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ABSTRACT 

In this paper, a swarm-based metaheuristic optimization algorithm is proposed. The 

optimization process of this algorithm is conducted by a specific number of defined agents. 

These agents move through the search space based on their distance from the best candidate 

and using the combination of tangential- and perpendicular-direction movements. It 

dynamically adapts the movements to improve the search for optimal results. The agents 

explore a circular region to uncover potentially better solutions. The radius of this circle 

decreases gradually to provide a proper balance between exploration and exploitation. In order 
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to validate the performance and efficiency of the presented algorithm, several mathematical 

and constrained engineering problems are analyzed. The performance of the algorithm is 

compared against other optimization methods. Based on the examples, the proposed method 

shows strong exploration and exploitation ability, while many other methods lack at least one 

of them. Moreover, the proposed method does not have many parameters to be highly sensitive 

to them. On the other hand, in all mathematical, engineering, and structural examples, the 

proposed method could successfully handle the local optima due to the combination of 

peripheral and perpendicular movements. These features together make the proposed method 

an efficient choice for solving optimization problems. 

 

Keywords: Metaheuristics; Swarm-based Optimization; Constrained Optimization; 

Perimeter-Perpendicular Optimization 

 

1. Introduction 

Optimization algorithms can be classified into classical and non-classical (heuristic) categories. 

Most classical algorithms work based on the gradient or Hessian matrix and search for the 

optimal point in the neighboring region of the starting point. Hence, these methods can increase 

the computational cost, especially for problems with a large number of variables. On the other 

hand, these algorithms can get stuck in local optima, or the convergence to the best solution 

may be slow. Moreover, when the objective function or constraints are non-differentiable or 

discontinuous, the applicability of the classical algorithms is limited. These problems led to the 

consideration of heuristic and metaheuristic optimization methods (Almufti, 2019; safarkhani 

and madhkhan, 2025). These methods generally combine simple rules to provide a solution in 

a reasonable time. None-classical algorithms also use the information from previous steps to 

preserve the search experience and reduce calculation costs (Abdel-Basset et al., 2018). 
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Three important categories of metaheuristic methods are as follows: evolutionary methods, 

inspired by the principles of natural selection and biological evolution, such as genetic 

algorithm (GA); swarm intelligence, inspired by the collective behavior of living organisms, 

such as particle swarm optimization (PSO); physics-based methods, inspired by physical 

principles and phenomena observed in nature, such as the gravitational search algorithm (GSA) 

(Hashemi et al., 2021). 

Evolutionary algorithms (EAs) use simulated evolution based on the patterns of reproduction 

and mutation found in nature. Inspired by Darwinian evolutionary concepts, EAs demonstrate 

the gradual change of a system over time. In complex cases where other methods may fail, EAs 

are considered a simple and flexible approach. They belong to a set of random search 

algorithms and are classified as metaheuristic methods because they provide good solutions, 

although they do not guarantee the optimal solution. EA includes three algorithms: 

evolutionary programming, evolutionary strategies, and genetic algorithms.  

The most popular type of EA is GA, which was first proposed by Holland (Holland, 1992) in 

1970 and later extended by Goldberg in 1989 (Goldberg, 1992). It is often used for the 

optimization of discontinuous and non-linear problems. Recombinant operators are used to 

search and design the adaptive system. In this method, the entire population is considered as 

candidate solutions for the problem, and a population called parents are randomly selected from 

the current population and used to produce children for the next generation. Over successive 

generations, an optimal solution evolves through natural selection, as unfavorable traits are 

removed from the population (Ezugwu et al., 2021; Haldurai et al., 2016). 

Evolution strategy (ES) was introduced by Rechenberg (Rechenberg, 1978) and is considered 

an optimization method for complex and multifaceted functions. The method involves 

selectively evaluating data and removing redundant codes until the final solutions are 

represented by number vectors (Coello Coello, 2005). 
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Evolutionary programming (EP) was first proposed by Fogel (Fogel, 1998) as a method to 

achieve artificial intelligence. Unlike ES, there are no restrictions on the type of data used. This 

method has a fixed structure and allows numerical parameters to evolve. 

Swarm intelligence, as a subset of metaheuristic methods, have the capability to explore 

parameter spaces to identify optimal values for specific problems. This algorithm is a group of 

optimization methods based on self-organizing and interactive approaches inspired by the 

collective behavior of living organisms such as flowers, ants, bees, birds, and other social 

creatures to solve optimization problems (Kennedy, 2006).  

In swarm algorithms, agents or particles initiate their movements from a starting point in the 

search space, continuously change their positions, and adjust themselves. This process of 

adjustment is controlled by a set of rules inspired by social or evolutionary concepts, such as 

goal orientation and interaction with peers. Unlike evolutionary methods that operate on an 

individual basis (one-to-one), swarm methods use group interactions among agents to reach 

the optimal solution. 

