

1

Civil Engineering Infrastructures Journal xx,xx

DOI: 10.22059/ceij.2025.388866.2226

Introduction of Peripheral-Perpendicular Optimization with application in

structural engineering

Roudak, M.A.1, Shayanfar, M.A.2, Farahani, M.3, Karamloo, M.4, Yavarikhah, M.3,

Ebrahimpour, E.3

1Assistant Professor, Department of Civil Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran.
2Associate Professor, School of Civil Engineering, Centre of Excellence for Fundamental Studies in Structural Engineering, Iran

University of Science and Technology, Tehran, Iran.
3Graduate Student, Department of Civil Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran.

4PhD, Department of Civil Engineering, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran.

Received: 15/01/2025

Revised: 30/04/2025

Accepted: 21/05/2025

ABSTRACT

In this paper, a swarm-based metaheuristic optimization algorithm is proposed. The

optimization process of this algorithm is conducted by a specific number of defined agents.

These agents move through the search space based on their distance from the best candidate

and using the combination of tangential- and perpendicular-direction movements. It

dynamically adapts the movements to improve the search for optimal results. The agents

explore a circular region to uncover potentially better solutions. The radius of this circle

decreases gradually to provide a proper balance between exploration and exploitation. In order

 Corresponding author E-mail: a.roudak@alzahra.ac.ir

2

to validate the performance and efficiency of the presented algorithm, several mathematical

and constrained engineering problems are analyzed. The performance of the algorithm is

compared against other optimization methods. Based on the examples, the proposed method

shows strong exploration and exploitation ability, while many other methods lack at least one

of them. Moreover, the proposed method does not have many parameters to be highly sensitive

to them. On the other hand, in all mathematical, engineering, and structural examples, the

proposed method could successfully handle the local optima due to the combination of

peripheral and perpendicular movements. These features together make the proposed method

an efficient choice for solving optimization problems.

Keywords: Metaheuristics; Swarm-based Optimization; Constrained Optimization;

Perimeter-Perpendicular Optimization

1. Introduction

Optimization algorithms can be classified into classical and non-classical (heuristic) categories.

Most classical algorithms work based on the gradient or Hessian matrix and search for the

optimal point in the neighboring region of the starting point. Hence, these methods can increase

the computational cost, especially for problems with a large number of variables. On the other

hand, these algorithms can get stuck in local optima, or the convergence to the best solution

may be slow. Moreover, when the objective function or constraints are non-differentiable or

discontinuous, the applicability of the classical algorithms is limited. These problems led to the

consideration of heuristic and metaheuristic optimization methods (Almufti, 2019; safarkhani

and madhkhan, 2025). These methods generally combine simple rules to provide a solution in

a reasonable time. None-classical algorithms also use the information from previous steps to

preserve the search experience and reduce calculation costs (Abdel-Basset et al., 2018).

3

Three important categories of metaheuristic methods are as follows: evolutionary methods,

inspired by the principles of natural selection and biological evolution, such as genetic

algorithm (GA); swarm intelligence, inspired by the collective behavior of living organisms,

such as particle swarm optimization (PSO); physics-based methods, inspired by physical

principles and phenomena observed in nature, such as the gravitational search algorithm (GSA)

(Hashemi et al., 2021).

Evolutionary algorithms (EAs) use simulated evolution based on the patterns of reproduction

and mutation found in nature. Inspired by Darwinian evolutionary concepts, EAs demonstrate

the gradual change of a system over time. In complex cases where other methods may fail, EAs

are considered a simple and flexible approach. They belong to a set of random search

algorithms and are classified as metaheuristic methods because they provide good solutions,

although they do not guarantee the optimal solution. EA includes three algorithms:

evolutionary programming, evolutionary strategies, and genetic algorithms.

The most popular type of EA is GA, which was first proposed by Holland (Holland, 1992) in

1970 and later extended by Goldberg in 1989 (Goldberg, 1992). It is often used for the

optimization of discontinuous and non-linear problems. Recombinant operators are used to

search and design the adaptive system. In this method, the entire population is considered as

candidate solutions for the problem, and a population called parents are randomly selected from

the current population and used to produce children for the next generation. Over successive

generations, an optimal solution evolves through natural selection, as unfavorable traits are

removed from the population (Ezugwu et al., 2021; Haldurai et al., 2016).

Evolution strategy (ES) was introduced by Rechenberg (Rechenberg, 1978) and is considered

an optimization method for complex and multifaceted functions. The method involves

selectively evaluating data and removing redundant codes until the final solutions are

represented by number vectors (Coello Coello, 2005).

4

Evolutionary programming (EP) was first proposed by Fogel (Fogel, 1998) as a method to

achieve artificial intelligence. Unlike ES, there are no restrictions on the type of data used. This

method has a fixed structure and allows numerical parameters to evolve.

Swarm intelligence, as a subset of metaheuristic methods, have the capability to explore

parameter spaces to identify optimal values for specific problems. This algorithm is a group of

optimization methods based on self-organizing and interactive approaches inspired by the

collective behavior of living organisms such as flowers, ants, bees, birds, and other social

creatures to solve optimization problems (Kennedy, 2006).

In swarm algorithms, agents or particles initiate their movements from a starting point in the

search space, continuously change their positions, and adjust themselves. This process of

adjustment is controlled by a set of rules inspired by social or evolutionary concepts, such as

goal orientation and interaction with peers. Unlike evolutionary methods that operate on an

individual basis (one-to-one), swarm methods use group interactions among agents to reach

the optimal solution.

One of the popular swarm algorithms is PSO, introduced by Kennedy and Eberhart (Kennedy

and Eberhart, 1995). PSO, inspired by the social behavior of bird flocks, models the movement

of particles in a multidimensional search space to search for optimal solutions. Through

iterative updates of particle positions and velocities, PSO effectively balances exploration and

exploitation to converge toward optimal solutions. The artificial bee colony (ABC) algorithm,

presented by Karaboga and developed by Basturk and Karaboga (Akay and Karaboga, 2012;

Karaboga and Akay, 2009), is another swarm-based method. This algorithm imitates the

behavior of a bee colony without the limitation of the non-linearity of functions. In this

algorithm, new bees find food sources (candidate solutions) based on information from old

bees that visited these sources. Many researchers developed other different swarm-based

algorithms such as whale optimization algorithm (Mirjalili and Lewis, 2016), firefly algorithm

5

(Rokh et al., 2024), bat algorithm (Umar et al., 2024), cuckoo search (Abualigah et al., 2024),

glowworm swarm optimization (Mohd Shahrom et al., 2023), etc.

Physics-based optimization methods are gaining recognition as a new approach. Some well-

known Physics-based algorithms are electromagnetic field optimization (EFO) which is based

on electromagnetics(Abedinpourshotorban et al., 2016), gravitational search algorithm (GSA)

which is based on the laws of gravity and motion (Rashedi et al., 2009), Simulated Annealing

(SA) (Rutenbar, 1989), which imitates the cooling process of metals, the harmony search (HS)

method which is inspired by the improvisation process of music (Lee and Geem, 2005; Geem

et al., 2001), etc.

