
Civil Engineering Infrastructures Journal, 46(1): 1 – 14, June 2013 

ISSN: 2322 – 2093 

 

 

 

* Corresponding author E-mail: ghadi@ut.ac.ir 

   1 

 

Analytical Solution for a Two-Layer Transversely Isotropic Half-Space 

Affected by an Arbitrary Shape Dynamic Surface Load 
 

Ardeshir-Behrestaghi, A.
1
 , Eskandari-Ghadi, M.

2*
 and Vaseghi-Amiri, J.

3
 
        

 
1 

PhD Candidate, Faculty of Civil Engineering, Babol Noshirvani University of 

Technology, Babol, Iran. 
2 

Associate Professor, School of Civil Engineering, College of Engineering, University of 

Tehran, P.O.Box: 11155-4563, Tehran, Iran.  
3 

Associate Professor, Faculty of Civil Engineering, Babol Noshirvani University of 

Technology, Babol, Iran. 

 
Received: 9 Apr. 2011;      Revised: 12 Oct. 2011;      Accepted: 10 Mar. 2012 

ABSTRACT: The dynamic response of a transversely isotropic, linearly elastic layer 

bonded to the surface of a half-space of a different transversely isotropic material under 

arbitrary shape surface loads is considered. With the help of displacements and stresses 

Green’s functions, an analytical formulation is presented for the determination of the 

displacements and stresses at any point in both surface layer and the underneath half-space 

in frequency domain. Special results are prepared for circular, ellipsoidal, square and 

recangular patch load. It is shown that the displacements and stresses due to circular patch 

load are colapesd on the existing solution in the literature. Some new illustrations are 

prepared to show the effect of the shape of the patch on the responses of the domain 

specially near the load. 
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INTRODUCTION 

 

The determination of the response of a solid 

medium under a dynamic load has 

significant interest in the mathematical as 

well as applied theory of elasticity. In 

engineering, such problems are relevant to 

foundation engineering and compaction 

control in geotechnical engineering, as 

examples. The circular geometry of the 

loaded area, full or annulus contact, is less 

complicated than other shape loaded area, 

and thus has been more interested in the 

literature for understanding the mechanical 

behavior of the problem (Harding and 

Sneddon, 1945; Egorov, 1965; Keer, 1967; 

Dhawan, 1979; Tassoulas and Kausel, 1984; 

Johnson, 1986; Kim et al., 1987; Veletsos, 

1987; Shield and Bogy, 1989; Melerski, 

1997; Guzina and  Nintcheu, 2001; Pak et 

al., 2008; Eskandari-Ghadi et al., 2009 and 

2010). However, other shapes like square, 

rectangle and elliptic are being the most 

common shapes for foundation and thus are 

of more engineering applications (Wong and 

Trifunac, 1974; Wong and Luco, 1975; 

Bycroft, 1980; Iguchi and Luco, 1980;  Mita 

and Luco, 1989; Veletsos and Prasad, 1996; 
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Ahmad,  and Rupani, 1999; Algin, 2000; 

Kenzo, 2000). A domain may be affected by 

a patch load or a rigid solid, and both cases 

result in a complex problem. If an elastic 

isotropic or orthotropic half-space is affected 

by a rigid solid, and if an integral transform 

is used to solve the partial differential 

equations, then a dual integral equation is 

encountered. Because of the complexity of 

the procedure for obtaining analytical 

solution, an approximate numerical 

procedure for calculation of the harmonic 

force-displacement relationships for a rigid 

foundation of arbitrary shape placed on an 

elastic isotropic half-space was presented by 

Wong and Loco (1975). The procedure 

presented by Wong and Loco (1975) was 

used to evaluate the vertical, rocking and 

horizontal compliance functions for rigid 

rectangular foundations and the vertical 

compliance for a rigid square foundation 

with an internal hole.  

Iguchi and Luco (1980) developed an 

approximate method for the analysis of the 

dynamic interaction between a flexible 

rectangular foundation and the soil with 

consideration of the out-of-plane 

deformation of the foundation. The 

procedure presented by Iguchi and Luco is 

based on an extension of the subdivision 

method developed by Wong and Luco 

(1975) for rigid foundations. Bycroft (1980) 

developed a general method for determining 

the motion of a large rigid mat foundation 

subjected to traveling surface waves.  