One of the popular swarm algorithms is PSO, introduced by Kennedy and Eberhart (Kennedy 

and Eberhart, 1995). PSO, inspired by the social behavior of bird flocks, models the movement 

of particles in a multidimensional search space to search for optimal solutions. Through 

iterative updates of particle positions and velocities, PSO effectively balances exploration and 

exploitation to converge toward optimal solutions. The artificial bee colony (ABC) algorithm, 

presented by Karaboga and developed by Basturk and Karaboga (Akay and Karaboga, 2012; 

Karaboga and Akay, 2009), is another swarm-based method. This algorithm imitates the 

behavior of a bee colony without the limitation of the non-linearity of functions. In this 

algorithm, new bees find food sources (candidate solutions) based on information from old 

bees that visited these sources. Many researchers developed other different swarm-based 

algorithms such as whale optimization algorithm (Mirjalili and Lewis, 2016), firefly algorithm 
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(Rokh et al., 2024), bat algorithm (Umar et al., 2024), cuckoo search (Abualigah et al., 2024), 

glowworm swarm optimization (Mohd Shahrom et al., 2023), etc. 

Physics-based optimization methods are gaining recognition as a new approach. Some well-

known Physics-based algorithms are electromagnetic field optimization (EFO) which is based 

on electromagnetics(Abedinpourshotorban et al., 2016), gravitational search algorithm (GSA) 

which is based on the laws of gravity and motion (Rashedi et al., 2009), Simulated Annealing 

(SA) (Rutenbar, 1989), which imitates the cooling process of metals, the harmony search (HS) 

method which is inspired by the improvisation process of music (Lee and Geem, 2005; Geem 

et al., 2001), etc. 

In recent years, different classes of metaheuristics have extremely developed. Among swarm 

algorithms, there are well-known ones such as Ant Colony Optimization (Dorigo et al., 2007), 

Cuckoo Search (Yang and Deb, 2009), Whale Optimization Algorithm (Mirjalili and Lewis, 

2016), Seagull Optimization Algorithm (Dhiman and Kumar, 2019), and Butterfly 

Optimization Algorithm (Arora and Singh, 2019). Among evolutionary algorithms, there are 

also other developed methods. Apart from GA, Evolutionary Programming, Differential 

Evolution (DE) (Storn and Price, 1997), Evolution Strategies (Hansen et al., 2003)  can be 

named. Enhanced Genetic Algorithm (EGA) (Roudak et al., 2024) is another method in this 

group, which has been recently proposed. Among physics-based algorithms, Simulated 

Annealing (SA) (Kirkpatrick et al., 1983) and Gravitational Search Algorithm (GSA) (Rashedi 

et al., 2009) can be mentioned. Other recent methods of this category are Black Hole algorithm 

(Hatamlou, 2013), Henry Gas Solubility Optimization (Hashim et al., 2019), and Equilibrium 

Optimizer (Faramarzi et al., 2020). Recently, another group of metaheuristics based on social 

behavior of humans have developed. In this group fall Bus Transportation Algorithm (Bodaghi 

and Samieefar, 2019), Political Optimizer (Askari et al., 2020), Group Teaching Optimization 

Algorithm (Zhang and Jin, 2020), and Student Psychology Based Optimization (Das et al., 
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2020). Among other well-known methods, Archimedes Optimization Algorithm (AOA) is 

inspired by the Archimedes’ Principle (Hashim et al., 2021). Honey Badger algorithm (HBA) 

is presented by formulating the digging behavior to represent the exploration stage while 

exploitation is represented by the process of finding honey (Hashim et al., 2022). War Strategy 

Optimization (WSO) mimics defense or attack of troops in wars (Ayyarao et al., 2022). Single 

Candidate Optimizer (SCO) is another method which has been presented recently (Shami et 

al., 2024). 

Although the above-mentioned optimization algorithms have taken large steps of 

improvement, they present the best performance in some problems and they fail to success in 

many other ones. Many algorithms show strong exploration while their exploitation is 

questioned. Many other methods are completely opposite. Some methods fall in local optima. 

Some methods require a large number of function evaluations. Some methods have several 

parameters where the methods are highly sensitive to these parameters. These all, necessitate a 

robust efficient algorithm, on which one can rely to solve a large variety of optimization 

problems (Shami et al., 2024). In this study, a new swarm-based metaheuristic optimization 

algorithm is proposed. In this algorithm, a specific number of agents explore the search space 

to find the best direction of movement to reach the global minimum. To ensure proper 

exploration and exploitation, adaptive parameters are defined to control the movement of the 

population. The details of the proposed algorithm and the validation process are described in 

the subsequent sections. The proposed algorithm offers limited number of parameters to escape 

from sensitivity of parameters. Besides, it has been tested in various mathematical, structural 

and engineering problems to check its performance under different conditions. Based on the 

extracted results and by comparing with other methods of literature, the proposed method has 

shown that it can more robustly and efficiently converge to the solutions, avoiding local optima. 