In recent years, different classes of metaheuristics have extremely developed. Among swarm

algorithms, there are well-known ones such as Ant Colony Optimization (Dorigo et al., 2007),

Cuckoo Search (Yang and Deb, 2009), Whale Optimization Algorithm (Mirjalili and Lewis,

2016), Seagull Optimization Algorithm (Dhiman and Kumar, 2019), and Butterfly

Optimization Algorithm (Arora and Singh, 2019). Among evolutionary algorithms, there are

also other developed methods. Apart from GA, Evolutionary Programming, Differential

Evolution (DE) (Storn and Price, 1997), Evolution Strategies (Hansen et al., 2003) can be

named. Enhanced Genetic Algorithm (EGA) (Roudak et al., 2024) is another method in this

group, which has been recently proposed. Among physics-based algorithms, Simulated

Annealing (SA) (Kirkpatrick et al., 1983) and Gravitational Search Algorithm (GSA) (Rashedi

et al., 2009) can be mentioned. Other recent methods of this category are Black Hole algorithm

(Hatamlou, 2013), Henry Gas Solubility Optimization (Hashim et al., 2019), and Equilibrium

Optimizer (Faramarzi et al., 2020). Recently, another group of metaheuristics based on social

behavior of humans have developed. In this group fall Bus Transportation Algorithm (Bodaghi

and Samieefar, 2019), Political Optimizer (Askari et al., 2020), Group Teaching Optimization

Algorithm (Zhang and Jin, 2020), and Student Psychology Based Optimization (Das et al.,

6

2020). Among other well-known methods, Archimedes Optimization Algorithm (AOA) is

inspired by the Archimedes’ Principle (Hashim et al., 2021). Honey Badger algorithm (HBA)

is presented by formulating the digging behavior to represent the exploration stage while

exploitation is represented by the process of finding honey (Hashim et al., 2022). War Strategy

Optimization (WSO) mimics defense or attack of troops in wars (Ayyarao et al., 2022). Single

Candidate Optimizer (SCO) is another method which has been presented recently (Shami et

al., 2024).

Although the above-mentioned optimization algorithms have taken large steps of

improvement, they present the best performance in some problems and they fail to success in

many other ones. Many algorithms show strong exploration while their exploitation is

questioned. Many other methods are completely opposite. Some methods fall in local optima.

Some methods require a large number of function evaluations. Some methods have several

parameters where the methods are highly sensitive to these parameters. These all, necessitate a

robust efficient algorithm, on which one can rely to solve a large variety of optimization

problems (Shami et al., 2024). In this study, a new swarm-based metaheuristic optimization

algorithm is proposed. In this algorithm, a specific number of agents explore the search space

to find the best direction of movement to reach the global minimum. To ensure proper

exploration and exploitation, adaptive parameters are defined to control the movement of the

population. The details of the proposed algorithm and the validation process are described in

the subsequent sections. The proposed algorithm offers limited number of parameters to escape

from sensitivity of parameters. Besides, it has been tested in various mathematical, structural

and engineering problems to check its performance under different conditions. Based on the

extracted results and by comparing with other methods of literature, the proposed method has

shown that it can more robustly and efficiently converge to the solutions, avoiding local optima.

2. Proposed method

7

In this paper, a novel metaheuristic optimization algorithm is proposed. This algorithm operates by

defining a specific number of agents and moving them through the search space. These agents

determine that the approach reaches the global minimum by deciding on the direction of movement.

The proposed algorithm can be used for a wide range of optimization problems due to its simple

structure, adaptability, and balance between local and global searches, which prevents it from

becoming trapped in local optima.

In this section, the mechanism of the algorithm is presented step by step. Then, the exploration and

exploitation ability of the algorithm is discussed in detail.

2.1. Mechanism of the algorithm

In this section, the process of the algorithm is presented elaborately. The algorithm consists of

the following steps. Each step will be explained in detail in the subsequent sections.

1. Generation of the initial population and random agents

2. Evaluation of the objective function in the generated population, identifying the

initial minimum point and considering it as the center.

3. The movement of the agents based on the distance from the center with a certain

criterion and the evaluation of the objective function in the updated position of the

agents.

4. Determining the new agents, updating the position of the center, and repeating the

previous steps until convergence

2.1.1. Initialization

The algorithm is initialized randomly with a specific size in the range of variables. The initial

population consists of a set of uniformly distributed random points across the search space.

Then, the objective function is evaluated for the population. The point with the minimum value

of the objective function is selected from the initial population. This point will be considered

as the basis of generating the next population. Then a specific number of points are randomly

8

selected as the agents. These points have a fundamental role in reaching the global minimum

by moving through the search space at each iteration.

2.1.2. Agents’ movement criterion

As shown in Fig. 1, first, the distance between agents and the best solution (Ri) is obtained. The

agents are considered to be on a circle centered on the best solution with radius Ri. Then, a

random unit vector λ is multiplied by Ri to move the agents along the circumference of each

circle. The unit vector determines the direction on which the new agent is to be located. The

agents have to decide whether to move closer to the best solution or further away from it. To

achieve this, the agents move inside or outside the circle by a distance d in the direction of λ

vector. d is used as a parameter to control the movement of the agents. In fact, d acts as a scalar

value that specifies the distance to which the agents should move. As shown in Fig. 1, using λ

the agent moves on the perimeter of the circle centered at the best solution with radius Ri. Then,

the agent moves perpendicular to this circle with the step size d. Therefore, the proposed

method presents a combination of perimeter-perpendicular movements. By adjusting the value

of d, the algorithm can regulate the agents’ step size, which influences how far the agents

explore in the search space during each iteration. d is

)
1

()(minmax it
XXd  (1)

where it is the number of iteration and α determines the rate of decrease in the value of d in

each iteration. It is considered a random number between 0.95 and 1.05.

9

Fig. 1. Selection of agents in each iteration

Based on the defined Ri and d, two points X1 and X2 are determined for each agent according

to Eq. 2, and the value of the objective function is evaluated at each of them.

)(1 dRic
i  λXX i = 1, 2, 3, …, NA (2)

)(2 dRic
i  λXX

Where Xc is the center of the circles which is the best solution at each iteration, λ is a random

unit vector defined to set the location of the agents on the circumference of the circles, and NA

is the number of agents. Between points i
1X and i

2X , the point with the smaller value of the

objective function is considered as the new position of the agenti. Fig.1 indicates the process

of agent selection at iteration k+1 based on its location at iteration k.

2.1.3. Position updating procedure and convergence

10

As mentioned, the agents are moved in the search space by the specified criterion in each

iteration. This criterion determines how the agents move in search of optimal solutions. In the

next step, among all the new positions of the agents, the one that results in the smallest objective

function value is identified and replaces the center of the circles. This process helps in

progressively moving the center toward an optimal solution. This procedure during three

iterations is illustrated in Fig. 2.