In their paper, Mita and Luco (1989) used 

a hybrid approach to obtain the dynamic 

response of rigid square foundations 

embedded in an isotropic elastic half-space. 

The results are presented for excitations in 

the form of external forces and moments as 

well as for the case of plane elastic waves 

impinging on the foundation from different 

angles.  

Ahmad and Rupani (1999) investigated 

into the influence of mechanical and 

geometrical parameters on the horizontal 

impedance of square foundations resting on 

or embedded in a two-layer isotropic soil 

deposit. The parameters investigated are the 

ratio of shear-wave velocities, the thickness 

of the top layer, the depth of embedment and 

the degree of contact between the footing-

sidewall with backfill-soil. Algin (2000) 

presented a general algebraical formula, 

obtained by the integration of the 

Boussinesq equation, to determine the 

vertical stresses resulting from a linearly 

distributed surface pressure resting on an 

elastic isotropic medium. This problem and 

its various derivations has received 

considerable attention because of its 

applications in foundation engineering.  

This kind of problem will be more 

complicated if the solid under the effect of 

the load is not isotropic. The most common 

anisotropic material used in engineering is 

transversely isotropic material. Eskandari-

Ghadi et al. (2009) presented an analytical 

solution for the displacements and stresses 

of a transversely isotropic half-space 

affected by a vertically excited rigid circular 

foundation. Eskandari-Ghadi and Ardeshir-

Behrestaghi (2010) developed the solution 

for the axisymmetric vertically motion 

induced in a transversely isotropic full-space 

by a rigid circular plate.   

In this paper, a transversely isotropic 

layer bonded on the top of a half-space 

containing a different transversely isotropic 

material is considered as the domain of the 

problem. This domain is affected by a time 

harmonic arbitrary shape surface time 

harmonic load. The dynamic response of the 

domain is analytically investigated with the 

help of displacements and stresses Green’s 

functions introduced in (Eskandari-Ghadi et 

al., 2008). The displacements and stresses, 

are expressed in double integrals, where the 

integrands are the related Green’s functions. 

In spite of the poles and branch points in the 

path of integration, the integrals are 
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numerically evaluated with a very precise 

manner, so that the results are collapsed on 

the existing solution for the circular loaded 

area. Further results are presented for the 

square, rectanglar and elliptical shapes of 

loaded area, which can be used as 

benchmarks for foundation engineering in 

transversely isotropic soil, and as a reference 

for future numerical analysis of foundation.  

 

CONFIGURATION OF THE PROBLEM 

AND IT’S GENERAL SOLUTION 

 

A horizontal layer contains of a transversely 

isotropic linear elastic material bonded on 

the top of a half-space containing a 

transversely isotropic linear elastic material 

with different properties is considered as the 

domain of the problem. The axes of 

symmetry of both media are considered to be 

normal to the horizontal surface and thus 

parallel to each other. As indicated in Figure 

1, a cylindrical coordinate system {O; x =(r, 

 , z)}  whose  z-axis is in the depth-wise 

direction with respect to  the layer and  the 

half-space is used.  As references, the top 

layer and the half-space are referred to as 

Region I ( 0 z s  ) and Region II ( z s ), 

respectively.  In such a setting, the general 

equations of motion for transversely 

isotropic media in the absence of body 

forces are:   
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 (1) 

 

where u, v and w are the displacement 

components in r-,  - and z-direction, 

respectively;  is the material density, t 

denotes the time variable and Aij are the 

elasticity constants in the stress strain 

relations, which can be found in 

(Lekhnitskii, 1981). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Transversely isotropic layer (Region I) bonded on the top of a transversely isotropic half-space (Region II), 

system of reference and transformation of reference. 

x

z

y

r

z

x

zyu u

u

x'

y'

xb

yb b

sRegion I

Region II

z'



Ardeshir-Behrestaghi, A. et al. 