2. Proposed method 
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In this paper, a novel metaheuristic optimization algorithm is proposed. This algorithm operates by 

defining a specific number of agents and moving them through the search space. These agents 

determine that the approach reaches the global minimum by deciding on the direction of movement. 

The proposed algorithm can be used for a wide range of optimization problems due to its simple 

structure, adaptability, and balance between local and global searches, which prevents it from 

becoming trapped in local optima.  

In this section, the mechanism of the algorithm is presented step by step. Then, the exploration and 

exploitation ability of the algorithm is discussed in detail. 

2.1. Mechanism of the algorithm  

In this section, the process of the algorithm is presented elaborately. The algorithm consists of 

the following steps. Each step will be explained in detail in the subsequent sections. 

1. Generation of the initial population and random agents 

2. Evaluation of the objective function in the generated population, identifying the 

initial minimum point and considering it as the center. 

3. The movement of the agents based on the distance from the center with a certain 

criterion and the evaluation of the objective function in the updated position of the 

agents. 

4. Determining the new agents, updating the position of the center, and repeating the 

previous steps until convergence  

2.1.1. Initialization 

The algorithm is initialized randomly with a specific size in the range of variables. The initial 

population consists of a set of uniformly distributed random points across the search space. 

Then, the objective function is evaluated for the population. The point with the minimum value 

of the objective function is selected from the initial population. This point will be considered 

as the basis of generating the next population. Then a specific number of points are randomly 
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selected as the agents. These points have a fundamental role in reaching the global minimum 

by moving through the search space at each iteration.  

2.1.2. Agents’ movement criterion 

As shown in Fig. 1, first, the distance between agents and the best solution (Ri) is obtained. The 

agents are considered to be on a circle centered on the best solution with radius Ri. Then, a 

random unit vector λ is multiplied by Ri to move the agents along the circumference of each 

circle. The unit vector determines the direction on which the new agent is to be located. The 

agents have to decide whether to move closer to the best solution or further away from it. To 

achieve this, the agents move inside or outside the circle by a distance d in the direction of λ 

vector. d is used as a parameter to control the movement of the agents. In fact, d acts as a scalar 

value that specifies the distance to which the agents should move. As shown in Fig. 1, using λ 

the agent moves on the perimeter of the circle centered at the best solution with radius Ri. Then, 

the agent moves perpendicular to this circle with the step size d. Therefore, the proposed 

method presents a combination of perimeter-perpendicular movements. By adjusting the value 

of d, the algorithm can regulate the agents’ step size, which influences how far the agents 

explore in the search space during each iteration. d is 

)
1

()( minmax it
XXd                                                                                                                    (1) 

where it is the number of iteration and α determines the rate of decrease in the value of d in 

each iteration. It is considered a random number between 0.95 and 1.05.  
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Fig. 1. Selection of agents in each iteration 

Based on the defined Ri and d, two points X1 and X2 are determined for each agent according 

to Eq. 2, and the value of the objective function is evaluated at each of them. 

)(1 dRic
i  λXX                                  i = 1, 2, 3, …, NA                                                                                         (2) 

)(2 dRic
i  λXX  

Where Xc is the center of the circles which is the best solution at each iteration, λ is a random 

unit vector defined to set the location of the agents on the circumference of the circles, and NA 

is the number of agents. Between points i
1X  and i

2X , the point with the smaller value of the 

objective function is considered as the new position of the agenti. Fig.1 indicates the process 

of agent selection at iteration k+1 based on its location at iteration k.  

2.1.3. Position updating procedure and convergence  
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As mentioned, the agents are moved in the search space by the specified criterion in each 

iteration. This criterion determines how the agents move in search of optimal solutions. In the 

next step, among all the new positions of the agents, the one that results in the smallest objective 

function value is identified and replaces the center of the circles. This process helps in 

progressively moving the center toward an optimal solution. This procedure during three 

iterations is illustrated in Fig. 2. 

 

Fig. 2. The movement of agents toward the global minimum during three iterations   

By changing the location of the center and updating the position of the agents, new circles are 

created around the replaced center, and the previous steps are repeated. In the subsequent 

iterations, as the global minimum is approached, the radius of the circle is gradually reduced 

until convergence occurs. 