Fig. 2. The movement of agents toward the global minimum during three iterations

By changing the location of the center and updating the position of the agents, new circles are

created around the replaced center, and the previous steps are repeated. In the subsequent

iterations, as the global minimum is approached, the radius of the circle is gradually reduced

until convergence occurs.

2.1.4. Escaping from local optima

The parameters d and λ provide an acceptable exploration ability. To further improve the

algorithm ability to escape from local optima, a specific threshold is defined to determine

11

whether the radius (Ri) should be changed from its original value. This altering helps in

diversifying the search process and avoiding premature convergence to local optima. At each

iteration, a uniformly distributed random number within (0,1) is compared to the predefined

threshold. If this random number is smaller than the threshold, the radius changes based on the

following equation.

a
itMaxIt

MaxIt
R XX 


 )(minmax)

20
((3)

Where a is a random number with uniform distribution. By occasionally changing the radius,

the algorithm can explore new areas of the solution space to increase the chance of escaping

from local optima.

2.2. Exploration and exploitation ability

2.2.1. Exploration

Exploration refers to the process of searching through a broad range of possible solutions to

discover potentially better ones. The goal of exploration is to avoid getting stuck in local optima

and examining a wide range of options instead of focusing on a local optimum that might

incorrectly seem to be the best solution. In the proposed algorithm, the defined parameters and

their variation process provide effective exploration. The initial agents are randomly selected.

Therefore, Ri can have large values in the early steps. λ is a random unit vector that moves the

subsequent agents in random directions. In fact, λ guides the agents to move along the

circumference of the circles, leading to the coverage of the entire search space during the initial

iterations. The parameter d also has a larger value in the first iterations, ensuring that both the

inside and outside areas of the circles are explored. Additionally, considering an occasional

sudden change in the size of Ri helps to escape potential local optima.

2.2.2. Exploitation

12

Exploitation involves concentrating on areas near the optimal solutions in the search space. In

optimization algorithms, it is essential to narrow the search area as the minimum is approached

to refine and improve the existing good solutions.

In the proposed algorithm, the selection of parameters is performed in a way that sufficiently

exploits candidate solutions. Since the agents move toward the best solutions at each iteration,

exploitation is inherently achieved by the gradual reduction of Ri. Additionally, according to

Eq. (1), as the algorithm progresses, the value of d decreases. This reduction allows the

algorithm to focus more precisely on the area near the optimal solutions.

3. Results and discussion

In this section, several mathematical and constrained engineering problems are provided to

show the validity and effectiveness of the proposed method. To analyze the performance of the

presented algorithm, the results of these examples have been compared with five different

methods including GA, PSO, ABC, HS, AVOA (Abdollahzadeh et al., 2021), CRY (Talatahari

et al., 2021), CBBO (Kaveh and Yousefpoor, 2022), and AHA (Zhao et al., 2022). A summary

of the parameter settings for the compared benchmark algorithms is presented in Table 1.

It should be noted that the recommended value of α is for improving efficiency of the proposed

method. Besides, like many other meta-heuristic methods, it does not have mathematical

convergence proof or guarantee. However, in all following examples the proposed method

could robustly and efficiently converge to the correct solution.

Table 1. Parameters setting of the proposed algorithm and benchmark algorithms for comparison

Algorithms Parameters Values

GA

Npop (Population Size) 100

Pc (Crossover Percentage) 0.7

Pm (Mutation Percentage) 0.3

µ (Mutation Rate) 0.1

PSO

Npop (Swarm size) 10

w (Inertia weight) 1

C1 (individual-best acceleration factor) 1.5

C2 (global-best acceleration factor) 2

13

ABC

Npop (Colony Size) 30

No (Number of Onlooker Bees) 30

a (Acceleration Coefficient Upper Bound) 1

HS

HMS (Harmony Memory Size) 25

Nnew (Number of new Harmonies) 20

HMCR (Harmony Memory Consideration Rate) 0.9

PAR (Pitch Adjustment Rate) 0.1

FWdamp (Fret Width Damp Ratio) 0.995

3.1. Mathematical examples

In this section, a number of mathematical benchmark functions are selected to evaluate the

effectiveness of the proposed optimization algorithm. The specifications of these functions,

including their mathematical form, intervals of the variables, and the exact value of the global

minimum are presented in Table 2. Fig. 3 shows the 3d view of the bivariate mathematical

functions. The number of required function evaluations compared with other selected

algorithms is presented in Table 3. The algorithms run 10 times for each function and the mean

of the results is reported.

14

Fig.3. 3D view of the benchmark problems

Table 2. Specifications of the benchmark functions

Function name Function Interval
Global

minimum

Aluffi-Pentiny

2
22

1
1

10

12
12

14
14

1
)(xxxxf x [−10,10] −0.352386

Becker and Lago
2

2

2

1)5|(|)5|(|)( xxf x

[−10,10] 0.0

Bohachevsky 1
10

7
)4cos(

10

4
)3cos(

10

3
2)(21

2

2

2

1  xxxxf x

[−100,100] 0.0

Bohachevsky 2
10

3
)4cos()3cos(

10

3
2)(21

2

2

2

1  xxxxf x

[−50,50] 0.0

Branin 10)1cos()
8

1
1(102)1

52
124

1.5
2()( xxxxf


x [−5,5] 0.397887

Camel
4
24

2
2421

6
1

3

14
11.2

2
14)(xxxxxxxf x

[−5,5],

[10,15]
−1.0316

Cb3
2

221

6

1

5

1

2

1
6

1
05.12)(xxxxxxf x [−5,5] 0.0

DeJoung 2
3

2
2

2
1)(xxxf x [−5.12,5.12] 0.0

Easom)())cos()cos(()(
2)2(2)1(

21
 


xx

exxf x [−100,100] −1

Eggholder)))47(sin()(())
49

sin()47((()(211
21

2 


 xxx
xx

xf x [−512, 512] −959.64

Exponential)
1

25.0exp()(



n

i ixf x [−1, 1] −1

15

Goldstein and

price]273648123218()32(30[

]361431419()1(1[)(

2

2212

2

11

2

21

2

2212

2

11

2

21

xxxxxxxx

xxxxxxxxf



x
 [−2, 2] 3.0

Griewank)cos(
200

1
1)(

2

1

2

1

2




i

i

i
i

i

x
xf x

[−100, 100] 0.0

Hartman 3

))(exp()(2
3

1

4

1
ijj

j
ij

i
i pxacf  



x























35

30

35

30

10

10

10

10

1.0

3

1.0

3

a ,























2.3

3

2.1

1

c and























8828.0

5547.0

747.0

2673.0

5743.0

8732.0

4387.0

117.0

03815.0

1091.0

4699.0

3689.0

p

[0, 1] −3.862782

Hartman 6

))(exp()(2
6

1

4

1
ijj

j
ij

i
i pxacf  



x























141.01005.0817

81710175.33

1481.0171005.0

87.15.317310

a ,























2.3

3

2.1

1

c and























0381.01091.05743.08732.08828.04047.0

6650.03047.02883.03522.01451.02348.0

9991.01004.03736.08307.04135.02329.0

5886.08283.00124.05569.01696.01312.0

p

[0, 1] −3.322368

Michalewicz 20
2

))(sin(sin()(


i
i

xi
xf


x [0, π] −1.8013

Rastrigin))18cos(()(
2

1

2

i
i

i xxf 


x [−1,1] −2.0

Rosenbrock
222

1

1
1)1()(100)(




 ii

n

i
i xxxf x

[−30,30] 0.0

As shown in Table 3, in most cases the proposed method achieves convergence to the optimal

solution with fewer function evaluations, compared to other methods. As seen, although PSO

has slightly better performance in five cases, the overall results indicate the superiority of the

presented algorithm over the other investigated methods. In fact, due to its enhanced

exploration and exploitation capabilities, the proposed optimization algorithm provides

effective and efficient performance compared to common algorithms.