4 

 

These elasticity constants, which are 

allowed to be different in Region I and II, are 

correlated to five engineering elastic 

constants, E , Young’s modulus in the plane 

of transverse isotropy, E , Young’s modulus 

in the plane perpendicular to plane of 

transverse isotropy, Poisson’s ratios   and 

   characterize the lateral strain response in 

the plane of transverse isotropy to a stress 

acting parallel and normal to it, G , the shear 

modulus in planes normal to the plane of 

transverse isotropy, and G , the shear 

modulus in the plane normal to the axis of 

symmetry and in the direction normal to it. 

In the case of isotropic material, the 

elasticity constants are as:  

 

11 33 12 13 44 66
2 , ,A A A A A A           

 (2) 

 

where   and   are Lame’s constants. 

It is assumed that the set of the surface 

layer and the underneath half-space is under 

the effect of an arbitrary surface time-

harmonic load applied on a plane 
0  at 0z  . 

We denote the components of the surface 

traction as ( , )P r  , ( , )Q r   and ( , )R r  , 

which are applied  in r-,  -  and z-direction, 

respectively, and 
0( , )r   . In addition, the 

vector of the total force applied on plane 
0

  

are denoted as ( ; )f e ev z h hr  f f , where 

cos sinh r   e e e  and ,r e e  and ze  are 

the unit vector in r-,  -  and z-direction, 

respectively. In addition,  

0 0

cos ( , ) sin ( , )h r P r dA Q r dA
 

     e ef

 and 
0

( , ) ( , )v z R r dA r


  ef .  Considering 

the boundary conditions at the surface of the 

half-space, the regularity condition at 

infinity, and the continuity condition at 

z s , the displacements and stresses are 

written as bellow (Eskandari-Ghadi, et al., 

2008) for region I:    
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and as follows for region II: 
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 (6) 

 

The functions ( )
m

A 


 to ( )
m

H 


, ( )
m

A 


, 

( )
m

B 


 and ( )
m

G 


 are derived from the 

boundary and continuity conditions (see 

Eskandari-Ghadi, et al., 2008). 

From the solution given in the previous 

section, one may find the displacements and 

stresses Green’s functions by replacing the 

surface loads by point loads as:   
 

( , ) ( , ) ( , )i t i t i t

v h
r e r e r e     f ff  (7) 
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where ( , )v r f  and ( , )h r f  are, 

respectively, the vertical and horizontal 

components of the arbitrary point load, 

which are defined as: 
 

( ) ( )
( , ) , ( , )

2 2
v v z h h h

r r
r r

r r

 
 

 
 f fe eF F  

 (8) 

 

In addition, ze  is the vertical unit vector 

and cos sin ,h r   e e e  is the horizontal 

unit vector in arbitrary direction. Therefore 
 

( )
( , ) cos

2

( ) ( )
( , ) sin , ( , )

2 2

h

h v

r
P r

r

r r
Q r R r

r r


 



 
  

 



  

F

F F

 

 (9) 

 

Substituting these relations into the 

displacements and stresses given in the Eqs. 

(3) to (6), the related Green’s functions are 

readily given. The point loads given in the 

Eqs. (9) are applied at the origin. To have 

the displacements and stresses Green’s 

functions for an arbitrary location of point 

load, one may use a coordinate 

transformation to change the place of point 

load from the origin to an arbitrary surface 

point 0( , , )b bx yb . The required coordinate 

transformations are (see Figure 1): 
 

cos , sin ,
b b

x r x y r y z z        (10) 

 

The inverse relations may be written as: 
 

2 2

2 2 2 2
cos , sin

r x y

x y

x y x y
 

  

 
 

    

 (11) 

 

The displacements and stresses in the new 

coordinate system can be explained in terms 

of the displacements and stresses given in 

the Eqs. (3) to (6) as: 

2

2

2

( , , ) ( , , )cos ( , , )sin

( , , ) ( , , )sin ( , , )cos

( , , ) ( , , )

( , , ) ( , , )cos

( , , )sin 2 ( , , )sin cos

( , , ) ( , , )sin

( ,

x

y

z

x x rr

r

y y rr

u x y z u r z v r z

u x y z u r z v r z

u x y z w r z

x y z r z

r z r z

x y z r z

r

 



   

   



   

      

   

 





