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ABSTRACT: Geological hazards present a major challenge to the development of Algiers, the capital of 

Algeria, with landslides being particularly prevalent in the early terrain of the Sahel region. Comprehensive 

preliminary studies are essential for mapping zones vulnerable to slope instability and for mitigating their 

impacts. This study aims to produce a landslide susceptibility map for the Marly Sahel area using Geographic 

Information System (GIS) and Analytical Hierarchy Process (AHP) methodologies. Key factors considered in 

the susceptibility  assessment include slope degree, lithology, distance to drainage, elevation,  landuse and 

geotechnical parameters. The weight of each factor class was determined using the AHP technique integrated 

with the GIS functionalities. This process resulted in the generation of landslide Susceptibility maps, 

categorizing the area into five zones: very low, low, moderate, high, and very high susceptibilityThe analysis 

identified  slope, lithology, cohesion, elevation and proximity to drainage as the most influential factors 

contributing to landslides occurrence. The study revealed  that the northern and south-eastern parts of the area, 

particullary near valleys and drainage systems, are especialy susceptible to landslides. A landslide inventory 

map was employed to validate the susceptibility model, achieving  a prediction rate of 0.75 based on the  area 

under curve (AUC) technique. Despite limitations, such as the lack of landslide inventory data, this study 

underscores the critical importance of detailed landslide susceptibility mapping for effective hazard 

management and informed land-use planning in vulnerable regions. 

Keywords:  Landslide susceptibility, Sahel of Algiers, Geographic Information System (GIS), Analytic 

Hierarchy Process (AHP). 
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1. Introduction 

Landslides are complex natural hazards that can 

result in significant loss of life and property (Li 

et al., 2020). They occur when soil or rock is 

displaced  by gravity, often triggered by various 

natural or human-induced factors (Filali et al., 

2020; Kiernan et al., 2022), including heavy 

rainfall, earthquakes, volcanic activity,  erosion, 

and human activities such as  deforestation, 

mining, construction, and improper land use. 

The susceptibility of slopes vulnerability to 

landslides is often linked to the type of soil or 

rock present, such as clays, marl, gypsum, or 

loose formations that are prone to destabilization 

( El Jazouli et al., 2019). The occurrence and 

progression of landslides are influenced by 

several parameters like topography, geology, 

hydrology, erosion, urbanization, and 

meteorological conditions, with weather being 

the leading cause of many landslides events 

(Leonardi et al., 2022;  Li et Chen, 2023).  

Landslides are a common occurrence in northern 

Algeria, triggered by factors such as the region's  

geological composition, land morphology, 

hydrology, climate, and human activities 

(Senouci et al., 2021). Studies highlight frequent 

landslide events  in area like Constantine, 

Medea, and Kabylie. Algiers, in particular 

experiences considerable damage to structures 

and infrastructure as a result of this geological 

hazard. Following Algeria's independence in 

1962, rapid urbanization led to significant 

expansion into marginal lands southwest of  

Algiers's Sahel (coast), wich became 

increasingly suitable for construction. newly 

urbanized areas such as El-Achour, Daly-

Brahim, Ouled-Fayet, Souidania, El Rahmania, 

Khraicia, and Sidi-Abdellah have since  been  

impacted by landslides (Benbouras, 2022). 

These  instability processes, whether superficial 

or deep (rotational or complex), are primarily 

observed in the Plaisancian marls and sandy 

clays, which form the transition zone between 

the Plaisancian and molassic Astien facies 

(Aymé, 1965; Filali et al., 2021). 

Studing and analyzing landslides is essential 

todevelop  susceptibility models and maps, that 

can help prevent or mitigate their devastating 

effects (Hua et al., 2021). These maps provide 

valuable insights for decision-makers, including 

planners and engineers, to identify suitable areas 

for development and minimize landslides impact 

(Thiery et al., 2021). Geographic information 

system (GIS) play a crucial role in managing 

spatial and temporal data, offering a pwerful  

platform for analyzing and interacting, with 

large datasets related to landslides (Li et al., 

2019;  Roccati et al., 2021). The growing 

application of GIS in landslide research 

underscores its critical role in the field. Its 

capacity to manage and integrate diverse data 

sources, along with supporting complex spatial 

analysis and visualization, makes GIS an 

indispensable tool for the studying geologic 

hazards (Sandeep & Shrivastava, 2022; Zangh et 

al., 2020).  