2.1.4. Escaping from local optima  

The parameters d and λ provide an acceptable exploration ability. To further improve the 

algorithm ability to escape from local optima, a specific threshold is defined to determine 
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whether the radius (Ri) should be changed from its original value. This altering helps in 

diversifying the search process and avoiding premature convergence to local optima. At each 

iteration, a uniformly distributed random number within (0,1) is compared to the predefined 

threshold. If this random number is smaller than the threshold, the radius changes based on the 

following equation. 

a
itMaxIt

MaxIt
R XX 


  )( minmax)

20
(                                                                                             (3) 

Where a is a random number with uniform distribution. By occasionally changing the radius, 

the algorithm can explore new areas of the solution space to increase the chance of escaping 

from local optima. 

2.2. Exploration and exploitation ability  

2.2.1. Exploration 

Exploration refers to the process of searching through a broad range of possible solutions to 

discover potentially better ones. The goal of exploration is to avoid getting stuck in local optima 

and examining a wide range of options instead of focusing on a local optimum that might 

incorrectly seem to be the best solution. In the proposed algorithm, the defined parameters and 

their variation process provide effective exploration. The initial agents are randomly selected. 

Therefore, Ri can have large values in the early steps. λ is a random unit vector that moves the 

subsequent agents in random directions. In fact, λ guides the agents to move along the 

circumference of the circles, leading to the coverage of the entire search space during the initial 

iterations. The parameter d also has a larger value in the first iterations, ensuring that both the 

inside and outside areas of the circles are explored. Additionally, considering an occasional 

sudden change in the size of Ri helps to escape potential local optima. 

2.2.2. Exploitation 
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Exploitation involves concentrating on areas near the optimal solutions in the search space. In 

optimization algorithms, it is essential to narrow the search area as the minimum is approached 

to refine and improve the existing good solutions.  

In the proposed algorithm, the selection of parameters is performed in a way that sufficiently 

exploits candidate solutions. Since the agents move toward the best solutions at each iteration, 

exploitation is inherently achieved by the gradual reduction of Ri. Additionally, according to 

Eq. (1), as the algorithm progresses, the value of d decreases. This reduction allows the 

algorithm to focus more precisely on the area near the optimal solutions. 

3. Results and discussion  

In this section, several mathematical and constrained engineering problems are provided to 

show the validity and effectiveness of the proposed method. To analyze the performance of the 

presented algorithm, the results of these examples have been compared with five different 

methods including GA, PSO, ABC, HS, AVOA (Abdollahzadeh et al., 2021), CRY (Talatahari 

et al., 2021), CBBO (Kaveh and Yousefpoor, 2022), and AHA (Zhao et al., 2022). A summary 

of the parameter settings for the compared benchmark algorithms is presented in Table 1. 

It should be noted that the recommended value of α is for improving efficiency of the proposed 

method. Besides, like many other meta-heuristic methods, it does not have mathematical 

convergence proof or guarantee. However, in all following examples the proposed method 

could robustly and efficiently converge to the correct solution. 

Table 1. Parameters setting of the proposed algorithm and benchmark algorithms for comparison  

Algorithms Parameters Values 

GA 

Npop (Population Size) 100 

Pc (Crossover Percentage) 0.7 

Pm (Mutation Percentage) 0.3 

µ (Mutation Rate) 0.1 

PSO 

Npop (Swarm size) 10 

w (Inertia weight) 1 

C1 (individual-best acceleration factor) 1.5 

C2 (global-best acceleration factor) 2 
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ABC 

Npop (Colony Size) 30 

No (Number of Onlooker Bees) 30 

a (Acceleration Coefficient Upper Bound) 1 

HS 

HMS (Harmony Memory Size) 25 

Nnew (Number of new Harmonies) 20 

HMCR (Harmony Memory Consideration Rate) 0.9 

PAR (Pitch Adjustment Rate) 0.1 

FWdamp (Fret Width Damp Ratio) 0.995 

 

3.1. Mathematical examples 

In this section, a number of mathematical benchmark functions are selected to evaluate the 

effectiveness of the proposed optimization algorithm. The specifications of these functions, 

including their mathematical form, intervals of the variables, and the exact value of the global 

minimum are presented in Table 2. Fig. 3 shows the 3d view of the bivariate mathematical 

functions.  The number of required function evaluations compared with other selected 

algorithms is presented in Table 3. The algorithms run 10 times for each function and the mean 

of the results is reported.  
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Fig.3. 3D view of the benchmark problems 

Table 2. Specifications of the benchmark functions 

Function name Function Interval 
Global 

minimum 
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As shown in Table 3, in most cases the proposed method achieves convergence to the optimal 

solution with fewer function evaluations, compared to other methods. As seen, although PSO 

has slightly better performance in five cases, the overall results indicate the superiority of the 

presented algorithm over the other investigated methods. In fact, due to its enhanced 

exploration and exploitation capabilities, the proposed optimization algorithm provides 

effective and efficient performance compared to common algorithms.  