 

 

   

   

  

  

 

  



 

2

2 2

, )cos 2 ( , , )sin cos

( , , ) ( , , )(cos sin )

( , , ) ( , , ) sin cos

( , , ) ( , , )cos ( , , )sin

( , , ) ( , , )sin ( , , )cos

( , , ) (

r

x y r

rr

x z rz z

y z rz z

zz zz

z r z

x y z r z

r z r z

x y z r z r z

x y z r z r z

x y z r











    

    

     

      

      

 

 









   

 

   

  

   , , )z

 

 (12) 

 

To have these functions in the original 

coordinate system, however, with the point 

loads at 0( , , )b bx yb ,  one needs to replace 

the relations ( , , )b bx x x y y y z z       

to find: 

 

2

2

( , , , , ) ( , , )cos ( , , )sin

( , , , , ) ( , , )sin ( , , )cos

( , , , , ) ( , , )

( , , , , ) ( , , )cos

( , , )sin 2 ( , , )sin cos

( , , , , ) ( , ,

x b b

y b b

z b b

xx b b rr

r

yy b b rr

u x y z x y u r z v r z

u x y z x y u r z v r z

u x y z x y w r z

x y z x y r z

r z r z

x y z x y r z

 

   

   



   

     

  

 

 





 



 

2

2

2 2

)sin

( , , )cos 2 ( , , )sin cos

( , , , , ) ( , , )(cos sin )

( , , ) ( , , ) sin cos

( , , , , )

( , , )cos ( , , )sin

( , , , , )

( , , )sin ( , , )

r

xy b b r

rr

xz b b

rz z

yz b b

rz z

r z r z

x y z x y r z

r z r z

x y z x y

r z r z

x y z x y

r z r z

 











      

    

     



     



    







 

 







cos

 

( , , , , ) ( , , )
zz b b zz

x y z x y r z    

 (13) 

 

where  
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2 2( ) ( )

cos ( ) / , sin ( ) /

b b

b b

r x x y y

x x r y y r 

   

   
 

 (14) 

 

To determine the displacements and 

stresses for an arbitrary line or patch load, 

one needs to integrate the displacements and 

stresses as:  

 

 
2

1

ˆ ˆ ˆ ˆ ˆ, , , ,..., ( , , , )

, , , ,..., ( , , , , )

x y z xx zz b

y

x y z xx zz b b b

y

u u u x y z x

u u u x y z x y dy

 

 

   

  
 

 (15) 

 
0

ˆ ˆ ˆ ˆ ˆ, , , ,..., ( , , )

, , , ,..., ( , , , , )

x y z xx zz

x y z xx zz b b b b

u u u x y z

u u u x y z x y dy dx


 

 

   

  
 

 (16) 

 

where the hat is used to illustrate the total 

displacement or stress function. 

Furthermore, Eq. (15) gives the 

displacements and stresses due to a line load 

applied at bx  from  1y  to 2y  and Eq. (16) 

gives the same functions due to loads 

applied on the patch 0 .  

 

NUMERICAL RESULTS 

 

As indicated in Eqs. (3) to (6), the 

displacements and stresses Green’s functions 

are expressed in terms of one-dimensional 

semi-infinite integrals. In addition, the total 

displacements and stresses due to a patch 

load is a double integral, where the integrand 

is the Green’s function. Thus, volume 

integrals have to be evaluated to determine 

the displacements and stresses, where one 

side of the volume integral is infinite. 

Because of the presence of radicals, 

exponential and Bessel functions in a 

complex form in the integrands, the integrals 

cannot be given in closed-form. With the aid 

of the method of residue and contour 

integration, the semi-infinite integral may be 

evaluated more accurately.  For the 

numerical evaluation of integrals given in 

the Eqs. (15) and (16), some careful 

attention is needed due to the presence of 

singularities within the range of the 

integration and the oscillatory nature of the 

integrands induced by the Bessel functions. 

The important aspects of the integrands are 

the branch points and poles. There will be, in 

general, three branch points at , 1, 2, 3
qi

i   

in each solid domain (Region I and II) lying 

on the formal path of integration.  