Landslide susceptibility assessment methods can 

generally be classified into qualitative and 

quantitative approches (Kamran et al., 2021), 

including heuristic analysis, statistical analysis, 

and deterministic Analysis (Shano et al., 2020). 

The qualitative approch to landslide 

susceptibility mapping can be divides into  two 

main categories: direct and indirect methods. 

The direct method, geomorphologic analysis, 

relies on expert knowledge and field experience 

to identify and map landslide susceptibility 



 

 
 

(Xiao et al., 2020; Farook & Akram, 2021). The 

indirect methods, which are semi-quantitative, 

involve ranking parameters that influence 

landslide occurrence and assigning weight 

values based on expert judgment. These 

parameters can be assessed through expert 

opinion (knowledge-driven approach) or 

analytical techniques like the Analytical 

Hierarchy Process (AHP). The results of 

qualitative methods are largely influenced by  

expert knowledge, and notably, they do not 

require inventory maps for landslide 

susceptibility mapping (Vakhsoori et al., 2019). 

In the quantitative approach to landslide 

susceptibility mapping includes deterministic 

and statistical methods. The deterministic 

method calculates safety factors to evaluate 

slope stability, typically applied to specific 

locations (Ghadrdan et al., 2021). In contrast,  

statistical methods, such as bivariate and 

multivariate techniques, Frequency Ratio (FR), 

Weight of Evidence (WoE), Artificial Neural 

Network (ANN), and Support Vector Machine 

(SVM), examine the relationships between 

conditioning factors and landslide distribution  

(Gentilucci et al., 2021). The choice of method 

depends on factors like the study area's scale, 

data availability, and the level of scientific 

knowledge. Additionnaly, Some qualitative 

methods such as  analytic hierarchy process 

(AHP), analytic networks process (ANP), Fuzzy-

AHP, become semi-quantitative when 

incorporating ranking and weighting (Bahrami et 

al., 2021). 

The Analytic Hierarchy Process (AHP), 

developed by Saaty (1977), is a widely used 

Multi-Criteria Decision Analysis (MCDA) 

method employed  by many researchers (Basu & 

Pal, 2020; Bahrami et al., 2021; Chanu & 

Bakimchandra, 2022; Liu et al., 2024). AHP 

simplifies complex problems involving multiple 

causative factors such as slope, drainage, 

lithology, and geology, by breaking them into 

simpler criteria and assigning weight based on 

their relative importance (Saaty, 1977). As part 

of MCDA, AHP provides a structured 

framework to integrate various criteria, and 

enables systematic comparison of factors 

through pairwise comparisons.  

This process produces a comprehensive 

landslide susceptibility map, which is crucial  for 

effective hazard management in vulnerable 

areas. 

In Algeria, landslide susceptibility assessment is 

an emerging field. Several studies have used  

heuristic and statistical methods to identify  

vulnerable areas, particulary, in the eastern 

regions of the country (Sediki & Dehemi, 2022; 

Bourenane & Bouhadad, 2021; Hadji et al., 

2018; Manchar et al., 2018). Notably, a study 

southeast of Algiers focused on landslide 

susceptibility, utilizing Hybrid meta-heuristic 

machine learning methods (Benbouras, 2022).  

In this study, landslides are recognized as a 

complex natural phenomena influenced by 

various factors, including slope, hydrological 

characteristics, stratigraphic lithology, and 

geotechnical properties. As a result, the Analytic 

Hierarchy Process (AHP ) was chosen for the 

following reasons: 

1. Landslide occurrences data was  gathered 

through a field survey, documenting 24 disaster 

sites. However, given the limited study area and 

insufficient samples size of landslide points, it 

was necessary to supplement and refine the data 

with the expertise of experienced professionals. 