Table 3. Performance comparison for the benchmark functions 

  PSO GA ABC HS Present study 

Aluffi-Pentiny 
NFE 534 1000 1263 5260 790 

CPU Time 0.21 0.45 0.38 2.24 0.32 
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Becker and Lago 
NFE 444 850 1046 390 376 

CPU Time 0.18 0.39 0.45 0.15 0.14 

Bohachevsky1 
NFE 718 950 1507 5228 703 

CPU Time 0.32 0.45 0.67 2.27 0.28 

Bohachevsky2 
NFE 654 850 1316 4200 680 

CPU Time 0.28 0.35 0.53 1.86 0.30 

Branin 
NFE 606 700 2975 4104 428 

CPU Time 0.24 0.31 1.15 1.91 0.17 

Camel 
NFE 494 640 1144 1540 291 

CPU Time 0.15 0.21 0.42 0.53 0.09 

Cb3 
NFE 322 340 887 544 260 

CPU Time 0.13 0.16 0.35 0.24 0.19 

DeJoung 
NFE 422 850 925 664 406 

CPU Time 0.18 0.39 0.43 0.27 0.11 

Easom 
NFE 686 1590 4280 9188 788 

CPU Time 0.23 0.56 2.27 4.03 0.31 

Eggholder 
NFE 636 19870 7164 3600 326 

CPU Time 0.19 8.67 2.84 1.94 0.12 

Exponential 
NFE 336 240 716 420 193 

CPU Time 0.10 0.09 0.21 0.13 0.05 

Goldstein and price 
NFE 590 850 2506 2108 564 

CPU Time 0.13 0.28 1.17 1.16 0.10 

Griewank 
NFE 512 1300 2280 2280 691 

CPU Time 0.12 0.26 0.49 0.45 0.15 

Hartman 3 
NFE 518 1400 1293 880 329 

CPU Time 0.14 0.31 0.29 0.19 0.08 

Hartman 6 
NFE 802 2500 4872 2908 880 

CPU Time 0.35 0.62 1.26 0.53 0.39 

Michalewicz 
NFE 530 700 1855 1144 437 

CPU Time 0.21 0.29 0.34 0.31 0.13 

Rastrigin 
NFE 518 850 2539 1800 494 

CPU Time 0.20 0.24 0.53 0.35 0.16 

Rosenbrock 
NFE 884 1500 4699 9124 842 

CPU Time 0.26 0.31 1.35 2.89 0.20 

 

3.2. Constrained engineering problems  

The performance of the proposed algorithm was analyzed in the previous section. In this 

section, the ability of the algorithm to solve constrained problems is investigated. This section 

includes optimizing various mechanical and structural problems under specific constraints. The 

number of agents is considered to be five, and the penalty approach is applied to handle the 

constraints of each problem. 

Problem 1. Tension/compression spring 
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This problem involves designing a tension/compression spring to minimize its weight, subject 

to constraints on shear stress, surge frequency, and deflection. The schematic of this spring is 

shown in Fig. 4. 

 
Fig. 4. Schematic of the tension/compression spring 

The wire diameter (d), the mean coil diameter (D), and the number of active coils (N) are 

considered as design variables. 

The mathematical formulation of the cost function is shown below 

2
)2()( DdNNDd

cost
f ,,                                                                                                               (4) 

Subject to 

0
71785

1),,(
4

3

1 
d

DN
NDdg  

01
2

5108

1

)
43

(12566

2
4

)(2 





ddDd

dDD
d,D,Ng                                                                              (5) 

0
2

45.140
1)(3 

ND

d
d,D,Ng  

01
5.1

)(4 



dD

d,D,Ng  

The range of design variables is as follows 

205.0  d  

3.125.0  D                                                                                                                                      (6) 

152  N  
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Table 4. Results of the spring design 

 Optimal design variable  

Algorithm x1 x2 x3 fcost 

GA 0.0533 0.3988 9.1886 0.012720 

PSO 0.0522 0.3684 10.7072 0.012755 

ABC 0.0500 0.3166 14.1636 0.012794 

HS 0.0523 0.3716 10.4744 0.012689 

Present work 0.0522 0.3688 10.6251 0.012688 

 

Table 5. Statistical results of the spring design 

Algorithm 
Statistical result   

Best Average Worst Std. Dev. CPU Time (s) 

GA 0.012720 0.013750 0.017853 1.1012E-03 0.235 

PSO 0.012755 0.012868 0.013354 2.3936E-04 0.113 

ABC 0.012794 0.012981 0.013221 1.8872E-04 0.315 

HS 0.012689 0.013671 0.015710 1.1157E-03 0.296 

Present work 0.012688 0.012651 0.012740 9.0142E-06 0.108 

 

The obtained optimal weight and its corresponding variables are reported in Table 4. As shown, 

the presented method achieved the best parameter values among the competitive algorithms. 