 There are some poles in the path of 

integration given in the solutions of Eqs. (3) 

and (4), which are related to Rayleigh waves 

at the surface and should be paid special 

attention.  As shown in Figure 1, if the 

thickness of the top layer goes to infinity or 

if both regions have the same material 

properties, the geometry coincides with a 

half-space subjected to an arbitrary time-

harmonic surface load. In this case, there 

exists one pole related to the Rayleigh wave 

at the top surface.  For a layered medium, 

however, one should expect the possibility 

of seeing multiple poles and branch points 

on the path of integration as in Guzina and 

Pak (2001).  Thus, for evaluating the inner 

semi-infinite integral one must (i) locate on 

the  -axis all the poles and branch points 

associated with the branch cuts that render 

all functions single-valued and consistent 

with the regularity condition, (ii) integrate 

from zero to a point in behind the first pole 

and continuing the integration from a point 

after the first pole to a point in behind the 

second pole and so on, and from a point after 

the last pole to a sufficiently large value, and 

(iii) adding the contribution from the residue 

at the pole to the final sum.  A detailed 

investigation for poles p  may be found in 

(Eskandari-Ghadi et al., 2008).  
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Fig. 2. Different patch at the surface of the domain (see Fig. 1) as loaded area. 

 

Table. 1.  Synthetic material engineering constants 
Material 

No. 
E  (N/mm

2
) E  (N/mm

2
) G (N/mm

2
) G  (N/mm

2
)     

I  50000 150000 20000 20000 0.25 0.25 

II  100000 50000 40000 20000 0.25 0.25 

III  150000 50000 60000 20000 0.25 0.25 

 

If the top layer and the underneath half-

space are the same, then there exists only 

one pole in the integrand, which is related to 

Rayleigh wave.  If the two regions are of 

different materials, however, then there are 

two poles, one related to Rayleigh wave at 

the surface and the other is related to 

Stoneley wave at the interface. Then, the 

double integral has to be evaluated to 

determine the effect of a surface arbitrary 

shape load. In this study three different 

shapes, which are circular, rectangular and 

ellipsoidal, are considered (see Figure 2). 

The circular patch load is considered to 

verify the procedure introduced in this study, 

and the rectangular and the ellipsoidal shape 

are to present some new numerical results. 

The surface integrals, in this study, are 

evaluated with trapezoidal method. Several 

numerical examples are carried out to 

illustrate the present solutions for 

transversely isotropic half-space, with 

satisfactory results.  It needs to be pointed 

out that all numerical results presented here 

are dimensionless, with a nondimensional 

frequency defined as 0 44
/

I I
a A   .  

The stresses and the displacements are 

normalized as ˆ /
ij I

 F  and 
44

ˆ /
II i I

A u aF  

with , ,i j x y  and z, and I v  and h .  

 To illustrate some numerical results, three 

different materials with the elasticity 

constants tabulated in Table 1 are selected. 

The top layer and the underneath half-space 

is set in such a way the half-space to be 

always contained Material II, however, the 

top layer may contain one of the three 

material listed in Table 1. 

Figure 3 illustrates the horizontal 

displacement 
44

ˆ /
II x h

A u aF  in terms of depth 

due to horizontal circular patch load of 

radius a with a dimensionless frequency 

0 0.5   and show a comparison with the 

results reported by Eskandari-Ghadi et al. 

(2008), when a layer of Material I with a 

thickness of s a  rested on a half-space 

containing Material II. As observed in this 

figure an excellent agreement can be 

discovered between the results from this 

study and Eskandari-Ghadi et al. (2008)
1
. In 

addition, Figure 4 shows the variation of the 

stress ˆ /
x z h

 F  in terms of depth due to 

horizontal circular patch load for a 

dimensionless frequency 0 0.5   and also a 

                                                           

1
The Materials I and II in this study coincide with the 

Materials II and III in Eskandari-Ghadi et al., (2008) 

2a2a 2a

2a

2a2a

2a2a

2a

2b

2a2a

2b2b

2a

2b

2a2a

2b2b
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comparison with Eskandari-Ghadi et al., 