2. Information on landslide occurrences within 

the study area was recorded as points, indicating 

the location of past  landslide events. 



 

 
 

3. The implementation of  AHP improved the 

evaluation process, enhancing accuracy by 

carefully adjusting and assigning appropriate 

weights to various factors. 

By applying these methodologies, housing, and 

road authorities are empowered to formulate 

comprehensive strategic plans to mitigate the 

adverse impacts of landslides on human lives 

and property. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Study area 

Algiers is situated in the sahel region of the 

northern Mitidja bassin, primarly composed of 

Plio-Quaternary deposits. The local geology 

features recent quaternary alluvial deposits, 

including clay, silt, and gravel within the bassin, 

marine terraces to the north, and alluvial terraces 

near rivers. Tectonic activity in the region is 

evident in the tilted marine terraces and 

deformed alluvial deposits. The study area is 

located in the southwestern suburbs of Algiers, 

covering approximately 78.75 km2 and spans 

between 36°39' and 36°45' N longitude and 2°55' 

and 2°59'E latitude (Fig. 1).  This region is well-

known for its susceptibility to landslides, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 due to its geological and geomorphological 

features. Both climatic and anthropogenic factors 

also contribute to landslide occurrences in the 

area. Geologically, The Algiers region 

Figure 1:(a) Location map and  (b) geological map (Royer et 

al 1961) related to study area 



 

 
 

showcases a complex structure (Fig. 1),  

primarily consisting of a metamorphic dome 

borded by Tertiary and Quaternary sedimentary 

formations. The underlying metamorphic 

basement is composed of  a highly tectonized 

crystalline rocks. These rock outcrops are 

located between Bouzareah and the port of 

Algiers.  

The Tertiary period is characterized by the 

absence of  Eocene and Oligocene deposits. It 

unconformably overlies the metamorphic 

basement and consists of  the following layers: 

 Lower Miocene, predominantly composed 

of sandstones. This layer is highly 

tectonized, with limited exposed outcrops. 

 Lower Pliocene, primarily composed of 

marls and marly clays. these formations 

outcrops in the Sahel region, with a 

thickness exceeding 200 meters, and serve 

as the bedrock for much of the urban 

development. They are overlain by Astian 

sediments or more recent deposits. The 

marls form the tableland of EL Achour 

and Ouled fayet to the northeast, 

subjected to significant erosion ( Royet et 

al., 1961). 

 The recent deposits consist of fine sands, 

gravels, and pebbles. 

The Sahel is characterized by a series of hills 

with a gradient ranging from 5% to 30%.  The 

uplift of the Atlas Mountains, deriven by Astien 

tectonics, resulted in the  formation of the Sahel 

anticline and the depression of Mitidja bassin 

(Royer et al., 1961;Aymé, 1956). 

Landslides in the area display a wavy 

morphology and primarily occur within the 

weathered marl horizons. These horizons vary in  

weathering intensity, which in turn affects their 

strength properties and slope stability. The 

thickness of the weathered marl layers can reach 

up to 8 m in depth, even on slopes with an 

inclination greater than 10%. 

3. Material and Methods 

Landslide susceptibility mapping requires 

collection of data that influences the likelihood 

of landslides. The selection of specific factors 

depend on variables, such as the study area size 

of, the type of landslides, and the mechanisms of 

failure (Wang et al., 2019). However, there are 

no universal guidelines for selecting parameters 

that impact landslides in susceptibility mapping 

(Gaidzik & Ramírez-Herrera, 2021). Therefore, 

establishing a connection between causal factors 

and landslides remains both a critical and 

challenging task (Mind’je et al., 2020). A 

detailed flowchart outlining the  entire process is 

provided in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2:  Flowchart  outlining the  steps involved in this study 
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3.1. Landslides inventory  

Landslide inventory is a crucial component for 

landslide susceptibility modeling (Bera et al., 

2021; Guri et al., 2015). It involves documenting 

past  landslides occurences. In our study area, we 

identified 24 landslide events between 2011 and 

2018 (Fig. 1). The landslide inventory map was 

compiled using multiple methods, including 

interviews with public administration personel, 

soil laboratories such as the National Laboratory 

of Habitat and Construction, and local residents 

of Algiers. The collected data were then 

validated through aerial photography,  Google 

Earth, and field surveys.  