Table 3. Performance comparison for the benchmark functions

 PSO GA ABC HS Present study

Aluffi-Pentiny
NFE 534 1000 1263 5260 790

CPU Time 0.21 0.45 0.38 2.24 0.32

16

Becker and Lago
NFE 444 850 1046 390 376

CPU Time 0.18 0.39 0.45 0.15 0.14

Bohachevsky1
NFE 718 950 1507 5228 703

CPU Time 0.32 0.45 0.67 2.27 0.28

Bohachevsky2
NFE 654 850 1316 4200 680

CPU Time 0.28 0.35 0.53 1.86 0.30

Branin
NFE 606 700 2975 4104 428

CPU Time 0.24 0.31 1.15 1.91 0.17

Camel
NFE 494 640 1144 1540 291

CPU Time 0.15 0.21 0.42 0.53 0.09

Cb3
NFE 322 340 887 544 260

CPU Time 0.13 0.16 0.35 0.24 0.19

DeJoung
NFE 422 850 925 664 406

CPU Time 0.18 0.39 0.43 0.27 0.11

Easom
NFE 686 1590 4280 9188 788

CPU Time 0.23 0.56 2.27 4.03 0.31

Eggholder
NFE 636 19870 7164 3600 326

CPU Time 0.19 8.67 2.84 1.94 0.12

Exponential
NFE 336 240 716 420 193

CPU Time 0.10 0.09 0.21 0.13 0.05

Goldstein and price
NFE 590 850 2506 2108 564

CPU Time 0.13 0.28 1.17 1.16 0.10

Griewank
NFE 512 1300 2280 2280 691

CPU Time 0.12 0.26 0.49 0.45 0.15

Hartman 3
NFE 518 1400 1293 880 329

CPU Time 0.14 0.31 0.29 0.19 0.08

Hartman 6
NFE 802 2500 4872 2908 880

CPU Time 0.35 0.62 1.26 0.53 0.39

Michalewicz
NFE 530 700 1855 1144 437

CPU Time 0.21 0.29 0.34 0.31 0.13

Rastrigin
NFE 518 850 2539 1800 494

CPU Time 0.20 0.24 0.53 0.35 0.16

Rosenbrock
NFE 884 1500 4699 9124 842

CPU Time 0.26 0.31 1.35 2.89 0.20

3.2. Constrained engineering problems

The performance of the proposed algorithm was analyzed in the previous section. In this

section, the ability of the algorithm to solve constrained problems is investigated. This section

includes optimizing various mechanical and structural problems under specific constraints. The

number of agents is considered to be five, and the penalty approach is applied to handle the

constraints of each problem.

Problem 1. Tension/compression spring

17

This problem involves designing a tension/compression spring to minimize its weight, subject

to constraints on shear stress, surge frequency, and deflection. The schematic of this spring is

shown in Fig. 4.

Fig. 4. Schematic of the tension/compression spring

The wire diameter (d), the mean coil diameter (D), and the number of active coils (N) are

considered as design variables.

The mathematical formulation of the cost function is shown below

2
)2()(DdNNDd

cost
f ,, (4)

Subject to

0
71785

1),,(
4

3

1 
d

DN
NDdg

01
2

5108

1

)
43

(12566

2
4

)(2 





ddDd

dDD
d,D,Ng (5)

0
2

45.140
1)(3 

ND

d
d,D,Ng

01
5.1

)(4 



dD

d,D,Ng

The range of design variables is as follows

205.0  d

3.125.0  D (6)

152  N

18

Table 4. Results of the spring design

 Optimal design variable

Algorithm x1 x2 x3 fcost

GA 0.0533 0.3988 9.1886 0.012720

PSO 0.0522 0.3684 10.7072 0.012755

ABC 0.0500 0.3166 14.1636 0.012794

HS 0.0523 0.3716 10.4744 0.012689

Present work 0.0522 0.3688 10.6251 0.012688

Table 5. Statistical results of the spring design

Algorithm
Statistical result

Best Average Worst Std. Dev. CPU Time (s)

GA 0.012720 0.013750 0.017853 1.1012E-03 0.235

PSO 0.012755 0.012868 0.013354 2.3936E-04 0.113

ABC 0.012794 0.012981 0.013221 1.8872E-04 0.315

HS 0.012689 0.013671 0.015710 1.1157E-03 0.296

Present work 0.012688 0.012651 0.012740 9.0142E-06 0.108

The obtained optimal weight and its corresponding variables are reported in Table 4. As shown,

the presented method achieved the best parameter values among the competitive algorithms.

According to Table 5, the performance of the proposed algorithm is clearly superior to that of

the other algorithms. According to the tables, there is not significant difference between some

methods in this example. This shows that in this example other methods display good

performance, too. In fact, since the other methods find the solution appropriately, the proposed

method could not improve them significantly in this example. But considering all examples

together, the proposed method is an improvement.

19

Fig. 5. Convergence curve of the proposed algorithm for the tension/compression spring

Problem 2. Design of a cantilever beam

This problem aims to minimize the weight of a cantilever beam consisting of five hollow square

blocks. As shown in Fig. 6, the first block is rigidly supported while a vertical load is applied

to the fifth block.