According to Table 5, the performance of the proposed algorithm is clearly superior to that of 

the other algorithms. According to the tables, there is not significant difference between some 

methods in this example. This shows that in this example other methods display good 

performance, too. In fact, since the other methods find the solution appropriately, the proposed 

method could not improve them significantly in this example. But considering all examples 

together, the proposed method is an improvement. 
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Fig. 5. Convergence curve of the proposed algorithm for the tension/compression spring 

Problem 2. Design of a cantilever beam 

This problem aims to minimize the weight of a cantilever beam consisting of five hollow square 

blocks. As shown in Fig. 6, the first block is rigidly supported while a vertical load is applied 

to the fifth block. 

 

Fig. 6. Schematic of the Schematic of the cantilever beam  

Dimensions of the cross-section  5,4,3,2,1 xxxxx  are the design variables. The formulation of the 

problem, using classical beam theory is as follows 
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)54321(0624.0)( xxxxxcostf x                                                                                             (7) 

Subjected to 

01
3
5

1

3
4

7

3
3

19

3
2

27

3
1

61
)(1 

xxxxx
g x                                                                                               (8) 

The range of design variables are 

1005,4,3,2,101.0  x                                                                                                                           (9) 

 

 

Table 6. Results of the cantilever beam 

 Optimal design variable    

Algorithm x1 x2 x3 x4 x5 fcost 

GA 5.9943 4.9034 4.4389 3.4784 2.1346 1.3073 

PSO 6.1319 4.7274 4.3862 3.5558 2.1614 1.3081 

ABC 6.0888 4.7437 4.4530 3.5133 2.1569 1.3076 

HS 5.9826 4.7628 4.4742 3.4160 2.3692 1.3107 

Present work 6.2115 4.5254 4.6811 3.4912 2.2135 1.3056 

 

Table 7. Statistical results of the cantilever beam  

Algorithm 
Statistical result   

Best Average Worst Std. Dev. CPU Time (s) 

GA 1.30854 1.3791776 1.8765196 1.7521E-01 1.235 

PSO 1.30788 1.3082587 1.3148445 2.5014E-03 0.194 

ABC 1.30763 1.3080077 1.3093857 7.6484E-04 0.415 

HS 1.30782 1.3094487 1.3113736 1.3126E-03 0.317 

Present work 1.30660 1.3066241 1.3066074 8.4795E-06 0.128 

 

Table 6 presents the optimal solution for the cantilever beam. As shown, the proposed method 

reached the optimal parameter values, achieving the best cost function value of 1.3056. The 

statistical results are reported in Table 7, which indicates that the proposed method outperforms 

other algorithms in optimizing this problem. Like the previous example, there is not significant 

difference between some methods in this example. Thus, the performance of all methods is 

acceptable in this example. It should be noted that even a strong method might reach the 

solution less efficiently or accurately in a limited number of examples, but generally in most 

examples it shows better performance. 
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Fig. 7. Convergence curve of the proposed algorithm for the cantilever beam 

Problem 3. A 25-bar truss 

The weight optimization of a 25-bar spatial truss, shown in Fig. 8, has been studied in this 

problem. The material has a modulus of elasticity of 10,000 ksi and a density of 0.1 lb/in³. 

Nodes have displacement limits of ±0.35 in, in all three directions, and all members have stress 

limits of ±40 ksi. The structure with 25 members, is categorized into 8 groups: (1) A1, (2) A2–

A5, (3) A6–A9, (4) A10– A11, (5) A12–A13, (6) A14–A17, (7) A18–A21 and (8) A22–A25. The loading 

conditions are listed in Table 8, and shown in Fig. 6 as P1-7.  

Table 8. Loading conditions for the 25-bar truss 

Node 
Loads (Kips) 

Px Py Pz 

A 0.6 0 0 

B 0.5 0 0 

C 1 -10 10 

D 0 -10 10 
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Table 9 indicates that the proposed algorithm obtains the optimal weight of the structure, with 

the lowest standard deviation. The optimal values of the cross-sectional areas for the 25-bar 

truss structure are also reported. 