The recorded cases occurred in urban areas, 

primarily within shallow layers ranging from a 

few decimeters to approximately 9 meters in 

depth, located within altered marly formations. 

3.2. Predisposing factors 

This study assessed and mapped the landslide 

susceptibility in the Sahel of Algiers by selecting 

key factors influencing slope stability,  including 

slope, cohesion, friction angle, water content, 

land use, elevation, distance to the drainage 

network, and lithology. These factors, derived 

from expert knowledge and prior studies 

(Benbouras, 2022; Fell et al., 2008) were used to 

generate thematic layers from a 30 meters 

resolution digital elevation model (DEM) 

obtained from the Shuttle Radar Topography 

Mission (SRTM) database. The lithology layers 

were extracted from a 1:50,000-scale geologic 

map ( Figure 4c). The layers were integrated 

using the AHP method in GIS 

environment(ArcGIS 10.8)  through the 

Weighted Linear Combination (WLC) method 

(Ozdemir, 2020; Panchal & Shrivastava, 

2022Liu et al., 2024). All factors were  evaluated 

by experienced landslide experts and validated 

by numerous studies, forming the basis for their 

judgment.  

3.2.1. Elevation 

Elevation is a critical conditioning factor 

influencing landslide occurence, often indirectly 

affecting other elements such as slope, erosion 

and precipitations (Leonardo et al., 2022). 

Classifying local relief and identifying areas 

with maximum and minimum elevation within 

the terrain are essentiel practices. A grid map of 

elevation with a 5x5m cell size  was generated,  

and the altitude was divided into fives as  

follows (fig. 3d): 53-162m; 126-154m; 154-

179m; 179-208m and 208-269m 

 

3.2.2. Slope 

Slope plays a critical role in the formation,  

development, and susceptibility to landslides. 

Numerous studies have identified it as a key 

parameter in landslide susceptibility assessments 

(Mind'je et al., (2020); Liu et al., (2024)). As the 

slope angle increases, the risk of landslides 

increases, the likelihood of landslides also rises, 

as steeper slopes are more prone  to instability. 

The slope angle can also influence moisture 

content and pore pressure, which are  common 

contributors to landslides (Li et al., 2020). 

Consequently, slope angle is often used in 

landslide mapping to identify areas with a higher 

risk of landslides. In this study, a slope angle 

map was generated from the DEM and divided 

into five classes with intervals of 5% (Fig. 4a).  



 

 
 

3.2.3. Distance to drainage 

The occurrence of landslides is significantly 

influenced by the presence of rivers and their 

interaction with the surrounding landscape. 

Previous studies have shown that as the distance 

between a slope and the drainage network 

decreases, the likelihood of landslides increases 

(Anis et al., 2019;  Huang et al., 2021) due to the 

impact of streams on slope stability.Erosion or 

undercutting by rivers can destabilize slopes 

(Foumelis et al., 2018), and streams can also 

saturate the lower part of the slope material 

(Nohani et al., 2019), leading to a loss of shear 

strength of the soil or rock. Therefore, 

considering the influence of rivers is crucial 

when assessing landslide risk in a given area. In 

this study, the distance to drainage was 

calculated by Euclidean distance in Arc GIS,and  

then reclassified into five classes: 0–130 m, 130–

280 m, 280–420 m, 420–650 m, and 650–1670 

m (Fig. 4b). 

3.2.4. Lithology 

A landslide is a geomorphological event closely 

tied to the lithological properties of the terrain. 