Fig. 6. Schematic of the Schematic of the cantilever beam

Dimensions of the cross-section  5,4,3,2,1 xxxxx are the design variables. The formulation of the

problem, using classical beam theory is as follows

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

B
es

t
C

o
st

Iteration

GA

PSO

ABC

HS

Present work

20

)54321(0624.0)(xxxxxcostf x (7)

Subjected to

01
3
5

1

3
4

7

3
3

19

3
2

27

3
1

61
)(1 

xxxxx
g x (8)

The range of design variables are

1005,4,3,2,101.0  x (9)

Table 6. Results of the cantilever beam

 Optimal design variable

Algorithm x1 x2 x3 x4 x5 fcost

GA 5.9943 4.9034 4.4389 3.4784 2.1346 1.3073

PSO 6.1319 4.7274 4.3862 3.5558 2.1614 1.3081

ABC 6.0888 4.7437 4.4530 3.5133 2.1569 1.3076

HS 5.9826 4.7628 4.4742 3.4160 2.3692 1.3107

Present work 6.2115 4.5254 4.6811 3.4912 2.2135 1.3056

Table 7. Statistical results of the cantilever beam

Algorithm
Statistical result

Best Average Worst Std. Dev. CPU Time (s)

GA 1.30854 1.3791776 1.8765196 1.7521E-01 1.235

PSO 1.30788 1.3082587 1.3148445 2.5014E-03 0.194

ABC 1.30763 1.3080077 1.3093857 7.6484E-04 0.415

HS 1.30782 1.3094487 1.3113736 1.3126E-03 0.317

Present work 1.30660 1.3066241 1.3066074 8.4795E-06 0.128

Table 6 presents the optimal solution for the cantilever beam. As shown, the proposed method

reached the optimal parameter values, achieving the best cost function value of 1.3056. The

statistical results are reported in Table 7, which indicates that the proposed method outperforms

other algorithms in optimizing this problem. Like the previous example, there is not significant

difference between some methods in this example. Thus, the performance of all methods is

acceptable in this example. It should be noted that even a strong method might reach the

solution less efficiently or accurately in a limited number of examples, but generally in most

examples it shows better performance.

21

Fig. 7. Convergence curve of the proposed algorithm for the cantilever beam

Problem 3. A 25-bar truss

The weight optimization of a 25-bar spatial truss, shown in Fig. 8, has been studied in this

problem. The material has a modulus of elasticity of 10,000 ksi and a density of 0.1 lb/in³.

Nodes have displacement limits of ±0.35 in, in all three directions, and all members have stress

limits of ±40 ksi. The structure with 25 members, is categorized into 8 groups: (1) A1, (2) A2–

A5, (3) A6–A9, (4) A10– A11, (5) A12–A13, (6) A14–A17, (7) A18–A21 and (8) A22–A25. The loading

conditions are listed in Table 8, and shown in Fig. 6 as P1-7.

Table 8. Loading conditions for the 25-bar truss

Node
Loads (Kips)

Px Py Pz

A 0.6 0 0

B 0.5 0 0

C 1 -10 10

D 0 -10 10

0.95

1.45

1.95

2.45

2.95

3.45

3.95

4.45

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

B
es

t
C

o
st

Iteration

GA

PSO

ABC

HS

Present work

22

Table 9 indicates that the proposed algorithm obtains the optimal weight of the structure, with

the lowest standard deviation. The optimal values of the cross-sectional areas for the 25-bar

truss structure are also reported.

Fig. 8. A 25-bar spatial truss structure

Table 9. Results of the 25-bar truss

Variables
Optimal design variable

GA PSO ABC HS AVOA CRY Present work

A1 1.48 1.21 0.01 0.26 0.07 1.12 1.95

A2-A5 2.23 1.24 1.04 1.12 2.18 2.00 1.25

A6-A9 2.06 3.29 3.40 3.07 2.83 3.08 3.02

A10-A11 0.93 0.08 0.01 0.02 0.01 0.02 0.04

A12-A13 1.48 1.05 0.80 0.73 0.01 0.24 1.08

A14-A17 1.16 0.86 1.10 1.06 0.66 0.72 0.78

A18-A21 1.04 0.38 0.52 0.71 1.59 1.81 0.53

A22-A25 3.03 3.38 3.37 3.23 2.74 2.41 1.39

Best weight (lb) 538.25 503.29 510.06 505.65 545.96 578.75 501.53

Average weight (lb) 555.69 506.70 525.99 514.30 549.37 615.80 503.65

Std. Dev. (lb) 13.05 3.44 10.95 10.94 4.44 20.68 2.33

CPU Time (s) 315 295 356 346 - - 286

23

Fig. 9. Convergence curve of the proposed algorithm for the 25-bar truss

Obviously, the proposed algorithm achieves an optimal design with less weight and fewer

function evaluations compared to other metaheuristic approaches, indicating its strong

performance and efficiency. The convergence curve shown in Fig. 9 further supports this,

clearly showing its advantage over the alternatives. A key factor contributing to this

performance is the algorithm’s ability to explore widely in the early stages and then gradually

focus on promising regions. This smooth shift from exploration to exploitation helps the

algorithm avoid getting trapped in local minima and improves its ability to find the global

optimum.

Problem 4. A 120-bar dome-shaped truss

In this problem, a dome-shaped truss, illustrated in Fig. 10, is selected for structural

optimization. Due to geometric symmetry, the truss members are classified into seven distinct

groups. All members share the same material properties, with a density of 7971.81 kg/m³ and

a Young’s modulus of 210 GPa. The cross-sectional area of each member is constrained to lie

450.00

500.00

550.00

600.00

650.00

700.00

750.00

1 9 1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

B
es

t
C

o
st

Iteration

GA

PSO

ABC

HS

Present work

24

within the range of 1 cm² to 129.3 cm². The loading conditions include a concentrated load of

3000 kg at node 1,500 kg at nodes 2 through 13, and 100 kg at all remaining nodes.

Additionally, the natural frequency constraints are

f1≥9 Hz and f2≥11 Hz

Table 10. Results of the 120-bar dome-shaped truss

Variables

Optimal design variable (cm2)

GA PSO ABC HS CBBO-

23

CBBO-

31

Present

work

AG1 19.85 20.44 20.12 19.64 19.47 19.63 19.75

AG2 38.01 37.84 37.75 37.92 40.02 40.24 40.11

AG3 11.47 10.61 10.39 10.96 10.74 10.62 10.59

AG4 21.58 21.21 21.35 21.05 21.19 21.13 21.32

AG5 9.14 9.63 9.39 9.57 10.10 9.64 9.65

AG6 12.52 11.49 11.76 11.91 11.71 11.73 11.73

AG7 15.00 15.31 15.15 15.44 14.71 14.90 14.63

Best weight (kg) 8824.521 8726.367 8797.571 8816.354 8710.1 8709.3 8708.5

Average weight (kg) 8951.213 8921.651 8863.857 8934.254 8732.1 8711.4 8709.6

Std. Dev. 17.65 11.26 9.65 16.52 - - 8.56

CPU Time (s) 397 323 405 431 - - 309

In this example, the proposed algorithm shows superior performance compared to other

metaheuristics algorithms. As reported in Table 11, the algorithm achieved a lighter optimal

design with fewer function evaluations, confirming its efficiency and effectiveness. The

dynamic control of the agent-to-solution distance allows for extensive exploration in the early

iterations and a gradual transition to exploitation later on. This balance prevents premature

convergence and enables the algorithm to efficiently find the global minimum. The

convergence curve in Fig. 11 clearly indicates the superiority of the proposed algorithm over

the other methods.

25

Fig. 10. The 120-bar dome-shaped truss

26

Fig. 11. Convergence curve of the proposed algorithm for the 120-bar dome-shaped truss

Problem 5. A 200-bar planar truss

An optimal design is sought for the 200-bar planar truss illustrated in Fig. 12. The design

constraint requires that the stress in each member remain within ±10 ksi. The material

properties assigned to all members include a Young’s modulus of 3×10⁷ psi and a density of

0.273 lb/in³. A minimum cross-sectional area of 0.1 in² was imposed for the members. To

simplify the design, the members were grouped into 29 categories, with all members within a

group sharing the same cross-sectional area. As shown in Table 11, the truss was subjected to

three distinct loading scenarios. The final designs were then compared with those obtained by

other optimization methods, as presented in Table 12.