 

Fig. 8. A 25-bar spatial truss structure 

Table 9. Results of the 25-bar truss 

Variables 
Optimal design variable     

GA PSO ABC HS AVOA CRY Present work 

A1 1.48 1.21 0.01 0.26 0.07 1.12 1.95 

A2-A5 2.23 1.24 1.04 1.12 2.18 2.00 1.25 

A6-A9 2.06 3.29 3.40 3.07 2.83 3.08 3.02 

A10-A11 0.93 0.08 0.01 0.02 0.01 0.02 0.04 

A12-A13 1.48 1.05 0.80 0.73 0.01 0.24 1.08 

A14-A17 1.16 0.86 1.10 1.06 0.66 0.72 0.78 

A18-A21 1.04 0.38 0.52 0.71 1.59 1.81 0.53 

A22-A25 3.03 3.38 3.37 3.23 2.74 2.41 1.39 

Best weight (lb) 538.25 503.29 510.06 505.65 545.96 578.75 501.53 

Average weight (lb) 555.69 506.70 525.99 514.30 549.37 615.80 503.65 

Std. Dev. (lb) 13.05 3.44 10.95 10.94 4.44 20.68 2.33 

CPU Time (s) 315 295 356 346 - - 286 
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Fig. 9. Convergence curve of the proposed algorithm for the 25-bar truss 

Obviously, the proposed algorithm achieves an optimal design with less weight and fewer 

function evaluations compared to other metaheuristic approaches, indicating its strong 

performance and efficiency. The convergence curve shown in Fig. 9 further supports this, 

clearly showing its advantage over the alternatives. A key factor contributing to this 

performance is the algorithm’s ability to explore widely in the early stages and then gradually 

focus on promising regions. This smooth shift from exploration to exploitation helps the 

algorithm avoid getting trapped in local minima and improves its ability to find the global 

optimum. 

Problem 4. A 120-bar dome-shaped truss 

In this problem, a dome-shaped truss, illustrated in Fig. 10, is selected for structural 

optimization. Due to geometric symmetry, the truss members are classified into seven distinct 

groups. All members share the same material properties, with a density of 7971.81 kg/m³ and 

a Young’s modulus of 210 GPa. The cross-sectional area of each member is constrained to lie 
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within the range of 1 cm² to 129.3 cm². The loading conditions include a concentrated load of 

3000 kg at node 1,500 kg at nodes 2 through 13, and 100 kg at all remaining nodes. 

Additionally, the natural frequency constraints are 

f1≥9 Hz and f2≥11 Hz 

Table 10. Results of the 120-bar dome-shaped truss 

Variables 

Optimal design variable (cm2)     

GA PSO ABC HS CBBO-

23 

CBBO-

31 

Present 

work 

AG1 19.85 20.44 20.12 19.64 19.47 19.63 19.75 

AG2 38.01 37.84 37.75 37.92 40.02 40.24 40.11 

AG3 11.47 10.61 10.39 10.96 10.74 10.62 10.59 

AG4 21.58 21.21 21.35 21.05 21.19 21.13 21.32 

AG5 9.14 9.63 9.39 9.57 10.10 9.64 9.65 

AG6 12.52 11.49 11.76 11.91 11.71 11.73 11.73 

AG7 15.00 15.31 15.15 15.44 14.71 14.90 14.63 

Best weight (kg) 8824.521 8726.367 8797.571 8816.354 8710.1 8709.3 8708.5 

Average weight (kg) 8951.213 8921.651 8863.857 8934.254 8732.1 8711.4 8709.6 

Std. Dev.  17.65 11.26 9.65 16.52 - - 8.56 

CPU Time (s)  397 323 405 431 - - 309 

 

In this example, the proposed algorithm shows superior performance compared to other 

metaheuristics algorithms. As reported in Table 11, the algorithm achieved a lighter optimal 

design with fewer function evaluations, confirming its efficiency and effectiveness. The 

dynamic control of the agent-to-solution distance allows for extensive exploration in the early 

iterations and a gradual transition to exploitation later on. This balance prevents premature 

convergence and enables the algorithm to efficiently find the global minimum. The 

convergence curve in Fig. 11 clearly indicates the superiority of the proposed algorithm over 

the other methods.   
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Fig. 10. The 120-bar dome-shaped truss 
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Fig. 11. Convergence curve of the proposed algorithm for the 120-bar dome-shaped truss 

Problem 5. A 200-bar planar truss 

An optimal design is sought for the 200-bar planar truss illustrated in Fig. 12. The design 

constraint requires that the stress in each member remain within ±10 ksi. The material 

properties assigned to all members include a Young’s modulus of 3×10⁷ psi and a density of 

0.273 lb/in³. A minimum cross-sectional area of 0.1 in² was imposed for the members. To 

simplify the design, the members were grouped into 29 categories, with all members within a 

group sharing the same cross-sectional area. As shown in Table 11, the truss was subjected to 

three distinct loading scenarios. The final designs were then compared with those obtained by 

other optimization methods, as presented in Table 12. 