For this study, Lithological data were sourced 

from the 1: 50000-scale geological map of 

Algiers (Fig. 4c). The geological formations in 

thestudy area are relatively homogeneous from a 

litho-technical perspective. The Sahel region 

primarily consists of alluvial deposits, rocky 

formations, marls, sand, and sandstone (Filali et 

al., 2020) 

3.2.5. Landuse 

Landuse in a region indirectly reflects exposure 

to surface erosion and influences slope stability 

(Agrawal & Dixit, 2022). For the purposes of 

this study, land use was classified into seven 

categories: water, trees, crops, built areas, bare 

ground, rangeland and road (Fig. 4e) 

3.2.6 Geotechnical criterion 

In this research, we adopt a  co-deterministic-

statistical approach, integrating available 

geotechnical data. Which are crucial for 

assessing slope stability. Geotechnical data were 

obtained from various technical reports from 

public administration, soil laboratories, and 

companies. The key parameters used in this 

study include cohesion, friction angle, and water 

content. Average values from boreholes data 

(Fig. 3) were  used to generate thematic layers 

(Fig. 4f, g and h). These vector layers were then 

converted into raster format and processed using 

ArcGIS software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.7 Distance to faults 

Figure 3:  Location of boreholes in 

study area 



 

 
 

Geological fault zones are particulary vulnerable  

to landslides due to the reduction in rock 

strength caused by tectonic fractures (Vianello et 

al., 2023). The Algiers region contains several 

fault zones, predominantly oriented from east to 

west and north to south, such us the Sahel fault 

and Mitidja fault.In this study, fault zones were 

categorized into five categories  to create a fault 

proximity map, using Euclidean distance 

analysis (Fig. 4i). This mapping was based on 

the geological map of Algiers. 

 

 

 

3.2.8 Precipitations  

Intense rainfall can greatly  destabilize slopes by 

increasing pore water pressure through soil 

infiltration, which weakens shear strength and 

ultimately triggers landslides (Filali et al., 2020; 

Li et al., 2019).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To evaluate the impact of rainfall on landslide 

susceptibility in the study area, a high-resolution 

rainfall map was generated using the kriging 

interpolation method. Data from eight 

meteorological stations were used to model the 

annual rainfall distribution across the region. 

Rainfall events were further classified into five 

categories (Fig. 4j) to better understand their role 

in triggering landslides. 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

3.2.5 AHP technique 

The weights of all parameters were determined 

using the Analytic Hierarchy Process (AHP), 

considering  the local topographic and physical 

characteristics of the study area. Before 

generating the landslide susceptibility map, the 

weight and rating value of each factor were 

calculated. Each factor was divided into different 

classes  and assigned a  rating value from 1 to 9, 

following Saaty's fundamental scale (Table 1). 

Using the same procedure, weight values were 

determined to reflect the relative importance of 

each factor in comparison to the others. AHP, a 

decision-making method based  on pairwise 

relative comparisons, ensures consistency 

throughout the process. To assess the 

consistency of our expert judgement,  the 

consistency index (CI) was calculated using  

following equation (1) (Saaty, 2001; Saaty, 

1977). 

 

(1) 

Where λmax is the maximum eigen value of the 

matrix, and N is the order of the matrix. The  

 

 

 

quality of the comparison is described by the 

consistency ratio (CR),which is calculated as 

 the ratio of the (CI) and the random index (RI), 

as indicated in equation (2). 

 

 

(2) 

 

The average random consistency index (RI) is 

calculated from a randomly generated reciprocal 

matrices sample using scales 1/9, 1/8, 8, and 9 

(Table 2). 

A matrix exhibiting a consistency ratio (CR) 

below 0.10 indicates satisfactory consistency. 