(2008)
2
. for the set of layer and half-space as 

in Figure 1. Again a very good agreement 

can be seen in this figure. Figures 5 and 6 

illustrate the horizontal displacement and the 

shear stress due to a rectangular patch load 

with 2b a  (see Figure 2) for a low 

frequency of 
0 0.5  , and Figures 7 and 8 

show the same functions due to a square 

patch load of length 2a  for a high frequency 

of 
0 3.0  , where three different 

configurations of top layer and half-space as 

mentioned before are considered. In all 

cases, the thickness of the half-space is 

considered to be equal to a . The radiation 

condition is clearly satisfied, and the wave 

length shows the wave number of both the 

displacements and stresses. The high value 

of displacement in the configuration of 

Material I and Material II is clear from the 

values listed in Table 1. 

Figures 9 and 10 depict the vertical 

displacement and the axial stress ˆ
zz  in 

terms of depth due to an elliptical vertical 

patch load for three sets of top layer and 

half-space for a high frequency time 

harmonic load. The dimensions of ellipsoid 

are selected in such a way its area to be the 

same as the area of the previous rectangular 

patch. As seen the radiation condition are 

satisfied very clearly. Figures 11 to 14 show 

the vertical displacement and the stress ˆ
zz  

for vertical load applied on a square for low 

and high frequency. Figures 15 and 16 

depicts the vertical displacement and the 

axial stress ˆ
zz  in terms of depth due to a 

rectangular vertical patch load for three sets 

of top layer and half-space for a high 

frequency time harmonic load. 

                                                           

2
 The results in Eskandari-Ghadi et al., (2008). have 

been modified in such a way to be comparable with 

the results here. 

To compare the displacements and 

stresses due to different patch load, the 

vertical displacement and the stress ˆ
zz  due 

to ellipsoidal and rectangular vertical patch 

load are compared in Figures 17 to 20. As 

observed in these figures, the same trend and 

the same amplitude for the displacements 

and stresses are seen. Satisfying the Saint 

Venant’s principle is clear here in the 

figures. As illustrated in Figures 17 to 20, 

the static and the dynamic cases of principle 

of Saint Venant are different. In the static 

case, the value of the displacement/stress 

and its place are the same, while in dynamic 

case the amplitude of the function is the 

same. 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

Fig. 3. Horizontal displacement in terms of depth due 

to horizontal circular patch load with a dimensionless 

frequency 
0

0.5   and comparison with Eskandari-

Ghadi et al. (2008). 

 

 

 

 

 

 
 

 

 

 

 

 
 
 

Fig. 4. The stress ˆ
xz

  in terms of depth due to 

horizontal circular patch load with a dimensionless 

frequency 
0

0.5   and comparison with Eskandari-

Ghadi et al. (2008). 
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Fig. 5. Horizontal displacement in terms of depth due 

to horizontal ellipsoidal patch load with a 

dimensionless frequency 
0

0.5  . 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

Fig. 6. The stress ˆ
xz

  in terms of depth due to 

horizontal ellipsoidal patch load with a dimensionless 

frequency 
0

0.5  . 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7. Horizontal displacement in terms of depth due 

to horizontal square patch load with a dimensionless 

frequency 
0

3.0  . 

 
 

 

 
 

 

 

 

 

 

 

 

 

 
 
 

 

Fig. 8. The stress ˆ
xz

  in terms of depth due to  

horizontal square patch load with a dimensionless 

frequency 
0

0.5  . 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 9. Vertical displacement in terms of depth due to 

vertical ellipsoidal patch load with a dimensionless 

frequency 
0

3.0  . 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 10. The stress ˆ
zz

  in terms of depth due to 

vertical ellipsoidal patch load with a dimensionless 

frequency 
0

3.0  . 
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Fig. 11. Vertical displacement in terms of depth due 

to vertical square patch load with a dimensionless 

frequency 
0

0.5  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 12. The stress ˆ
zz

  in terms of depth due to 

vertical square patch load with a dimensionless 

frequency 
0

0.5  .  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Fig. 13.  The stress ˆ
zz

  in terms of depth due to 

vertical square patch load with a dimensionless 

frequency 
0

3.0  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 14.  Vertical displacement in terms of depth due 