Table 11. Load cases for the planar 200-bar truss 

Case Load (lb) Direction Nodes 

1 1000 X 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, 71 

2 10000 Y 
1-6, 8, 10, 12, 14-20, 22, 24, 26, 28-34, 36, 38, 

40, 42-48, 50, 52, 54, 56-62, 64, 66, 68, 70-75 

3   Load cases 1 and 2 acting simultaneously 
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Fig. 12. The 200-bar planar truss 

Table 12. Results of the 200-bar planar truss 

Variables 
Optimal design variable (cm2)     

GA PSO ABC HS SO AHA Present work 

AG1 0.11 0.14 0.15 0.14 0.11 0.28 0.14 

AG2 0.94 0.94 0.94 0.96 1.03 0.82 0.94 

AG3 0.13 0.10 0.10 0.10 0.20 0.10 0.10 

AG4 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

AG5 2.03 1.94 1.94 1.95 1.92 1.82 1.94 

AG6 0.31 0.29 0.30 0.29 0.30 0.55 0.29 

AG7 0.16 0.10 0.10 0.11 0.10 0.12 0.10 
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AG8 3.15 3.10 3.10 3.11 3.01 3.12 3.11 

AG9 0.10 0.10 0.10 0.10 0.40 0.10 0.10 

AG10 4.10 4.10 4.10 4.11 4.01 4.12 4.11 

AG11 0.43 0.40 0.40 0.41 0.55 0.35 0.40 

AG12 0.11 0.19 0.19 0.18 0.11 0.14 0.11 

AG13 5.38 5.42 5.42 5.45 5.42 5.32 5.38 

AG14 0.16 0.10 0.10 0.10 0.36 0.17 0.10 

AG15 6.41 6.42 6.42 6.45 6.40 6.33 6.38 

AG16 0.56 0.57 0.58 0.58 0.70 0.52 0.53 

AG17 0.40 0.13 0.15 0.15 0.16 0.14 0.39 

AG18 7.97 7.97 7.97 8.01 8.11 7.72 7.94 

AG19 0.10 0.10 0.10 0.10 0.10 0.15 0.10 

AG20 9.01 8.97 8.97 9.01 9.11 8.68 8.94 

AG21 0.86 0.70 0.71 0.73 0.78 0.68 0.83 

AG22 0.22 0.42 0.42 0.78 0.27 2.28 0.15 

AG23 11.02 10.86 10.89 11.17 11.21 10.88 10.94 

AG24 0.13 0.10 0.10 0.14 0.11 0.89 0.10 

AG25 12.03 11.86 11.88 12.17 12.13 11.87 11.94 

AG26 1.00 1.03 1.04 1.34 0.99 2.62 0.89 

AG27 6.57 6.68 6.64 5.48 6.39 3.98 6.84 

AG28 10.72 10.81 10.80 10.13 10.57 10.12 10.88 

AG29 13.96 13.84 13.87 14.52 14.08 15.60 13.74 

Best weight (lb) 25681.3 25459.9 25495.4 25519.4 25835.6 26764.1 25452.3 

Average weight (lb) 26613.4 25547.6 25610.2 25543.5 27092.3 30823.5 25495.6 

Std. Dev. (lb) 615.80 129.09 168.85 23.21 795.17 2268.35 123.42 

CPU Time (s) 498 421 568 563 437 418 403 

 

This problem shows the effectiveness of the proposed algorithm in handling high-dimensional 

structural design problems. Unlike conventional metaheuristic algorithms, which often struggle 

with maintaining solution quality as problem size increases, the proposed method consistently 

converges to the best solution with remarkable stability. The results presented in Table 12 

reveal that it consistently outperformed the compared algorithms in terms of achieving the best 

solution. The adaptive nature of the distance parameter provides strong exploration and 

exploitation capabilities, allowing the algorithm to converge more quickly and accurately to 

the optimal solution. The convergence plot in Fig. 13 shows the efficient progression of the 

proposed algorithm toward the global minimum compared to other methods. 
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Fig. 13. Convergence curve of the proposed algorithm for the 200-bar planar truss 

4. Conclusions 

In this paper, a new optimization algorithm is developed to achieve an optimal solution, 

efficiently. This algorithm operates based on the movement of the specified agents in the search 

space. These agents explore the search space at a specific distance from the best solutions. 

Determining this distance plays a fundamental role in the exploration and exploitation abilities 

of the algorithm. This distance is defined using specific dynamic parameters based on the 

position of the agents and the best solutions. It is a large distance at first, ensuring good 

exploration, and gradually decreases during iterations leading to proper exploitation. The 

performance of the proposed algorithm is assessed in several mathematical and engineering 

problems and is compared with various optimization algorithms such as GA, PSO, ABC, and 

HS. Different structures and engineering problems are also investigated to signify the 

capabilities of these algorithms in structural problems. The results demonstrate the 

effectiveness and efficiency of the proposed algorithm in converging to the global minimum. 
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Th fact that the proposed method reaches the solution efficiently in a wide range of examples, 

is a sign of robustness of the proposed method. 
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