This suggests that the computed weights for each 

factor are deemed acceptable

Finally, the integration of various causative 

factors and classes into a single landslide 

susceptibility index (LSI) was achieved using a 

weighted linear sum procedure as shown in 

equation (3)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preference factor Degree of 

preference 

explanation 

1 Equally Two factors contribute equally to the 

objective 

3 Moderately Experience and judgment slightly to 

moderately favor one factor over 

another 

5 Strongly Experience and judgment strongly or 

essentially favor one factor over 

another 

7 Very strongly A factor is strongly favored over 

another and its dominance is showed 

in practice 

9 Extremely The evidence of favoring one factor 

over another is of the highest degree 

possible of an affirmation 

2,4,6,8 intermediate Used to represent compromises 

between the preferences in weights  

Table 1 : Scale of preference between two parameters in AHP (Saaty, 1977). 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3) 

 

Where: Wj = weight value for parameter j; Wij = 

rating value or weight value of class I in 

parameter j; n = number of parameters. 

Landslide Susceptibility Index (LSI) values were 

classified into five categories: very low, low, 

moderate, high, and very high susceptibility. 

The Weighted Linear Combination(WLC) 

method was employed to create the landslide 

susceptibility map, a widely used decision rule, 

particularly in GIS applications . 

4.  Results and Discussion 

In this study, a GIS-based Analytic Hierarchy 

Process(AHP) was employed as a robust and 

comprehensive approach to assess the potentiel 

 

 

 

occurrence of landslides in the Sahel region of 

Algiers. Ten critical factors, known as landslide 

conditioning factors, wer carefuly selected for 

the susceptibility analysis. These factors include 

slope degree, distance to drainage, distance 

tofaults, precipitations, cohesion, internal 

friction angle, water content, elevation, landuse 

and lithology. Expert judgment, based on field 

observations and spatial analysis of each 

parameter, was Integrated to enhance the 

accuracy of the evaluation.  

The relative importance of each factor was 

determined by constructing a pairwise 

comparison matrix, following Saaty's 

methodology (2001), as shown in Table 3. 

 

 

 

 (S) (L) (P) (LU) (Dd) (Df) (E) (C) (F) (W) Weightage 

slope (S) 1 3 5 7 7 7 9 9 9 9 0.345 

Lithology (L) 0.33 1         0.211 

 Precipitations 

(P) 

0.2 0.33 
1 

       
0.123 

Landuse (LU) 0.14 0.2 0.33 1       0.079 

Distance  0.14 0.2 0.33 0.33 1 

   

  0.065 

Table 2  Random Consistency Index (RI) (Saaty,  2000). 

 
N (number of factors) 1 2 3 4 5 6 7 8 9 10 

Random Consistency Index (RI) 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

 

Table 3: Pairwise Comparison Matrix, Factor Weights, and Consistency Ratio of Landslide Influencing Factors 



 

 
 

drainage(Dd)  

 Distance to 

faults (Df) 

0.14 0.2 

0.33 0.33 0.33 1 

  

  0.054 

Elevation (E) 0.11 0.14 0.2 0.33 0.33 0.33 1 

 

  0.041 

Cohesion (C) 0.11 0.14 0.2 0.33 0.33 0.33 0.33 1   0.033 

Friction angle (F) 0.11 0.14 0.2 0.33 0.33 0.33 0.33 0.33 1  0.026 

Water content 

(W) 

0.11 0.14 
0.2 0.33 0.33 0.33 0.33 0.33 0.33 1 0.0194 

     λmax      11.18      

     CI           0.132      

     

 

CR         0.08      

 

The analysis results indicate  that the most 

influential factors  affecting landslide 

susceptibility are those assigned the highest 

weights. Slope angle holds the highest weight at 

0.345, underscoring its critical role in increasing 

gravitational instability. Steeper slopes are 

significantly more prone to failure. Lithology, 

with a weight of 0.211, ranks as the second most 

importante  factor, as it governs the physical and 

mechanical behavior of the underlying 

geological materials. Weak or highly weathered 

formations, such as, clays and marls prevalent in 

the study area, are particulary susceptible to 

instability, especially when saturated by rainfall. 