Table 11. Load cases for the planar 200-bar truss

Case Load (lb) Direction Nodes

1 1000 X 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, 71

2 10000 Y
1-6, 8, 10, 12, 14-20, 22, 24, 26, 28-34, 36, 38,

40, 42-48, 50, 52, 54, 56-62, 64, 66, 68, 70-75

3 Load cases 1 and 2 acting simultaneously

8600.00

8700.00

8800.00

8900.00

9000.00

9100.00

9200.00

9300.00

9400.00

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

B
es

t
C

o
st

Iteration

GA

PSO

ABC

HS

Present work

27

Fig. 12. The 200-bar planar truss

Table 12. Results of the 200-bar planar truss

Variables
Optimal design variable (cm2)

GA PSO ABC HS SO AHA Present work

AG1 0.11 0.14 0.15 0.14 0.11 0.28 0.14

AG2 0.94 0.94 0.94 0.96 1.03 0.82 0.94

AG3 0.13 0.10 0.10 0.10 0.20 0.10 0.10

AG4 0.10 0.10 0.10 0.10 0.10 0.10 0.10

AG5 2.03 1.94 1.94 1.95 1.92 1.82 1.94

AG6 0.31 0.29 0.30 0.29 0.30 0.55 0.29

AG7 0.16 0.10 0.10 0.11 0.10 0.12 0.10

28

AG8 3.15 3.10 3.10 3.11 3.01 3.12 3.11

AG9 0.10 0.10 0.10 0.10 0.40 0.10 0.10

AG10 4.10 4.10 4.10 4.11 4.01 4.12 4.11

AG11 0.43 0.40 0.40 0.41 0.55 0.35 0.40

AG12 0.11 0.19 0.19 0.18 0.11 0.14 0.11

AG13 5.38 5.42 5.42 5.45 5.42 5.32 5.38

AG14 0.16 0.10 0.10 0.10 0.36 0.17 0.10

AG15 6.41 6.42 6.42 6.45 6.40 6.33 6.38

AG16 0.56 0.57 0.58 0.58 0.70 0.52 0.53

AG17 0.40 0.13 0.15 0.15 0.16 0.14 0.39

AG18 7.97 7.97 7.97 8.01 8.11 7.72 7.94

AG19 0.10 0.10 0.10 0.10 0.10 0.15 0.10

AG20 9.01 8.97 8.97 9.01 9.11 8.68 8.94

AG21 0.86 0.70 0.71 0.73 0.78 0.68 0.83

AG22 0.22 0.42 0.42 0.78 0.27 2.28 0.15

AG23 11.02 10.86 10.89 11.17 11.21 10.88 10.94

AG24 0.13 0.10 0.10 0.14 0.11 0.89 0.10

AG25 12.03 11.86 11.88 12.17 12.13 11.87 11.94

AG26 1.00 1.03 1.04 1.34 0.99 2.62 0.89

AG27 6.57 6.68 6.64 5.48 6.39 3.98 6.84

AG28 10.72 10.81 10.80 10.13 10.57 10.12 10.88

AG29 13.96 13.84 13.87 14.52 14.08 15.60 13.74

Best weight (lb) 25681.3 25459.9 25495.4 25519.4 25835.6 26764.1 25452.3

Average weight (lb) 26613.4 25547.6 25610.2 25543.5 27092.3 30823.5 25495.6

Std. Dev. (lb) 615.80 129.09 168.85 23.21 795.17 2268.35 123.42

CPU Time (s) 498 421 568 563 437 418 403

This problem shows the effectiveness of the proposed algorithm in handling high-dimensional

structural design problems. Unlike conventional metaheuristic algorithms, which often struggle

with maintaining solution quality as problem size increases, the proposed method consistently

converges to the best solution with remarkable stability. The results presented in Table 12

reveal that it consistently outperformed the compared algorithms in terms of achieving the best

solution. The adaptive nature of the distance parameter provides strong exploration and

exploitation capabilities, allowing the algorithm to converge more quickly and accurately to

the optimal solution. The convergence plot in Fig. 13 shows the efficient progression of the

proposed algorithm toward the global minimum compared to other methods.

29

Fig. 13. Convergence curve of the proposed algorithm for the 200-bar planar truss

4. Conclusions

In this paper, a new optimization algorithm is developed to achieve an optimal solution,

efficiently. This algorithm operates based on the movement of the specified agents in the search

space. These agents explore the search space at a specific distance from the best solutions.

Determining this distance plays a fundamental role in the exploration and exploitation abilities

of the algorithm. This distance is defined using specific dynamic parameters based on the

position of the agents and the best solutions. It is a large distance at first, ensuring good

exploration, and gradually decreases during iterations leading to proper exploitation. The

performance of the proposed algorithm is assessed in several mathematical and engineering

problems and is compared with various optimization algorithms such as GA, PSO, ABC, and

HS. Different structures and engineering problems are also investigated to signify the

capabilities of these algorithms in structural problems. The results demonstrate the

effectiveness and efficiency of the proposed algorithm in converging to the global minimum.

15000.00

35000.00

55000.00

75000.00

95000.00

115000.00

135000.00

155000.00

175000.00

195000.00

1 8
1

5
2

2
2

9
3

6
4

3
5

0
5

7
6

4
7

1
7

8
8

5
9

2
9

9
1

0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

B
es

t
C

o
st

Iteration

GA

PSO

ABC

HS

Present work

30

Th fact that the proposed method reaches the solution efficiently in a wide range of examples,

is a sign of robustness of the proposed method.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or

not-for-profit sectors.

References

Abdel-Basset, M., Abdel-Fatah, L. and Sangaiah, A. K. (2018). “Metaheuristic algorithms: A

comprehensive review”, Computational intelligence for multimedia big data on the cloud with

engineering applications, 185–231, https://doi.org/10.1016/B978-0-12-813314-9.00010-4.

Abdollahzadeh, B., Gharehchopogh, F. S. and Mirjalili, S. (2021) “African vultures optimization

algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems”,

Computers & Industrial Engineering, 107408, https://doi.org/10.1016/j.cie.2021.107408.

Abedinpourshotorban, H., Mariyam Shamsuddin, S., Beheshti, Z. and Jawawi, D. (2016).

“Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm",

Swarm Evol Comput 26, 8–22, https://doi.org/10.1016/j.swevo.2015.07.002.

Abualigah, L., Ababneh, A., Ikotun, A. M., Zitar, R. A., Alsoud, A. R., Khodadadi, N., Ezugwu, A. E.,

Hanandeh, E. S. and Jia, H. (2024). “A Survey of cuckoo search algorithm: optimizer and new

applications”, Metaheuristic optimization algorithms, Elsevier, 45–57,

https://doi.org/10.1016/B978-0-443-13925-3.00018-2.