to vertical square patch load with a dimensionless 

frequency 
0

3.0  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 15. Vertical displacement in terms of depth due 

to vertical rectangular patch ( 2b a ) load with a 

dimensionless frequency 
0

3.0  .  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 16. The stress ˆ
zz

  in terms of depth due to 

vertical rectangular patch ( 2b a ) load with a 

dimensionless frequency 
0

3.0  . 
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Fig. 17.  Comparison of the stress ˆ
zz

  due to 

ellipsoidal and rectangular vertical patch load in the 

static case, 
0

0  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 18.  Comparison of the vertical displacement due 

to ellipsoidal and rectangular vertical patch load in 

the static case,
0

0.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 19.  Comparison of the stress ˆ
zz

  due to 

ellipsoidal and rectangular vertical patch load with a 

dimensionless frequency 
0

3.0  . 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 
 

Fig. 20.  Comparison of the vertical displacement due 

to ellipsoidal and rectangular vertical patch load with 

a dimensionless frequency 
0

3.0  . 

 

CONCLUSIONS 

 

The effect of an arbitrary shape surface 

horizontal and vertical time harmonic load 

on response of a transversely isotropic, 

linearly elastic half-space containing a top 

layer with different mechanical properties 

have been analytically investigated in this 

paper. With the help of displacements and 

stresses Green’s functions, an analytical 

formulation has been presented in the form 

of double integrals for determination the 

displacements and stresses at any point in 

the domain of the problem. The numerical 

evaluation has been done with special 

attention and an excellent agreement has 

been obtained, when compared with existing 

results. Some new results have been 

presented for ellipsoidal, square and 

rectangular patch load. It is shown that the 

static and the dynamic cases of Saint 

Venant’s principle are different. 

 

NOTATION 

 

Aqij = elasticity constants of the q
th

 region 

a = half of the maximum dimension of 

surface force  in x-direction 

b = half of the maximum dimension of 

surface force  in y-direction 
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E  = Young’s moduli in the plane of 

transverse isotropy 

E= Young’s moduli in the direction normal 

to the plane of transverse isotropy  

G  = shear modulus in the plane normal to 

the axis of symmetry 

G = shear modulus in planes normal to the 

plane of transverse isotropy 

Jm = Bessel function of the first kind and m
th

 

order 

( , )P r  = time-harmonic surface force 

component  in r-direction 

( , )Q r  = time-harmonic surface force 

component  in θ -direction 

( , )R r  = time-harmonic surface force 

component  in z-direction 

0 = arbitrary patch of load at z=0 

( ) / 2h r r F = point horizontal load of 

magnitude hF   

( ) / 2v r r F = point vertical load of 

magnitude vF  

he = unit vector in horizontal plane 

ze = unit vector in z-direction 

re = unit vector in r-direction 

e = unit vector in  -direction 

r = radial coordinate 

s = thickness of region I in z-direction 

t = time variable 

u = displacement component in r-direction 

ˆ , ( , , )i iu u i x y z = displacement component 

in i-direction in Cartesian coordinate system 

v = displacement component in θ -direction 

w = displacement component in z-direction 

( , , ),( , , )x y z x y z  = Cartesian coordinate 

systems 

0( , , )b bx yb = location of point load in 

Cartesian coordinate system 

z = vertical coordinate 

( )r = Dirac-delta function 

( , , , )ij i j r z  = strain components 

  = angular coordinate 

  = Lame's constant 

1q
 , 

2q
  ,

3q
  = radicals appearing in general 

solutions 

  = Lame's constant 

 = Poisson’s ratios characterizing the lateral 

strain response in the plane of transverse 

isotropy to a stress acting parallel to it 

= Poisson’s ratios characterizing the 

lateral strain response in the plane of 

transverse isotropy to a stress acting normal 

to it 

  = Hankel's parameter 

1 2 3λ λ λ, , ,
q q q p    = branch points and simple 

pole on positive real axis 

 = material density  

( , , , )ij i j r z  = stress tensor in polar 

coordinate system  

ˆ , ( , , , )ij ij i j x y z   = stress tensor in 

Cartesian coordinate system 

0 = nondimensional frequency 

 = angular frequency 
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