Precipitation, with a weight of 0.123, further 

contributes to this susceptibility by enhancing 

pore water pressure and reducing soil shear 

strength. Precipitation plays a crucial role in 

reducing soil cohesion, thereby intensifying the 

risk of landslides. In the Algiers region, steep 

slopes composed predominanly of clayey and 

marly formations materials  highly sensitive to 

water, contribute significantly to the frequency 

of  landslide events . Moderate impact factors, 

such as land use (weight of 0.079), reflect the 

growing influence of urban expansion, which 

alters natural drainage patterns and further 

affects slope stability. Construction on unstable 

slopes, particularly in areas like Daly Brahim 

and Ouled Fayet, exacerbates landslide risk, 

while deforestation  deriven by  infrastructure 

development reduces the natural stability 

provided by vegetation. Distance to drainage 

(weight: 0.065), and distance to faults,  

 

(weight:0.054)  also emerge as a moderate 

contributors, particulary when combined with 

other destabilzing factors such as steep terrain or 

weak lithology. Minor factors like elevation with 

a weight of 0.041, influence susceptibility 

indirectly by affecting precipitation patterns  and 

erosion processes. Geotechnical parameters, 

such as cohesion (weight: 0.033), friction angle 

(weight: 0.026), and water content (weight: 

0.0194), exert a more localized influence, though 

their impact becomes critical under specific 

conditions. For example, in clayey rich, low 

cohesion coupled with a low friction angle 

significantly increases landslide susceptibility. 

Although water content, carries a relatively  low 

weight, it remains a crucial factor during intense 

rainfall or in areas affected by infrastructure 

failures, such as leaking pipelines an issue 

frequently encountoured in Algiers. These 



 

 
 

factors collectively undermine soil stability and 

amplify landslide risks. The calculated 

Consistency Ratio (CR) of 0.088 confirms an 

satisfactory level of consistency in the AHP 

model, validating the reliability of the derived 

factor weights. 

The susceptibility levels were categorized into 

five distinct zones: very low, low, moderate, 

high, and very high. As shown in Table 4, the 

moderate susceptibility zone is the most 

widespread in the Sahel region, covering 40.49% 

of the total area. This is  followed by the high 

susceptibility zone, which accounts for 35.42%. 

The low susceptibility zone represents 29.58%, 

while the very high susceptibility zone covers 

23.29% (equivalent to 12.33 km²).  

Finally, the very low susceptibility zone 

represents the smallest portion of the study area, 

covering only 11.70% of the total surface. These 

results reveal that over three-quarters of the 

region (75.91%) lie within the moderate to high 

susceptibility zones, underscoring a substantial 

vulnerability to potential landslide. In contraste, 

zones with very low susceptibility are limited, 

indicating that stable terrain are restricted to a 

relatively samell portion of the area 

Table 4: Susceptibility map classes Areas 

According to the susceptibility map (Fig. 5), 

areas with high vulnerability are primarely 

concentrated in the north and southestern parts 

of the study area, particularly along valleys 

withinhe 280 meters of the drainage network. 

Notably, regions such as Daly Brahim, Ouled 

fayet and el Achour regions exhibit elevated 

susceptibility due to their steep slopes 

(exceeding 30°), which promote both erosion 

and landslide activity. In contrast, the western 

parts of the study area  display 

susceptibility levels ranging from very low to 

moderate, where precipitation often serves as the 

main triggering factor for landslides.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The landslide susceptibility map reveals that 

clay-rich formations on steep slopes are 

particulary prone by to landslides. Outcropping 

units dominated by marls and clays have often 

been deforested and heavily affected by urban 

development projects. These fine grained 

sediments exhibit low shear strength and a high 

shrink/swell potential, conditions that are further 

worsened by engineering activities that alter 

surface stress and slope stability.  

 

 

 

 

 

 

 

 

 

 

Classe Susceptibility  
Area 

(%) 

Very low 11.7 

Low 29.55 

Moderate 40.49 

High 35.42 

Very high 23.29 

Total 100.00 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rock deposits and sandstones, known for their 

high mechanical strength, generally exhibit low 

susceptibility to landslide. However, they may 

become moderately involved when forming an 

inclined substratum beneath overlaying clayey or 

marly layers.  In such cases, the instability of the 

upper layers can propagate downward, 

increasing overall landslide risk. Key 

contributing factors in the study area include 

slope, lithology,and cohesion, followed by 

distance to drainage, elevation, and landuse. 