Akay, B. and Karaboga, D. (2012). “Artificial bee colony algorithm for large-scale problems and

engineering design optimization”, Journal of intelligent manufacturing, 23, 1001–1014,

https://doi.org/10.1007/s10845-010-0393-4.

Almufti, S. M. (2019). “Historical survey on metaheuristics algorithms”, International Journal of

Scientific World, 7(1), 1, https://doi.org/10.14419/ijsw.v7i1.29497.

Arora, S. and Singh, S. (2019). “Butterfly optimization algorithm: a novel approach for global

optimization”, Soft computing, 23, 715–734, https://doi.org/10.1007/s00500-018-3102-4.

Askari, Q., Younas, I. and Saeed, M. (2020). “Political Optimizer: A novel socio-inspired meta-

heuristic for global optimization”, Knowledge-Based Systems, 195, 105709,

https://doi.org/10.1016/j.knosys.2020.105709.

Ayyarao, T. S., Ramakrishna, N., Elavarasan, R. M., Polumahanthi, N., Rambabu, M., Saini, G., Khan,

B. and Alatas, B. (2022). “War strategy optimization algorithm: a new effective metaheuristic

algorithm for global optimization”, IEEE Access, 10, 25073–25105,

https://doi.org/10.1109/ACCESS.2022.3153493.

Bodaghi, M. and Samieefar, K. (2019). “Meta-heuristic bus transportation algorithm”, Iran Journal of

Computer Science, 2, 23–32, https://doi.org/10.1007/s42044-018-0025-2.

Coello Coello, C. A. (2005). “An introduction to evolutionary algorithms and their applications”,

International Symposium and School on Advancex Distributed Systems, Springer, 425–442,

https://doi.org/10.1007/11533962_39.

Das, B., Mukherjee, V. and Das, D. (2020). “Student psychology based optimization algorithm: A new

population based optimization algorithm for solving optimization problems”, Advances in

Engineering software, 146, 102804, https://doi.org/10.1016/j.advengsoft.2020.102804.

Dhiman, G. and Kumar, V. (2019). “Seagull optimization algorithm: Theory and its applications for

large-scale industrial engineering problems”, Knowledge-Based Systems, 165, 169–196,

https://doi.org/10.1016/j.knosys.2018.11.024.

Dorigo, M., Birattari, M. and Stutzle, T. (2007). “Ant colony optimization”, IEEE computational

intelligence magazine, 1(4), 28–39, https://doi.org/10.1109/MCI.2006.329691.

https://doi.org/10.1016/B978-0-12-813314-9.00010-4
https://doi.org/10.1016/j.cie.2021.107408
https://doi.org/10.1016/j.swevo.2015.07.002
https://doi.org/10.1016/B978-0-443-13925-3.00018-2
https://doi.org/10.1007/s10845-010-0393-4
https://doi.org/10.14419/ijsw.v7i1.29497
https://doi.org/10.1007/s00500-018-3102-4
https://doi.org/10.1016/j.knosys.2020.105709
https://doi.org/10.1109/ACCESS.2022.3153493
https://doi.org/10.1007/s42044-018-0025-2
https://doi.org/10.1007/11533962_39
https://doi.org/10.1016/j.advengsoft.2020.102804
https://doi.org/10.1016/j.knosys.2018.11.024
https://doi.org/10.1109/MCI.2006.329691

31

Ezugwu, A. E., Shukla, A. K., Nath, R., Akinyelu, A. A., Agushaka, J. O., Chiroma, H. and Muhuri, P.

K. (2021). “Metaheuristics: a comprehensive overview and classification along with

bibliometric analysis”, Artificial Intelligence Review, 54, 4237–4316,

https://doi.org/10.1007/s10462-020-09952-0.

Faramarzi, A., Heidarinejad, M., Stephens, B. and Mirjalili, S. (2020). “Equilibrium optimizer: A novel

optimization algorithm”, Knowledge-Based Systems, 191, 105190,

https://doi.org/10.1016/j.knosys.2019.105190.

Fogel, D. B. (1998). “Evolutionary computation: the fossil record”, John Wiley & Sons,

https://doi.org/10.1109/9780470544600.

Geem, Z. W., Kim, J. H. and Loganathan, G. V. (2001). “A new heuristic optimization algorithm:

harmony search”, simulation, 76(2), 60–68, https://doi.org/10.1177/003754970107600201.

Goldberg, D. E. (1992). “Genetic Algorithms in Search, Optimization & Machine Learning,

401pp., Addison-Wesley (1989)”, Journal of the Japanese Society for Artificial Intelligence,

7(1), 168–168, https://doi.org/10.11517/jjsai.7.1_168.

Haldurai, L., Madhubala, T. and Rajalakshmi, R. (2016). “A study on genetic algorithm and its

applications”, Int. J. Comput. Sci. Eng, 4(10), 139–143,

https://www.doi.org/10.56726/IRJMETS32980

Hansen, N., Müller, S. D. and Koumoutsakos, P. (2003). “Reducing the time complexity of the

derandomized evolution strategy with covariance matrix adaptation (CMA-ES)”, Evolutionary

computation, 11(1), 1–18, https://doi.org/10.1162/106365603321828970.

Hashemi, A., Dowlatshahi, M. B. and Nezamabadi-Pour, H. (2021). “Gravitational search algorithm:

Theory, literature review, and applications”, Handbook of AI-based Metaheuristics, 119–150,

http://doi.org/10.1201/9781003162841-7.

Hashim, F. A., Houssein, E. H., Hussain, K., Mabrouk, M. S. and Al-Atabany, W. (2022). “Honey

Badger Algorithm: New metaheuristic algorithm for solving optimization problems”,

Mathematics and Computers in Simulation, 192, 84–110,

https://doi.org/10.1016/j.matcom.2021.08.013.

Hashim, F. A., Houssein, E. H., Mabrouk, M. S., Al-Atabany, W. and Mirjalili, S. (2019). “Henry gas

solubility optimization: A novel physics-based algorithm”, Future Generation Computer

Systems, 101, 646–667, https://doi.org/10.1016/j.future.2019.07.015.

Hashim, F. A., Hussain, K., Houssein, E. H., Mabrouk, M. S. and Al-Atabany, W. (2021). “Archimedes

optimization algorithm: a new metaheuristic algorithm for solving optimization problems”,

Applied intelligence, 51, 1531–1551, https://doi.org/10.1007/s10489-020-01893-z.

Hatamlou, A. (2013). “Black hole: A new heuristic optimization approach for data clustering”,

Information Sciences, 222, 175–184, https://doi.org/10.1016/j.ins.2012.08.023.

Holland, J. H. (1992). “Adaptation in natural and artificial systems: an introductory analysis with

applications to biology, control, and artificial intelligence”, MIT press,

https://doi.org/10.7551/mitpress/1090.001.0001.

