in all examples. This result 

convinces the analyst for the robustness and 

ability of the suggested algorithm. It is worth 

adding that depending on the nature of the 

dynamical system, other types of basis 

functions could be potentially applied to 

achieve a better estimation of stability 

domain. 
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