Nonetheless, less influential preconditioning 

factors can still act as triggers under specific less 

conditions (Yong et al., 2022). For example, 

road excavations, additional construction on 

unstable slopes, or the accumulation of 

temporary surface water can initiate or accelerate 

landslide events. 

In most cases, precipitation is the primary 

triggering factor for landslides in the study area. 

Its influence is indirectly related to lithology and 

elevation (Leonardo et al., 2022), Roads and 

fault lines are also recognized as significant 

contributors to landslide occurrence. The 

inclusion of these parameters improved the  

accuracy of the model. Moreover, several studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 have consistently identified slope, lithology, 

land use, and distance to drainage as the most 

critical factors in landslide initiation (Liu et al., 

2024). To evaluate the accuracy of the generated 

susceptibility map, the Receiver Operating 

Characteristic (ROC) curve was applied.  

 

The ROC curve is a widely used statistical tool 

to assess the performance of predictive models. 

It visually represents the relationship between 

the true-positive rate (sensitivity) and the false-

positive rate (1 - specificity). The Area Under 

the Curve (AUC) is a key metric derived from 

 

Figure 6. Receiver Operating Characteristic  

(ROC) curve assessment 
 



 

 
 

the ROC curve, which measures the overall 

accuracy of the model. The AUC value ranges 

from 0.5 to 1, where values closer to 1 indicate a 

strong, reliable model, and values below 0.5 

suggest a model that performs no better than 

random chance. In this study, the predictive 

maps achieved an AUC of 0.75 (Figure 6), 

indicating that the model is well-suited for 

landslide susceptibility mapping and performs 

effectively in identifying areas at risk. 

 

5. Conclusion 

Geological risks related to landslides present a 

considerable threat to the socio-economic 

stability of northern Algeria. However, research 

on landslides in the country remains limited and 

fragmented. Most studies have concentrated on 

the northeastern regions, leaving a gap in 

understanding landslide dynamics in other parts 

of the country. This study highlights that central 

Algeria is also significantly affected by slope 

movements, a region that has been largely 

overlooked in terms of foundational research, 

maps, and documentation. This lack of 

comprehensive data hinders the identification of 

landslide-prone areas and the development of 

effective mitigation strategies. 

This article presents landslide susceptibility 

maps for the Sahel region of Algiers, located in 

northern Algeria. The Analytic Hierarchy 

Process (AHP) was used to analyze the 

relationship between landslide spatial 

distribution and predisposing factors. The 

susceptibility map, created by combining 10 

parameters, demonstrated strong performance 

with an Area Under the Curve (AUC) value of 

0.75, which is considered satisfactory. However, 

challenges remain in obtaining accurate data and 

selecting independent variables for analysis, 

particularly those believed to be causally linked 

to landslide occurrences.  

The AHP methodology applied in this study 

operates within a rating-based framework, which 

is informed by expert opinions. While expert 

insights are invaluable, they introduce a degree 

of subjectivity. Variations in expertise and 

perspectives among experts can lead to differing 

opinions, potentially affecting the objectivity of 

the results and introducing uncertainty into the 

analysis. It is crucial to recognize that the 

reliability of the findings is closely tied to the 

quality of the landslide location data, particularly 

the landslide inventory map. 

The findings from this research will play a 

crucial role in the development of new 

regulations for land protection, infrastructure, 

and land management. These results will be 

valuable for local administrations, decision-

makers, and planners, particularly when utilizing 

advanced AHP and GIS techniques to guide 

effective planning and decision-making 

processes. 

 

6. Nomenclature. 

RI: Random Consistency index. 

LSI: Linear weight sum 

CR Consistency ratio 

CI Consistency index  

λmax 

Wj: 

AUC: 

AHP 

Eigen value 

weight value for parameter j 

Air under curve. 

Analytic Hierarchy Process 
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