Karaboga, D. and Akay, B. (2009). “A comparative study of artificial bee colony algorithm”, Applied

mathematics and computation, 214(1), 108–132, https://doi.org/10.1016/j.amc.2009.03.090.

Kaveh, A. and Yousefpoor, H. (2022). “Chaotically enhanced meta-heuristic algorithms for optimal

design of truss structures with frequency constraints”, Periodica Polytechnica Civil

Engineering, 66(3), 900–921, https://doi.org/10.3311/PPci.20220.

Kennedy, J. (2006). “Swarm intelligence”, Handbook of nature-inspired and innovative computing:

integrating classical models with emerging technologies, Springer, pp.187–219.

https://doi.org/10.1007/0-387-27705-6_6.

Kennedy, J. and Eberhart, R. (1995) “Particle swarm optimization”, Proceedings of ICNN'95-

international conference on neural networks, ieee, 1942–1948,

http://doi.org/10.1109/ICNN.1995.488968.

Kirkpatrick, S., Gelatt Jr, C. D. and Vecchi, M. P. (1983). “Optimization by simulated annealing”,

science, 220(4598), 671–680, http://doi.org/10.1126/science.220.4598.671.

Lee, K. S. and Geem, Z. W. (2005). “A new meta-heuristic algorithm for continuous engineering

optimization: harmony search theory and practice”, Computer Methods in Applied Mechanics

and Engineering, 194(36-38), 3902–3933, https://doi.org/10.1016/j.cma.2004.09.007.

https://doi.org/10.1007/s10462-020-09952-0
https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.1109/9780470544600
https://doi.org/10.1177/003754970107600201
https://doi.org/10.11517/jjsai.7.1_168
https://www.doi.org/10.56726/IRJMETS32980
https://doi.org/10.1162/106365603321828970
http://doi.org/10.1201/9781003162841-7
https://doi.org/10.1016/j.matcom.2021.08.013
https://doi.org/10.1016/j.future.2019.07.015
https://doi.org/10.1007/s10489-020-01893-z
https://doi.org/10.1016/j.ins.2012.08.023
https://doi.org/10.7551/mitpress/1090.001.0001
https://doi.org/10.1016/j.amc.2009.03.090
https://doi.org/10.3311/PPci.20220
https://doi.org/10.1007/0-387-27705-6_6
http://doi.org/10.1109/ICNN.1995.488968
http://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1016/j.cma.2004.09.007

32

Mirjalili, S. and Lewis, A. (2016). “The whale optimization algorithm”, Advances in Engineering

software, 95 51–67, https://doi.org/10.1016/j.advengsoft.2016.01.008.

Mohd Shahrom, M. A., Zainal, N., Ab Aziz, M. F. and Mostafa, S. A. (2023). “A Review of Glowworm

Swarm Optimization Meta-Heuristic Swarm Intelligence and its Fusion in Various

Applications”, Fusion: Practice & Applications, 13(1), https://doi.org/10.54216/FPA.130107.

Rashedi, E., Nezamabadi-pour, H. and Saryazdi, S. (2009). “GSA: A Gravitational Search Algorithm”,

Information Sciences, 179(13), 2232–2248, https://doi.org/10.1016/j.ins.2009.03.004.

Rechenberg, I. (1978) “Evolutionsstrategien”, Simulationsmethoden in der Medizin und Biologie:

Workshop, Hannover, 29. Sept.–1. Okt. 1977, Springer, 83–114, https://doi.org/10.1007/978-3-

642-81283-5_8.

Rokh, B., Mirvaziri, H. and Olyaee, M. (2024). “A new evolutionary optimization based on multi-

objective firefly algorithm for mining numerical association rules”, Soft computing, 28(9),

6879–6892, https://doi.org/10.1007/s00500-023-09558-y.

Roudak, M., Shayanfar, M., Farahani, M., Badiezadeh, S. and Ardalan, R. (2024). “An enhanced genetic

algorithm based on the introduction of fixed station groups and a new variable multi-parent

crossover technique”, Iran University of Science & Technology, 14(2), 189–210,

https://doi.org/10.22068/ijoce.2024.14.2.582.

Rutenbar, R. A. (1989). “Simulated annealing algorithms: An overview”, IEEE Circuits and Devices

magazine, 5(1), 19–26, https://doi.org/10.1109/101.17235.

safarkhani, m. and madhkhan, m. (2025). “Multi-objective optimization of outriggers and belt walls

location in high-rise concrete structures using the Genetic-Descent Gradient integrated

method”, Civil Engineering Infrastructures Journal,

https://doi.org/10.22059/ceij.2025.382260.2152.

Shami, T. M., Grace, D., Burr, A. and Mitchell, P. D. (2024). “Single candidate optimizer: a novel

optimization algorithm”, Evolutionary Intelligence, 17(2), 863–887,

https://doi.org/10.1007/s12065-022-00762-7.

Storn, R. and Price, K. (1997). “Differential evolution–a simple and efficient heuristic for global

optimization over continuous spaces”, Journal of global optimization, 11, 341–359,

https://doi.org/10.1023/A:1008202821328.

Talatahari, S., Azizi, M., Tolouei, M., Talatahari, B. and Sareh, P. (2021). “Crystal structure algorithm

(CryStAl): a metaheuristic optimization method”, IEEE Access, 9, 71244–71261,

https://doi.org/10.1109/ACCESS.2021.3079161.

Umar, S. U., Rashid, T. A., Ahmed, A. M., Hassan, B. A. and Baker, M. R. (2024). “Modified Bat

Algorithm: a newly proposed approach for solving complex and real-world problems”, Soft

computing, 28(13), 7983–7998, https://doi.org/10.1007/s00500-024-09761-5.

Yang, X.-S. and Deb, S. (2009). “Cuckoo search via Lévy flights,[in:] 2009 World Congress on Nature

& Biologically Inspired Computing (NaBIC)”, Coimbatore, India. 210–214,

https://doi.org/10.1109/NABIC.2009.5393690.

Zhang, Y. and Jin, Z. (2020). “Group teaching optimization algorithm: A novel metaheuristic method

for solving global optimization problems”, Expert Systems with Applications, 148, 113246,

https://doi.org/10.1016/j.eswa.2020.113246.

Zhao, W., Wang, L. and Mirjalili, S. (2022). “Artificial hummingbird algorithm: A new bio-inspired

optimizer with its engineering applications”, Computer Methods in Applied Mechanics and

Engineering, 388, 114194, https://doi.org/10.1016/j.cma.2021.114194.

https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.54216/FPA.130107
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1007/978-3-642-81283-5_8
https://doi.org/10.1007/978-3-642-81283-5_8
https://doi.org/10.1007/s00500-023-09558-y
https://doi.org/10.22068/ijoce.2024.14.2.582
https://doi.org/10.1109/101.17235
https://doi.org/10.22059/ceij.2025.382260.2152
https://doi.org/10.1007/s12065-022-00762-7
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/ACCESS.2021.3079161
https://doi.org/10.1007/s00500-024-09761-5
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1016/j.eswa.2020.113246
https://doi.org/10.1016/j.cma.2021.114194

